Способ измерения глубины трещины электропотенциальным методом

Предложение относится к неразрушающему контролю и может быть использовано для измерения глубины трещин на сложнопрофильных объектах с поверхностью переменной кривизны, например, при измерении глубины трещин, выходящих на поверхность лопаток паровых турбин. Снижение трудоемкости измерений за счет исключения необходимости измерения кривизны поверхности на дефектном участке с помощью дополнительных средств достигается путем получения информации о кривизне поверхности по отношению напряжений U01/U02, измеренных электропотенциальным преобразователем при его ориентации в двух взаимно ортогональных направлениях, одно из которых совпадает с направлением оси объекта, имеющего цилиндрическую поверхность. 5 ил.

 

Изобретение относится к неразрушающему контролю и может быть использовано для измерения глубины поверхностных трещин.

Известен способ измерения глубины поверхностных трещин электропотенциальным методом, заключающийся в том, что электропотенциальный преобразователь, состоящий из размещенных на одной линии симметрично относительно центра двух токовых электродов и расположенных между ними симметрично относительно центра двух потенциальных электродов, устанавливают на бездефектном участке контролируемого объекта, пропускают через него электрический ток I и измеряют напряжение U0 между потенциальными электродами, затем устанавливают электроды электропотенциального преобразователя на линии, перпендикулярной к следу трещины на поверхности, симметрично относительно него, пропускают электрический ток I и измеряют напряжение Ur между потенциальными электродами, вычисляют относительное изменение напряжения (Ur-U0)/U0 на дефектном участке и по нему судят о глубине h поверхностной трещины, используя зависимости h=h[(Ur-U0)/U0], предварительно полученные для плоских образцов с трещинами известной глубины [1].

Известный способ не позволяет достоверно оценивать глубину поверхностных трещин на цилиндрических вогнутых и выпуклых поверхностях, так как трещины одинаковой глубины дают различные значения (Ur-U0)/U0 при изменении кривизны поверхности.

Наиболее близок к предложенному принятый за прототип способ измерения глубины трещины электропотенциальным методом на участках с цилиндрической формой поверхности, заключающийся в том, что измеряют кривизну поверхности на контролируемом участке с трещиной, устанавливают на нем симметрично относительно трещины электропотенциальный преобразователь, состоящий из размещенных на одной линии двух токовых и двух потенциальных электродов, создают с помощью токовых электродов ток по линии, перпендикулярной к следу трещины на поверхности, измеряют напряжение Ur между потенциальными электродами, выбирают бездефектный участок контролируемого объекта, имеющий такую же кривизну поверхности, что и на контролируемом участке с трещиной, устанавливают на выбранном участке электропотенциальный преобразователь с ориентацией, соответствующей его ориентации при установке на участке с трещиной, измеряют напряжение U0 между потенциальными электродами, вычисляют относительное изменение напряжения (Ur-U0)/U0 на дефектном участке и по нему судят о глубине h поверхностной трещины, используя зависимости h=h(Ur-U0)/U0, предварительно полученные для образцов с такой же кривизной поверхности, что и на контролируемом участке и с трещинами известной глубины и соответствующей ориентацией [2].

Недостаток известного способа - повышенная трудоемкость, связанная с необходимостью измерения кривизны поверхности с помощью дополнительных измерительных средств. Это особенно неудобно при измерении глубины трещин в объектах с переменной кривизной поверхности, например, на поверхности лопаток паровых турбин.

Цель изобретения - снижение трудоемкости измерений.

Поставленная цель в способе измерения глубины трещины электропотенциальным методом на участках с цилиндрической формой поверхности, заключающемся в том, что устанавливают на участке с трещиной электропотенциальный преобразователь, состоящий из двух токовых и двух потенциальных электродов по линии, перпендикулярной к следу трещины на поверхности, симметрично относительно него, пропускают электрический ток I и измеряют напряжение Ur между потенциальными электродами, выбирают бездефектный участок контролируемого объекта, имеющий такую же форму поверхности, что и на контролируемом участке с трещиной, устанавливают электропотенциальный преобразователь на выбранном участке с ориентацией, соответствующей ориентации на участке с трещиной, измеряют напряжение U01 между потенциальными электродами, вычисляют относительное изменение напряжения (Ur-U01)/U01 на дефектном участке и используют его для определения глубины трещины, отличающийся тем, что повторно устанавливают электропотенциальный преобразователь на бездефектном участке в направлении ортогональном первой установке, измеряют напряжение U02 между потенциальными электродами, а о глубине трещины судят по относительному изменению напряжения (Ur-U01)/U01 на дефектном участке и отношению U01/U02, используя градуировочные зависимости h=h[(Ur-U01)/U01, U01/U02], предварительно полученным для цилиндрических объектов с различной кривизной поверхности и с трещинами известной глубины.

На фиг.1 приведена схема контроля для реализации заявляемого способа применительно к измерению глубины продольной трещины.

На фиг.2 приведена зависимость отношения напряжений U01 и U02, полученных при установке электропотенциального преобразователя, соответственно, вдоль и поперек оси цилиндрических объектов с различной кривизной поверхности.

На фиг.3 приведены градуировочные зависимости h=h[(Ur-U01)/U01, U01/U02], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с продольными трещинами известной глубины h.

На фиг.4 приведена схема контроля для реализации заявляемого способа применительно к измерению глубины поперечной трещины.

На фиг.5 приведены градуировочные зависимости h=h[(Ur-U01)/U01, U01/U02], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с продольными трещинами известной глубины h.

Предложенный способ реализуется при измерении глубины продольной трещины с помощью схемы контроля, приведенной на фиг.1. На ней показан электропотенциальный преобразователь 1, состоящий из двух токовых электродов 2.1, 2.2 и двух потенциальных электродов 3.1, 3.2, а также источник 4 постоянного тока, соединенный выходом с токовыми электродами 2.1, 2.2, и блок 5 измерения и обработки информации, соединенный своим входом с потенциальными электродами 3.1, 3.2.

Способ реализуется следующим образом. Электропотенциальный преобразователь 1 устанавливают на дефектном участке контролируемого объекта 6 с трещиной 7 по линии, перпендикулярной к следу трещины 7 на поверхности, симметрично относительно него. С помощью источника 4 тока и токовых электродов 2.1, 2.2 пропускают электрический ток I через дефектный участок. Используя блок 5 измерения и обработки информации, измеряют напряжение Ur между потенциальными электродами и запоминают его величину. Затем выбирают бездефектный участок контролируемого объекта 6, имеющий такую же форму поверхности, что и на дефектном участке, устанавливают электропотенциальный преобразователь 1 на выбранном участке с ориентацией, соответствующей ориентации на участке с трещиной 7. В данном случае для этого электроды 2.1, 2.2, 3.1 и 3.2 устанавливают вдоль оси объекта 6. С помощью источника 4 тока и токовых электродов 2.1, 2.2 пропускают электрический ток I через бездефектный участок. Используя блок 5 измерения и обработки информации, измеряют напряжение U01 между потенциальными электродами 3.1, 3.2 и запоминают его величину. Далее устанавливают электропотенциальный преобразователь 1 на бездефектном участке в направлении, ортогональном первой установке. Для этого электроды 2.1, 2.2, 3.1 и 3.2 устанавливают на части окружности, образованной пересечением внешней цилиндрической поверхности объекта 6 и плоскости, перпендикулярной к его оси. После этого, с помощью источника 4 тока и токовых электродов 2.1, 2.2 пропускают электрический ток I через бездефектный участок при новой ориентации электропотенциального преобразователя 1. Используя блок 5 измерения и обработки информации, измеряют напряжение U02 между потенциальными электродами 3.1, 3.2 и запоминают его.

Затем с помощью блока 5 измерения и обработки информации, используя измеренные значения Ur, U01 и U02, вычисляют относительное изменение напряжения (Ur-U01)/U01 и отношение U01/U02.

Отношение U01/U02 однозначно связано с кривизной цилиндрического объекта 6 диаметром D, что иллюстрируется зависимостью, приведенной на фиг.2. Для обобщения результатов удобно воспользоваться нормированным параметром D/RT, где RT - расстояние между токовыми электродами 2.1 и 2.2. Таким образом, с помощью блока 5 измерения и обработки информации, по совокупности значений (Ur-U01)/U01 и U01/U02 можно определить глубину h трещины с учетом влияния кривизны поверхности. Для этого используют введенные в память блока 5 градуировочные зависимости h=h[(Ur-U01/U01, U01/U02], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с продольными трещинами известной глубины h. Соответствующие градуировочные зависимости для измерения глубины продольных трещин приведены на фиг.3. Зависимости, приведенные на фиг.2 и фиг.3, получены для электропотенциального преобразователя с расстоянием RT=20 мм между токовыми электродами и с расстоянием Rп=2 мм между потенциальными электродами 3.1 и 3.2.

Измерение глубины поперечных трещин согласно заявляемому способу выполняется аналогично. При этом электропотенциальный преобразователь 1 устанавливается относительно поперечной трещины 7, так как это показано на фиг.4, а градуировочные зависимости h=h[(Ur-U01)/U01, U01/U02], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с поперечными трещинами известной глубины h, имеют вид, приведенный на фиг.5.

Технический результат, достигаемый при использовании предложенного способа, состоит в снижении трудоемкости и повышении оперативности измерений за счет исключения необходимости измерения кривизны поверхности с помощью дополнительных средств и ввода результата измерения в блок обработки информации. Наиболее существенный эффект достигается при выполнении измерения на сложнопрофильных поверхностях с переменной кривизной поверхности, например, при измерении глубины трещин, выходящих на поверхность лопаток паровых турбин.

Источники информации

1. Ritchie R.O., Bathe K.J. On the calibration of the electrical potential technique for monitoring crack growth using finite element methods//International Journal of Fracture, Vol.15, No.1, February 1979, Pages 47-55.

2. Gandossi L., Summers S.A., Taylor N.G., Hurst R.C., Hulm B.J., Par-ker J.D. The potential drop method for monitoring crack growth in real components subjected to combined fatigue and creep conditions: application of FE techniques for deriving calibration curves//International Journal of Pressure Vessels and Piping- Volume 78, Issues 11-12, 12 November 2001, Pages 881-891 (прототип).

Способ измерения глубины трещины электропотенциальным методом на участках с цилиндрической формой поверхности, заключающийся в том, что устанавливают на участке с трещиной электропотенциальный преобразователь, состоящий из двух токовых и двух потенциальных электродов по линии, перпендикулярной к следу трещины на поверхности, симметрично относительно него, пропускают электрический ток I и измеряют напряжение Ur между потенциальными электродами, выбирают бездефектный участок контролируемого объекта, имеющий такую же форму поверхности, что и на контролируемом участке с трещиной, устанавливают электропотенциальный преобразователь на выбранном участке с ориентацией, соответствующей ориентации на участке с трещиной, измеряют напряжение U01 между потенциальными электродами, вычисляют относительное изменение напряжения на дефектном участке (Ur-U01)/U01 и используют его для определения глубины трещины, отличающийся тем, что повторно устанавливают электропотенциальный преобразователь на бездефектном участке в направлении ортогональном первой установке, измеряют напряжение U02 между потенциальными электродами, а о параметрах дефекта судят по отношениям (Ur-U01)/U01 и U01/U02, используя градуировочные зависимости h=h[(Ur-U01)/U01, U01/U02], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с трещинами известной глубины.



 

Похожие патенты:

Изобретение относится к области диагностики механического состояния конструкций, а именно к технике диагностики повреждения поверхности конструкций, и может быть использовано для мониторинга поверхностей объектов авиационной техники.

Изобретение относится к области измерительной техники и предназначено для измерения скорости распространения фронта трещины в магистральном газопроводе при его испытании на протяженное разрушение.

Изобретение относится к области измерительной техники, в частности к методам неразрушающего контроля стационарных конструкций, и может быть использовано для обнаружения локальных повреждений антенных мачт и других конструкций, используемых в том числе в составе систем вооружения и военной технике противовоздушной обороны.

Изобретение относится к неразрушающим способам определения механизма электрической проводимости, в частности на атомарном уровне, и может быть использовано при разработке новых изоляционных материалов с заданной протонной проводимостью, а также кристаллов, используемых в оптоэлектронике и лазерной технике.

Изобретение относится к области анализа материалов с использованием электрических средств, в частности измерения электрического сопротивления материалов, и может быть использовано при определении локальных дефектов изоляции электрического кабеля или металлических труб.

Изобретение относится к неразрушающему контролю объектов и может быть использовано для измерения параметров процесса коррозии металлов в электропроводящих жидких средах с целью диагностики состояния технологического оборудования и трубопроводов, используемых для переработки и транспортировки жидких электропроводящих сред, например нефти.

Изобретение относится к ремням или тросам с покрытием, используемым, например, в лифтовых системах, используемых для подвешивания лифта и/или приведения его в действие. Способ обнаружения износа ремня или троса с покрытием, включающий измерение первоначального электрического сопротивления одного (одной) или большего количества кордов, прядей или проволок ремня или троса с покрытием. Первоначальное электрическое сопротивление калибруют путем повторения измерения первоначального электрического сопротивления и внесения совокупности значений измеренных первоначальных электрических сопротивления в базу данных. Определяют истинное значение первоначального электрического сопротивления из совокупности внесенных значений первоначального электрического сопротивления и сравнивают последующие измеренные значения электрического сопротивления указанного одного (одной) или большего количества кордов, прядей или проволок ремня или троса с покрытием с истинным значением первоначального сопротивления. Изобретение обеспечивает возможность более точного контроля износа ремня или троса с покрытием для подвешивания и/или приведения в действие лифта. 2 н. и 9 з.п. ф-лы, 5 ил.

В способе проведения исследования плоской кровли из мягких изоляционных материалов используется токопроводящий контур, приемник и источник сигнала. При этом контур представляет собой неизолированный многожильный медный провод, который выкладывают по периметру исследуемой поверхности, поверхность внутри контура увлажняют водой, изолируют воронки ливневой канализации и всевозможного оборудования с помощью кольца из неизолированного многожильного медного провода, расположенного вокруг воронки или оборудования, кольцо соединяется с контуром гибким изолированным проводом, к контуру подключается импульсный источник сигналов, вторая клемма подключается к заземлению здания, используют приемник с двумя зондами для определения, где проходит импульс от источника через место повреждения/дефект в гидроизоляционном слое к заземлению, приемник графически отображает 5-7 последних измерений в течение 16 секунд, по увеличению и/или уменьшению сигнала определяют направление движения к месту повреждения/дефекту, проверку места повреждения/дефекта проводят следующим образом: в место повреждения/дефект устанавливают один из зондов, а другим зондом на расстоянии 0,2-1,0 м выполняют измерение сигнала вокруг установленного в место повреждения/дефект зонда. Изобретение обеспечивает высокую точность выявления протечки: с точностью до 1-5 мм, в проверке целостности новых кровель, особенно зеленых кровель, имеющих верхний слой из грунта и насаждений и эксплуатируемых, засыпанных слоем защитного гравия, где удаление верхних слоев для выявления и устранения протечек было бы дорого или разрушительно для ландшафта кровли, контроля качества и выявления слабых мест гидроизолируемой поверхности. 2 н. и 3 з.п. ф-лы, 2 табл., 10 ил.

Использование: для определения степени разупрочнения деталей из алюминиевых сплавов. Сущность изобретения заключается в том, что способ определения степени разупрочнения деталей из алюминиевых сплавов, сопровождающийся распадом твердого раствора в алюминиевых сплавах, включает определение удельной электропроводимости контролируемого материала на участке разупрочнения, дополнительно проводят на образцах-свидетелях (тамплетах) процессы термообработки, имитирующие условия, повлиявшие на разупрочнение деталей с последующим определением на тамплетах значения удельной электропроводимости; вытачивают из тамплетов образцы, на которых определяются механические характеристики по результатам испытаний на растяжение; строят графики зависимости механических характеристик образцов от удельной электропроводимости; определяют аппроксимирующие уравнения, по которым вычисляются граничные значения удельной электропроводимости, соответствующие допустимому нижнему значению механических свойств для каждой конкретной плавки и вида полуфабриката; сопоставляют значение удельной электропроводности на детали из алюминиевого сплава на участке разупрочнения с полученными расчетными значениями после имитационной термообработки. Технический результат: обеспечение возможности определения ослабления механических свойств в темном пятне алюминиевого сплава. 4 табл., 3 ил.

Изобретение относится к исследованию свойств материалов с помощью электрических измерений и может быть использовано для неразрушающего контроля структуры изделий из алюминиевых сплавов. Сущность: способ включает определение удельной электропроводимости материала и анализ полученных значений. При этом для каждого типоразмера трубы и марки сплава определяют минимальное базовое значение удельной электропроводимости с учетом поправок на радиус кривизны поверхности и толщину стенки трубы (γБ), а также эталонную разницу ее значений в пределах измерений удельной длины трубы (Δγ). Осуществляют последовательные измерения удельной электропроводимости после термической обработки по всей длине наружной поверхности трубы через определенные равные промежутки. Сравнивают полученные значения с допустимыми. При наличии показателей электропроводимости, соответствующих базовому значению и эталонной разнице, судят об отсутствии пережога в структуре материала трубы. Технический результат: упрощение, повышение точности и способности выявления локального пережога. 1 табл.
Наверх