Электромагнитный расходомер большого диаметра

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью способа, основанного на взаимодействии движущейся жидкости с магнитным полем. Это взаимодействие подчиняется закону электромагнитной индукции, согласно которому в жидкости, пересекающей магнитное поле, индуцируется электрическое поле, являющееся мерой объемного расхода. Электромагнитный расходомер большого диаметра для жидких металлов состоит из трубы без электроизоляционного покрытия, электродов, присоединенных к наружной поверхности трубы, магнитопровода, выполненного в виде полого цилиндра толщиной не менее 5 мм и двух бескаркасных седлообразной формы индукционных катушек возбуждения магнитного поля. Каждая бескаркасная катушка имеет вид эллипса, огибающего трубу, ось среднего витка которого, расположенная вдоль образующей трубы, равна 0,5-0,6 диаметра канала, а ось среднего витка, расположенная вдоль периметра трубы, равна 1,0-1,2 диаметра канала. Технический результат - повышение верхнего предела температуры измеряемой среды до 500°C и повышение точности измерения расхода в трубах большого диаметра (от 300 до 1000 мм). 1 ил.

 

Изобретение относится к приборостроению, в частности к электромагнитным расходомерам, предназначенным для измерения расхода электропроводных жидкостей.

Известны электромагнитные расходомеры большого диаметра для электропроводных жидкостей, принцип действия которых основан на законе электромагнитной индукции. Например, широко известен электромагнитный расходомер большого диаметра (от 300 до 1000 мм) общепромышленного назначения [1]. Расходомер имеет трубу из нержавеющей стали с изоляционным покрытием внутренней поверхности, два электрода, герметично введенных внутрь трубы, и индуктора, создающего магнитное поле в рабочей зоне канала трубы. Индуктор состоит из двух бескаркасных седлообразной формы индукционных катушек, расположенных на трубе диаметрально противоположно друг другу, огибая трубу, и магнитопровода, в виде полого цилиндра, который охватывает трубу с бескаркасными катушками. Расходомер может измерять любые электропроводные жидкости, даже жидкие металлы, если температура измеряемой среды не превышает допускаемую, т.е. порядка 150-180°C.

Электромагнитный расходомер [1] широко применяется, в частности, для измерения жидких теплоносителей. Ограничение по температуре измеряемой среды является существенным недостатком расходомера, т.к. рабочая температура большинства жидких металлов, которые используются в атомной промышленности в качестве теплоносителей (натрий, свинец, висмут, литий), имеют температуру выше 150-180°C.

Целью изобретения является расширение верхнего предела допускаемой температуры измеряемой среды до 500°C и повышение точности измерения расхода в трубах большого диаметра.

Эта цель достигается с помощью предлагаемого изобретения. Предлагаемый электромагнитный расходомер большого диаметра состоит из трубы с электродами, магнитопровода, выполненного в виде полого цилиндра и двух бескаркасных катушек. Индукционные катушки возбуждения магнитного поля имеют седлообразную форму и расположены на трубе диаметрально противоположно друг другу. Расходомер отличается от известного [1] тем, что труба не имеет внутреннего электроизоляционного покрытия, а электроды присоединены к наружной поверхности трубы. Каждая бескаркасная катушка имеет вид огибающего трубу эллипса, ось среднего витка которого, расположенная вдоль образующей трубы, равна 0,5-0,6 диаметра канала, а ось среднего витка, расположенная вдоль периметра трубы, равна 1,0-1,2 диаметра канала. Цилиндрический магнитопровод имеет толщину не менее 5 мм.

Жидкие металлы обладают высокой электропроводностью, благодаря чему можно отказаться от необходимости применения изоляционного покрытия канала трубы, которое существенно ограничивает верхний предел температуры измеряемой среды. Труба с электродами обмотана теплоизолирующей и термостойкой бакелитовой лентой, позволяющей удалить бескаркасные индукционные катушки возбуждения магнитного поля от трубы, которая является основным источником радиации тепла на катушку возбуждения.

При этом сами катушки возбуждения намотаны проводом с теплостойкой изоляцией типа ПОЖ, повышающие их теплостойкость.

Эллиптическая форма и указанные геометрические размеры индукционных катушек позволяют обеспечить распределение магнитного поля в канале трубы большого диаметра (от 300 до 1000 мм), обеспечивающее наименьшую чувствительность прибора к нарушению осевой симметрии кинематической структуры потока измеряемой среды.

Таким образом, в рассматриваемой конструкции прибора достигается поставленная цель, т.е. обеспечивается верхний предел допустимой температуры измеряемой среды до 500°C и повышение точности измерения расхода.

На рис.1 приведена схема конструкции предлагаемого электромагнитного расходомера.

Электромагнитный расходомер состоит из трубы 1, выполненной из нержавеющей стали без электроизоляционного покрытия, индуктора, состоящего из магнитопровода 2, выполненного в виде полого цилиндра, толщина которого не менее 5 мм и двух бескаркасных седлообразной формы индукционных катушек 3. К внешней поверхности трубы по линии, перпендикулярной оси канала и линии, соединяющей центры индукционных катушек, приварены два электрода 4. Каждая бескаркасная катушка имеет вид эллипса, огибающего трубу, ось среднего витка которого, расположенная вдоль образующей трубы, равна 0,5-0,6 диаметра канала, а ось среднего витка, расположенная вдоль периметра трубы, равна 1,0-1,2 диаметра канала.

Электромагнитный расходомер жидкого металла работает следующим образом.

К индукционным катушкам, включенным последовательно, подводится переменный электрический ток низкой частоты, в результате которого в канале трубы создается переменное магнитное поле, направленное перпендикулярно плоскости, проходящей через линию, соединяющую электроды и ось трубы. При движении жидкого металла по каналу, в жидком металле, пересекающем магнитное поле, возбуждается электрическое поле, которое образует циркуляционные токи в жидком металле и контактирующей с ним стенке трубы. В результате протекания токов в стенку трубы между электродами возникает разность потенциалов, которая служит мерой объемного расхода жидкого металла.

Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении верхнего предела температуры измеряемой среды до 500°C и повышении точности измерения расхода в трубах большого диаметра (от 300 до 1000 мм).

Источник информации

1. Кремлевский П.П. Расходомеры и счетчики количества, справочник. Л.: Машиностроение, 1989, 701 с.

Электромагнитный расходомер большого диаметра (от 300 до 1000 мм), состоящий из трубы с электродами, магнитопровода, выполненного в виде полого цилиндра и двух бескаркасных седлообразной формы индукционных катушек возбуждения магнитного поля, расположенных диаметрально противоположно на трубе, отличающийся тем, что к наружной поверхности трубы присоединены электроды, каждая бескаркасная седлообразной формы индукционная катушка имеет вид огибающего трубу эллипса, ось среднего витка которого, расположенная вдоль образующей трубы, равна 0,5-0,6 диаметра канала, ось среднего витка, расположенная вдоль периметра трубы, равна 1,0-1,2 диаметра канала, а цилиндрический магнитопровод имеет толщину не менее 5 мм.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для измерения объема и объемного расхода жидких сред. Счетчик состоит из входного (1) и выходного (2) коллекторов, корпуса (3), ротора (4), имеющего возможность вращаться вокруг оси в точке O, и лопастей (5), шарнирно закрепленных на роторе в точках A, A′, A′′.

Устройство для регулирования уровня жидкости содержит сепарационную емкость, коллектор входа газожидкостной смеси, газовую трубу, жидкостную трубу, выходной коллектор.

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью электромагнитного способа, т.е. способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения покомпонентного расхода газожидкостной смеси включает измерение объемного расхода и передачу данных вычислителю.

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах. Способ измерения массового расхода среды включает измерение объемного расхода по частоте вращения измерителя при нулевом перепаде давления и передачу данных вычислителю.

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде давления и передачу данных вычислителю.

Изобретение относится к области контроля правильности загрузки железнодорожных цистерн нефтепродуктами и может применяться для контроля уровня загрузки железнодорожных цистерн непосредственно в процессе налива нефтепродуктов, например мазута, на наливных эстакадах для исключения (предупреждения) перелива или недолива цистерн.

Турбинный расходомер содержит корпус с измерительным каналом, в котором между двумя обтекателями, соответственно струенаправляющего аппарата и струевыпрямителя, с возможностью осевого перемещения и вращения расположена турбинка, а также узел съема сигнала.

Изобретение относится к методам измерения объемного расхода, а именно определения эффективной площади натекания и механизма поступления природного газа радона в помещение.

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ.

Изобретение относится к устройствам автоматики и может быть использовано для измерения расхода и количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ. Способ изготовления струйного генератора, содержащего проточную часть в виде плоских струйных элементов с каналами управления, приемными, питания и слива, конструктивно расположенных друг над другом, по которому разрабатывают 3D-модель струйного генератора, выбирают рабочий материал для выращивания струйного генератора, определяют ось модели 3D струйного генератора в качестве оси выращивания, подбирают в формате 3D ее положение для выращивания (полимеризации), которое определяет минимум уменьшения проходных сечений проточной части, формируют послойные сечения струйного генератора в формате 3D в направлении оси выращивания, технологически выращивают послойно всю конструкцию струйного генератора. Технический результат - надежность герметичности между слоями и каналами передачи информации, уменьшение количества времени на изготовление струйного генератора, упрощение размещения цельного корпуса струйного генератора в любой конструкции за счет неразборности, сложность копирования. 2 з.п. ф-лы, 2 ил.

Изобретение относится преимущественно к ракетной технике и используется для поддержания заданного расхода компонентов топлива при изменении давления на входе в двигатель. Устройство имеет регулирующий орган, с соответствующим ему дросселирующим отверстием, корпус с входной и выходной полостями, между которыми расположен чувствительный элемент в виде сильфона с неподвижным фланцем, закрепленным в корпусе на выходе из устройства и подвижным фланцем, расположенным на входе в устройство. Согласно изобретению сильфон подпружинен пружиной сжатия, а дросселирующее отверстие выполнено в подвижном фланце сильфона и взаимодействует с неподвижно установленным профилированным регулирующим органом. Дополнительно в неподвижном фланце могут быть выполнены одно или несколько дросселирующих отверстий, соединяющих входную и выходную полости. Технический результат - повышение точности поддержания заданного расхода рабочего тела в расширенном диапазоне изменения давления на входе и улучшение динамики выхода двигателя на режим при включении. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для калибровочных жидкостей, жидкостные насосы, измеритель скорости потока, анализатор жидкости, включающий генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, дополнительно содержит один или несколько трубопроводов, соединенных с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество трубопроводов равно количеству калибровочных жидкостей, трубопроводы закрепляются на трубопроводе для прокачки многофазной жидкости параллельно ему и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, количество гамма-спектрометров равно или больше количества трубопроводов, измеритель скорости потока располагается на трубопроводе для прокачки многофазной жидкости на расстоянии L>V × t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения. Технический результат - расширение области применения устройства. 1 ил.

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Монитор многофазной жидкости содержит обходной трубопровод с возможностью его соединения с трубопроводом для прокачки многофазной жидкости, резервуары для калибровочных жидкостей, жидкостные насосы, анализатор жидкости, измеритель скорости потока, анализатор жидкости включает генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на обходном трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на обходном трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, дополнительно содержит трубопроводы, соединенные с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество этих трубопроводов равно количеству калибровочных жидкостей, трубопроводы располагаются параллельно обходному трубопроводу и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, их количество равно или больше количества трубопроводов, измеритель скорости потока располагается на обходном трубопроводе на расстоянии L>V×t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения. Технический результат - повышение производительности и точности измерений. 1 ил.

Использование: для анализа многофазной жидкости. Сущность изобретения заключается в том, что анализатор многофазной жидкости содержит импульсный источник быстрых нейтронов и источник электромагнитного излучения, гамма спектрометр, детектор гамма лучей и сцинтиллятор, расположенный диаметрально источнику электромагнитного излучения на противоположной стороне трубопровода, при этом импульсный источник быстрых нейтронов является одновременно и импульсным источником электромагнитного излучения, дополнительно содержащим мониторный детектор быстрых нейтронов и мониторный детектор электромагнитного излучения, гамма спектрометр дополнительно содержит коллиматор гамма лучей и расположен рядом с импульсным источником быстрых нейтронов и электромагнитного излучения, детектор гамма лучей расположен на одной стороне трубопровода с импульсным источником быстрых нейтронов и электромагнитного излучения на заданном расстоянии от импульсного источника быстрых нейтронов и электромагнитного излучения по направлению течения многофазной жидкости, детектор быстрых нейтронов, расположен диаметрально импульсному источнику быстрых нейтронов и электромагнитного излучения на противоположной стороне трубопровода, детектор тепловых и эпитепловых нейтронов расположены от импульсного источника быстрых нейтронов и электромагнитного излучения на расстоянии, равном длине замедления быстрых нейтронов в многофазной жидкости, а гамма спектрометр, мониторный детектор электромагнитного излучения и сцинтиллятор выполнены с возможностью измерения спектра импульсного электромагнитного излучения. Технический результат: повышение точности измерения фракционного состава и расхода многофазной жидкости. 1 ил.

Устройство для измерения расхода топлива ДВС, содержащее датчик расхода топлива в виде гидромотора аксиально-поршневого типа, редуктор, соединенный с валом гидромотора, фильтр, датчики давления и температуры, установленные в нагнетающую линию топливной системы, электромотор, соединенный с валом редуктора, регулятор частоты вращения электромотора, датчик частоты вращения вала аксиально-поршневого гидромотора и микропроцессор, связанный электрически с датчиками давления, температуры, частоты вращения вала гидромотора аксиально-поршневого типа и регулятором частоты вращения вала электромотора, дополнительно снабжено гидромотором с героторным зацеплением, выполняющим роль подпорного клапана в сливной линии топливной системы и датчика расхода топлива, датчиками давления, температуры, установленными в сливной линии топливной системы, датчиком частоты вращения вала гидромотора с героторным зацеплением. При этом датчики давления, температуры и частоты вращения вала этого гидромотора электрически связаны с микропроцессором. Технический результат - повышение надежности работы ДВС при работе с системами измерения топлива и повышение точности измерения расходов топлива. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Объемный расходомер содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока, устройство сравнения расходов и индикатор расхода. При этом до сумматора для обратного потока подключен насос с характеристикой «даление-расход», связанный с устройством сравнения расходов и который выключается по его сигналу. Технический результат - расширение диапазона измерения расхода, уменьшение погрешности и возможность получения различной функциональной связи между величинами напорного и обратного потоков среды. 1 з.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к области приборостроения и может быть использовано для установки и поддержания малых расходов жидкости в технологических процессах различных отраслей промышленности. Технический результат - повышение точности регулирования малых расходов жидкости. Регулятор малых расходов жидкости, включающий корпус с входным и выходным отверстиями для жидкости, профилированную иглу со штоком для изменения задающего сечения. При этом профилированная игла, соединенная регулировочным штоком с управляющим приводом, выполнена с возможностью полного перекрытия центрального канала седла задающего сечения, параллельно регулировочному штоку в корпусе регулятора герметично расположена неподвижная гильза, закрытая сверху гибкой мембраной и имеющая внутри подвижный ступенчатый золотник, подпираемый снизу пружиной со сменной шайбой. В нижней части гильзы выполнены выступающая кромка для опоры золотника и кольцевой зазор для выхода жидкости из регулятора через выходное отверстие, причем выходное отверстие регулятора и пространство над седлом задающего сечения гидравлически связаны стабилизирующим каналом малого диаметра с наружной стороной гибкой мембраны гильзы, а центральный канал седла задающего сечения гидравлически связан обводным каналом с нижней торцевой частью золотника. 4 ил.

Изобретение относится к технике непрерывного весового дозирования сыпучих материалов и может быть использовано в производстве строительных материалов, пищевой, химической и других отраслях народного хозяйства. Предлагаемое устройство для измерения расхода сыпучих материалов содержит корпус с загрузочной воронкой, размещенный под ней на горизонтальном приводном валу барабан с радиальными лопастями на внешней поверхности и потокочувствительный элемент в виде пластины, установленной на пути вылетающего из ячеек материала, связанной с силоизмерительным устройством. Ячейки для размещения материала, сформированные между лопастями барабана, имеют чашеобразную форму, которая образована противолежащими поверхностями соседних лопастей, скругленными к дну ячейки по радиусу, соответствующему высоте лопасти, и соединенными между собой со стороны каждой из торцевых поверхностей барабана боковыми стенками, внутренняя поверхность которых, обращенная в объем ячейки, также выполнена скругленной к дну ячейки по радиусу, соответствующему высоте лопасти. Технический результат - повышение эффективности работы устройства, исключение налипания материала в ячейках барабана и повышение точности измерений за счет уменьшения разброса материала при ударении о чувствительную пластину. 6 з.п. ф-лы, 7 ил.

Группа изобретений относится к области измерительной техники и может быть использовано для измерения расхода и количества газообразных сред. Клапан с гистерезисной характеристикой для измерения расхода газовой среды содержит корпус с закрепленной в нем втулкой, имеющей две поверхности запирания, подвижный поршень, притягивающиеся постоянные магниты, один из которых закреплен во втулке, другой в тарелке поршня, дополнительно содержит катушку индуктивности, размещенную в зоне взаимодействия магнитов. Система измерения расхода газовой среды, содержащей линию подачи газа, клапан с гистерезисной характеристикой и измерительную камеру, имеющую фиксированный объем, дополнительно содержит критическое сопло. Технический результат - повышение точности измерения расхода. 2 н. и 2 з.п. ф-лы, 2 ил.
Наверх