Активный гидролокатор

Использование: гидроакустическая техника, а именно область активной гидролокации, включая активные гидролокаторы, предназначенные для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов. Технический результат: обеспечивается высокая вероятность правильной классификации обнаруженного объекта. Это достигается путем реализации возможности выработки класса обнаруженного объекта по совокупности посылок с идентификацией эхо-сигналов в серии посылок. 1 ил.

 

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов.

Известен активный гидролокатор (патент РФ №2346295), содержащий акустические излучающую и приемную антенны, устройство формирования зондирующего сигнала, генераторное устройство, устройство управления, устройство формирования характеристик направленности, блок измерения времени задержки эхо-сигнала относительно момента излучения зондирующего сигнала, блок измерения угла прихода эхо-сигнала в вертикальной плоскости, блок измерения глубины цели. Однако в этом гидролокаторе отсутствует система классификации обнаруженных объектов.

Известен активный гидролокатор с классификацией объекта (патент США №3716823, НКИ 340-3R), содержащий последовательно соединенные устройство управления, устройство формирования зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, последовательно соединенные приемную акустическую антенну, устройство обработки эхо-сигналов от объекта и устройство измерения классификационного параметра (анализатор спектра эхо-сигнала), ячейка памяти с эталонными спектрами эхо-сигналов от известных объектов, вычислительное устройство, с помощью которого производится сравнение спектральных составляющих эхо-сигналов с эталонными спектрами и индикатор.

Недостатком этого устройства является то, что выработка решения о классе обнаруженного объекта производится только по одной посылке, что снижает надежность решения задачи классификации объекта.

По количеству общих признаков наиболее близким аналогом предлагаемого изобретения является активный гидролокатор, содержащий последовательно соединенные устройство управления, устройство формирования зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, последовательно соединенные приемную акустическую антенну, устройство формирования характеристик направленности и устройство обработки эхо-сигналов от объекта, устройство измерения радиальной скорости объекта ВИР, устройство измерения дистанции до объекта Д, устройство измерения курсового угла на объект КУ, блок параметров движения носителя гидролокатора, индикатор, при этом первый выход устройства обработки эхо-сигналов от объекта соединен с входом устройства измерения радиальной скорости объекта ВИР, входом устройства измерения дистанции до объекта Д и входом устройства измерения курсового угла на объект КУ (Справочник по гидроакустике. Евтютов А.П., Колесников А.Е., Корепин Е.А. и др., 2-е изд., Л.: Судостроение, 1988. С.18-26, Миттко В.Б., Евтютов А.П., Гущин С.Е. Гидроакустические средства связи и наблюдения. Л.: Судостроение, 1982. С.125).

Недостатком устройства-прототипа является отсутствие системы классификации обнаруженных объектов, а также системы идентификации при наличии эхо-сигналов от нескольких объектов при излучении серии посылок.

Техническим результатом изобретения является обеспечение высокой вероятности правильной классификации обнаруженного объекта путем реализации возможности выработки класса обнаруженного объекта по совокупности посылок. Кроме того, для эффективной работы гидролокатора с классификацией и выработкой решения о классе объекта по совокупности посылок обеспечивается идентификация эхо-сигналов в серии посылок.

Для достижения указанного технического результата в активный гидролокатор, содержащий последовательно соединенные устройство управления, устройство формирования зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, также содержащий последовательно соединенные приемную акустическую антенну, устройство формирования характеристик направленности и устройство обработки эхо-сигналов от объекта, также содержащий устройство измерения радиальной скорости объекта (ВИР), устройство измерения дистанции до объекта (Д), устройство измерения курсового угла на объект (КУ), блок параметров движения носителя гидролокатора и индикатор, при этом первый выход устройства обработки эхо-сигналов от объекта соединен с входом устройства измерения ВИР, входом устройства измерения Д и входом устройства измерения КУ, введены новые признаки, а именно блок памяти ВИР, Д, КУ, блок сравнения Д, блок сравнения КУ, блок идентификации координат объекта по ряду посылок, последовательно соединенные устройство измерения классификационного параметра, блок определения PапостN, где PапостN - апостериорная плотность вероятности класса объекта по текущей посылке N, блок определения PапостF, где PапостF - апостериорная плотность вероятности класса объекта по совокупности посылок F и блок выработки решения о классе объекта по совокупности посылок, также введен блок памяти Pапр, где Pапр - априорная плотность распределения величины классификационного параметра, блок памяти PапостF, при этом второй выход устройства обработки эхо-сигналов от объекта соединен с входом устройства измерения классификационного параметра, выходы устройства измерения ВИР, устройства измерения Д, устройства измерения КУ соединены с первым входом блока памяти ВИР, Д, КУ, второй выход устройства управления соединен со вторым входом блока памяти ВИР, Д, КУ, а первый и второй выходы последнего соединены с первыми входами блока сравнения Д и блока сравнения КУ соответственно, первый и второй выходы блока параметров движения носителя гидролокатора соединены со вторыми входами блока сравнения Д и блока сравнения КУ соответственно, выходы блока сравнения Д и блока сравнения КУ соединены с первым и вторым входом блока идентификации координат объекта по ряду посылок, а его выход соединен со вторым входом блока определения PапостF, выход блока памяти Pапр соединен со вторым входом блока определения PапостN, второй выход блока определения PапостF соединен со входом блока памяти PапостF, а его выход соединен с третьим входом блока определения PапостF, выход блока выработки решения о классе объекта по совокупности посылок соединен с входом индикатора.

Указанный технический результат достигается за счет того, что определение класса обнаруженного объекта производится по совокупности посылок, причем выполняется идентификация эхо-сигналов при излучении серии посылок, с учетом возможности обнаружения разных объектов в различных посылках, например в обзорном режиме работы гидролокатора. При этом для выработки решения о классе по отдельным посылкам используются статистические методы классификации (см. Горелик А.Л., Скрипкин В.А. Методы распознавания. М.: Высш. школа, 1984. С.26-32), основанные на использовании априорных плотностей вероятности величин классификационного параметра для объектов различных классов Pапр (известные заранее распределения вероятности величин классификационного параметра для объектов разных классов) и на определении после обнаружения эхо-сигнала апостериорных вероятностей наличия объектов этих классов Pапост (вероятности отнесения обнаруженного объекта к данному классу с учетом измеренной на отдельной посылке величины классификационного параметра). Технический результат получается при совместной работе вновь введенных блоков, связей между ними и связей этих блоков с другими блоками гидролокатора.

Сущность изобретения поясняется на фиг.1, где приведена блок-схема предложенного активного гидролокатора.

Активный гидролокатор содержит последовательно соединенные устройство 5 управления, устройство 4 формирования зондирующего сигнала, генераторное устройство 3 и излучающую акустическую антенну 1, последовательно соединенные приемную акустическую антенну 2, устройство 6 формирования характеристик направленности и устройство 7 обработки эхо-сигналов от объекта, устройство 8 измерения ВИР, устройство 9 измерения Д, устройство 10 измерения КУ, блок 13 параметров движения носителя гидролокатора, индикатор 22, при этом первый выход устройства 7 соединен с входом устройства 8, входом устройства 9 и входом устройства 10. Также активный гидролокатор содержит блок 12 памяти ВИР, Д, КУ, блок 14 сравнения Д, блок 15 сравнения КУ, блок 16 идентификации координат объекта по ряду посылок, последовательно соединенные устройство 11 измерения классификационного параметра, блок 18 определения PапостN, блок 19 определения PапостF и блок 21 выработки решения о классе объекта по совокупности посылок, блок 17 памяти Pапр, блок 20 памяти PапостF, при этом второй выход устройства 7 соединен с входом устройства 11, выходы устройства 8, 9, 10 соединены с первым входом блока 12, второй выход устройства 5 соединен со вторым входом блока 12, а его первый и второй выходы соединены с первыми входами блоков 14 и 15 соответственно, первый и второй выходы блока 13 соединены со вторыми входами блоков 14 и 15 соответственно, выходы блока 14 и блока 15 соединены с первым и вторым входом блока 16, а его выход соединен со вторым входом блока 19, выход блока 17 соединен со вторым входом блока 18, второй выход блока 19 соединен с входом блока 20, а его выход соединен с третьим входом блока 19, выход блока 21 соединен с входом индикатора 22.

Практическое исполнение блоков, входящих в изобретение, известно из практики гидроакустики.

Блоки памяти 12, 17 и 20 могут быть реализованы на основе технических решений, приведенных в книге Проектирование импульсных и цифровых устройств радиотехнических систем. / Цифровые радионавигационные устройства. / В.В. Барашенков, А.Е. Лутченко, Е.М. Скороходов и др. Под ред. В.Б. Смолова. М.: Сов. радио, 1980. С.196-200.

Блоки 11 14, 15. 18, 19 могут быть реализованы с применением микропрограммных дискретных устройств, см., например, книгу Проектирование импульсных и цифровых устройств радиотехнических систем. / Гришин Ю.П., Казаринов Ю.М., Катиков В.М. и др. Под ред. Ю.М. Казаринова. М.: Высш. шк., 1985. С.164-177.

Блоки 16, 21 выполняются с использованием схемы сравнения, см., например, книгу Проектирование импульсных и цифровых устройств радиотехнических систем. / Гришин Ю.П., Казаринов Ю.М., Катиков В.М. и др. Под ред. Ю.М. Казаринова. - М.: Высш. шк., 1985. С.15.

Работа устройства осуществляется следующим образом. Устройство 4 формирования зондирующего сигнала вырабатывает зондирующие сигналы. Гидролокатор производит излучение зондирующего сигнала с помощью генераторного устройства 3 и излучающей акустической антенны 1. Отраженный от объекта эхо-сигнал с выхода приемной акустической антенны 2 поступает на устройство 6 формирования характеристик направленности. С выхода устройства 6 сигнальный массив поступает на устройство 7, обеспечивающее обработку принятых сигналов, и при обнаружении эхо-сигналов от объекта в устройстве 8 производится измерение ВИР, в устройстве 9 производится измерение Д, в устройстве 10 производится измерение КУ, а в устройстве 11 производится измерение классификационного параметра.

Измеренные параметры ВИР, Д и КУ на каждой посылке поступают и запоминаются в блоке 12.

Устройство 5 управляет во времени формированием зондирующего сигнала (блок 4) и соответственно работой генераторного устройства 3, а также блоком 12, что позволяет работать системе идентификации.

При управлении устройства 5 из блока 12 в блоки 14, 15 поступают измеренные значения Д, ВИР, КУ по двум последовательным посылкам, а также величина скорости носителя гидролокатора из блока 13.

В блоке 14 производится сравнение двух дистанций до объекта на текущей (j+1) и предыдущей (j) посылке, например, по соотношению

ΔД=|(Дj+1j)-ΔT·(ВИРj-Vн·cos(КУj))|,

где Дj - измеренная дистанция до объекта на j-й посылке;

Дj+1 - измеренная дистанция до объекта на j+1 посылке;

ВИРj - измеренная радиальная скорость объекта на j-й посылке;

ΔT - временной интервал между j и j+1 посылкой;

Vн - скорость носителя гидролокатора,

КУj - измеренный курсовой угол на объект на j-й посылке.

В блоке 15 производится сравнение двух значений КУ с учетом скорости носителя, например, по соотношению

Δ К У = К У j + 1 К У j arcsin ( V н Δ T D j + 1 sin К У j )

где КУj+1 - измеренный курсовой угол на объект на j+1 посылке.

В блок 16 из блока 14 и блока 15 передаются вычисленные значения ΔД и ΔКУ, где эти значения сравниваются с пороговыми величинами и принимается решение об идентификации объекта в двух последовательных посылках.

В блоке 18 на основе априорных вероятностей величин классификационного параметра Pапр, поступающих из блока 17, и измеренной величины классификационного параметра Uизм, поступающего из блока 11, производится определение PапостN, например, для объектов двух классов A1 и A2 по формуле:

где Pапр,I (Uизм) - выработанное в блоке 18 значение априорной плотности распределения вероятностей i-го класса (i=1, 2) при измеренной величине классификационного параметра;

PапостN,i - вычисленная величина апостериорной вероятности по текущей посылке для объекта i-го класса.

Вычисленная величина PапостN поступает в блок 19, где на первой посылке n=1 (n - номер посылки) величина PапостN передается в блок 21 и запоминается в блоке 20 как величина PапостF. На второй посылке при выработке признака идентификации в блоке 16 вычисляется PапостF на основе соотношения, например, для двух альтернативных классов:

где PапостN,i - вычисленная величина апостериорной вероятности по текущей посылке;

- вычисленная величина апостериорной вероятности по совокупности предыдущих посылок;

n - номер текущей посылки.

Вычисленная величина запоминается в блоке 20 и выдается в блок 21.

На третьей посылке вычисляется PапостF по величине , по совокупности предыдущих посылок (первая и вторая посылка) и величине PапостN по третьей посылке. На четвертой посылке вычисляется PапостF по величине , по совокупности предыдущих посылок (1, 2 и 3 посылки) и величине PапостN по четвертой посылке и т.д.

В блоке 21 вырабатывается решение о классе объекта на основе PапостF, например, по максимуму из вычисленных апостериорных вероятностей и , и решение о классе обнаруженного объекта выдается оператору на индикатор 22.

Использование блока памяти ВИР, Д, КУ, блока сравнения Д, блока сравнения КУ, блока идентификации координат объекта по ряду посылок, устройства измерения классификационного параметра, блока определения PапостN, блока определения PапостF, блока выработки решения о классе объекта по совокупности посылок, блока памяти Pапр, блока памяти PапостF с соответствующими связями между этими блоками и связями этих блоков с другими блоками активного гидролокатора обеспечивает высокую вероятность правильной классификации обнаруженного объекта путем реализации возможности выработки класса обнаруженного объекта по совокупности посылок с идентификацией эхо-сигналов в серии посылок.

Таким образом поставленная задача успешно решается.

Активный гидролокатор, содержащий последовательно соединенные устройство управления, устройство формирования зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, также содержащий последовательно соединенные приемную акустическую антенну, устройство формирования характеристик направленности и устройство обработки эхо-сигналов от объекта, также содержащий устройство измерения радиальной скорости объекта (ВИР), устройство измерения дистанции до объекта (Д), устройство измерения курсового угла на объект (КУ), блок параметров движения носителя гидролокатора и индикатор, при этом первый выход устройства обработки эхо-сигналов от объекта соединен с входом устройства измерения ВИР, входом устройства измерения Д и входом устройства измерения КУ, отличающийся тем, что в него введены блок памяти ВИР, Д, КУ, блок сравнения Д, блок сравнения КУ, блок идентификации координат объекта по ряду посылок, последовательно соединенные устройство измерения классификационного параметра, блок определения PапостN, где PапостN - апостериорная плотность вероятности класса объекта по текущей посылке N, блок определения PапостF, где PапостF - апостериорная плотность вероятности класса объекта по совокупности посылок F и блок выработки решения о классе объекта по совокупности посылок, также введен блок памяти Pапр, где Pапр - априорная плотность распределения величины классификационного параметра, блок памяти PапостF, при этом второй выход устройства обработки эхо-сигналов от объекта соединен с входом устройства измерения классификационного параметра, выходы устройства измерения ВИР, устройства измерения Д, устройства измерения КУ соединены с первым входом блока памяти ВИР, Д, КУ, второй выход устройства управления соединен со вторым входом блока памяти ВИР, Д, КУ, а первый и второй выходы последнего соединены с первыми входами блока сравнения Д и блока сравнения КУ соответственно, первый и второй выходы блока параметров движения носителя гидролокатора соединены со вторыми входами блока сравнения Д и блока сравнения КУ соответственно, выходы блока сравнения Д и блока сравнения КУ соединены с первым и вторым входом блока идентификации координат объекта по ряду посылок, а его выход соединен со вторым входом блока определения PапостF, выход блока памяти Pапр соединен со вторым входом блока определения PапостN, второй выход блока определения PапостF соединен со входом блока памяти PапостF, а его выход соединен с третьим входом блока определения PапостF, выход блока выработки решения о классе объекта по совокупности посылок соединен со входом индикатора.



 

Похожие патенты:

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены и определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами.

Изобретение относится к области авиации, в частности к системам бортового оборудования вертолетов. Система обнаружения помех для посадки и взлета вертолета включает ультразвуковые устройства сканирования (1), каждое из которых состоит, по меньшей мере, из средств для передачи ультразвукового сигнала в направлении вниз и получения отраженного ультразвукового сигнала.

Использование: гидроакустика, а именно в гидроакустических системах определения глубины, и может быть применен для автоматического адаптивного обнаружения эхо-сигналов от дна и автоматического измерения глубины в условиях, когда требуется механическая защита излучающей поверхности электроакустического преобразователя.

Изобретение относится к морской технике, в частности к морскому подводному оружию. Устройство содержит захват и элемент сигнализации о местоположении мины, выполненный в виде гидроакустического маяка.

Использование: изобретение относится к вооружению подводных лодок, а именно к защите подводных лодок от торпед или мин, преимущественно от широкополосных мин-торпед.

Использование: в гидроакустике. Сущность: способ предназначен для определения ошибки оценки дистанции гидролокатором, установленным на подводном подвижном носителе относительно неподвижного отражателя.

Использование: изобретение относится к гидроакустической технике. Сущность: антенна содержит тонкостенную полую сферическую оболочку, пьезоэлектрические преобразователи, опору для крепления антенны к носителю.

Изобретение относится к области судостроения и судовождения. Способ обеспечения безаварийного движения надводного или подводного судна при наличии подводных и надводных потенциально опасных объектов включает постоянный прием спутниковых навигационных данных, данных от радиолокационной станции, автоматической идентификационной системы, определение местоположения судна, вычисление скорости судна, глубины под килем.

Изобретение относится к гидрографии, в частности к способам и техническим средствам определения глубин акватории фазовым гидролокатором бокового обзора, и может быть использовано для выполнения съемки рельефа дна акватории.

Использование: изобретение относится к области гидроакустики и может быть использовано для построения гидроакустических систем, содержащих навигационную станцию освещения ближней обстановки (НГАС ОБО) и самоходный необитаемый подводный аппарат (СНПА).

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов. Сущность: активный гидролокатор с классификацией объекта содержит последовательно соединенные устройство управления, устройство формирования зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, последовательно соединенные приемную акустическую антенну, устройство обработки эхо-сигналов от объекта и устройство измерения классификационного параметра, а также индикатор. В него введены последовательно соединенные блок определения РапостN, где РапостN - апостериорная плотность вероятности класса объекта по текущей посылке N, блок определения РапостF, где РапостF - апостериорная плотность вероятности класса объекта по совокупности посылок F, и блок выработки решения о классе объекта по совокупности посылок, блок памяти Рапр, где Рапр - априорная плотность распределения величины классификационного параметра. Техническим результатом изобретения является повышение вероятности правильной классификации обнаруженного объекта путем обеспечения возможности определения класса обнаруженного объекта по совокупности посылок. 1 ил.

Использование: гидроакустика. Сущность: способ содержит излучение зондирующего сигнала, прием эхосигнала веером статических характеристик, набор временной реализации последовательно по всем пространственным каналам, обработку последовательно по всем пространственным каналам, определение уровня помехи, как результат суммирования всех отсчетов по первому циклу приема по всем пространственным каналам, вычисляют порог обнаружения по среднему значению всех отсчетов Аср, производят выбор минимального значения в каждом наборе временных отсчетов огибающей последовательно по всем пространственным каналам по правилу 0≤Амин<Аср, запоминают номера пространственных каналов, в которых обнаружены минимальные значения огибающих, производят выбор максимального отсчета Амакс в каждом наборе отсчетов огибающей по всем пространственным каналам, проводят прореживания с оставлением минимального отсчета по правилу п последовательных отсчетов выбирают наименьший, и максимального отсчета по правилу из n последовательных отсчетов выбирают максимальный, в каждом наборе временных отсчетов огибающей по всем пространственным каналам, производят автоматическое обнаружения превышения эхосигналами выбранного порога обнаружения Амакс>Апорог=кАср последовательно по всем пространственным каналам статического веера характеристик направленности, измеряют и запоминают амплитуды и номера отсчетов сигналов, превысивших порог обнаружения, измеряют и запоминают номера пространственных каналов, в которых произошло обнаружение сигнала, измеряют угловую протяженность УПмак объекта по количеству пространственных каналов, превысивших порог обнаружения, определяют номера отсчетов и пространственных каналов, в которых не произошло превышение выбранного порога и уровень сигнала в которых близок к 0, определяют угловую протяженность УПмин области минимальных отсчетов по числу пространственных каналов, в которых 0≤Амин<Аср, и при совпадении угловых протяженностей принимают решения о наличии тени объекта. Технический результат: повышение информативность входной информации за счет выделения тенеграфических особенностей эхосигнала от объекта.1 ил.

Использование: гидроакустика и может быть использовано для построения навигационных гидроакустических станций освещения ближней обстановки. Сущность: способ содержит излучение зондирующего сигнала, прием отраженного эхосигнала, формирование статического веера характеристик направленности, формирование цифрового массива данных с выхода тракта когерентной обработки по каждому пространственному каналу, последовательный вывод цифровых отсчетов на индикатор, определение порога автоматического обнаружения по среднему значению амплитуд цифровых отсчетов первого и второго циклов обработки по всем пространственным каналам, вывод цифровых отсчетов на индикатор осуществляется по правилу А=Аотсч/ (Г-К), где А амплитуда отсчета, выводимая на индикатор, Аотсч - амплитуда исходного цифрового отсчета, Г - параметр, определяемый оператором как глубина регулировки усиления, К - номер цикла обработки, порог автоматического обнаружения выбирается из условия минимума пропуска эхосигнала от цели, формирование общего цифрового массива данных с выхода тракта когерентной обработки по всем пространственным каналам от момента излучения до момента достижения зондирующим сигналом установленной шкалы работы, определение отсчетов, превысивших порог, определение номера пространственного канала М, определение временного положения отсчета Т, проведение классификации по цифровым отсчетам обнаруженной цели из общего цифрового массива по М пространственным каналам, средний канал из которых равен измеренному каналу, и во временном окне, равном Н циклам набора временной реализации, автоматическое определение классификационных признаков и автоматическое принятие решения о классе цели, вывод результата обработки по обнаруженной цели на индикатор с указанием номера цели, измеренных координат М и Т, классификационных признаков и класса обнаруженной цели, при очередном обнаружении превышения порога процедура повторяется до окончания шкалы дистанции и по совокупности всех обнаруженных целей формируется банк классификации. Технический результат: обеспечение обнаружения и классификации обнаруженных целей. 1 ил.

Изобретение относится к области использования навигационных и промерных эхолотов и может быть применено для их тарировки. Техническим результатом изобретения является повышение точности тарирования эхолотов и снижение трудозатрат на ее проведение. Технический результат достигается тем, что для тарировки эхолота предлагается использовать лазерное тарирующее устройство, работающее в сине-зеленом диапазоне частотного спектра излучения. Лазерный импульс в этом диапазоне способен проникать сквозь водную среду и, отразившись от дна, приниматься фотоприемным устройством. Зная скорость прохождения лазерного излучения через воду и время прохождения прямого и отраженного сигнала, представляется возможным определить глубину места под судном с более высокой точностью, чем навигационным эхолотом. 1 ил.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося заглубленного источника звука, измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными. Технический результат - уменьшить погрешность измерения и увеличить дальность действия при работе измерительного комплекса в мелком море. Гидроакустический измерительный комплекс содержит N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации и устройство доступа к цифровым сетям передачи данных. Посредством акустических комбинированных приемников образуются две донные вертикально ориентированные эквидистантные антенны, в каждой из которых число элементов равно N/2, а локальные координатные системы всех акустических комбинированных приемников совмещены. При этом расстояние между вертикальными антеннами 1>λн, где λн - длина волны на нижней частоте рабочего диапазона шумоизлучения источника звука, расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников в каждой антенне N/2=h12/Δz, h12=z1-z2, z1, z2 нижний и верхний горизонты вероятного нахождения источника звука, образующие коридор обнаружения. Кроме того, в систему сбора, обработки и отображения информации дополнительно введены N-канальный блок вычисления вертикальной компоненты вектора интенсивности, блок определения максимума вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, N-канальный блок вычисления азимутальных углов φ1n, φ2n, блок вычисления усредненных азимутальных углов, блок вычисления горизонтальных координат источника звука. Информация с выхода блока вычисления горизонтальных координат источника звука и блока определения максимума вертикальной компоненты вектора интенсивности поступает на первый и второй входы устройства доступа к цифровым сетям передачи данных. Для увеличения дальности обнаружения движущегося источника звука и поддержания с ним акустического контакта в систему сбора, обработки и отображения информации дополнительно введены N/2-канальный вычислитель взаимного спектра сигналов для пар акустических комбинированных приемников, расположенных на одном горизонте и принадлежащих двум донным вертикально ориентированным эквидистантным антеннам, N/2-канальный вычислитель взаимной корреляционной функции, сумматор, блок измерения максимума взаимной корреляционной функции, блок нормирования взаимной корреляционной функции, блок вычисления ширины основного лепестка нормированной взаимной корреляционной функции, вычислитель отношения предыдущего измерения к последующему на каждом шаге, компаратор, блок задания расчетных значений отношений предыдущего измерения к последующему, блок принятия решения об обнаружении источников звука и их числе. 2 ил.

Система для освещения подводной обстановки относится к специальной технике и может быть использована для обнаружения и опознания подводных объектов, а также для сигнализации и оповещения о появлении на акваториях морских объектов хозяйственной деятельности (акватории портов, морские терминалы по добыче и транспортировке углеводородов, гидротехнические сооружения и т.д.) неизвестных малогабаритных подвижных аппаратов (МПА) или подводных пловцов (ПП), а также для обнаружения и сопровождения айсбергов. Задачей изобретения является возможность оперативно определять место появления неизвестного подводного объекта, идентифицировать подводный объект и визуально отображать на мониторе диспетчерской станции морского объекта хозяйственной деятельности (МОХД) появление несанкционированного подводного объекта. Система для освещения подводной обстановки, состоящая из группы многолучевых эхолотов, гидроакустические приемопередатчики которых посредством приемопередающей антенны формируют n-лучей с возможностью секторного обзора на акватории расположения объекта морской хозяйственной деятельности, при этом приемопередатчики соединены с блоком обработки акустических сигналов, установленным на диспетчерском пункте морского объекта хозяйственной деятельности, который соединен с процессором с программным обеспечением автоматического обнаружения и сопровождения, который соединен с устройством отображения информации, при этом каждый приемопередатчик соединен при помощи оптоволоконного кабеля с блоком обработки акустических сигналов, установленным на диспетчерской станции морского объекта хозяйственной деятельности, излучающий и приемный каналы соединены с блоком обработки акустических сигналов, предназначенным для формирования излучающих сигналов, регистрации и обработки принятых сигналов соответственно, блок обработки акустических сигналов соединен с процессором с программным обеспечением автоматического обнаружения и сопровождения, соединенным с устройством отображения информации, отличающаяся тем, что каждый многолучевой эхолот содержит параметрический профилограф, причем антенны накачки параметрического профилографа размещают на дрейфующих или заякоренных буях на разных горизонтах по глубине акватории на расстояниях не более 8000 метров друг от друга. 2 ил.
Изобретение относится к области использования систем технического зрения для обнаружения объектов и скорости их движения на гидролокационных изображениях. Техническим результатом изобретения является высокая точность определения координат объектов, окружающих подвижную подводную платформу, и скорости их движения за счет использования совместной обработки последовательности гидролокационных изображений и данных инерциальной системы самой движущейся платформы.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится с использованием многоканального запоминающего устройства на выходе системы доплеровской фильтрации, на основе измерения времени задержки отклика на выходе согласованного фильтра для специально сформированного сложного сигнала, причем длительность этого отклика существенно (например, в десятки-сотни раз) меньше длительности сигнального отклика тонального сигнала. Сложный сигнал формируется с использованием сигнального отклика тонального эхо-сигнала на выходе того доплеровского канала, в котором этот эхо-сигнал был обнаружен, и модулирующей функции сложного сигнала. 2 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является то, что обеспечивается повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится на основе измерения времени задержки отклика на выходе второго согласованного фильтра для специально сформированного (на основе отклика эхо-сигнала на выходе первого согласованного фильтра) вспомогательного сложного сигнала, причем длительность отклика на выходе второго согласованного фильтра существенно меньше длительности отклика эхо-сигнала на выходе первого согласованного фильтра. 2 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является то, что обеспечивается повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится на основе измерения времени задержки отклика на выходе согласованного фильтра для специально сформированного (на основе отклика тонального сигнала) сложного сигнала, причем длительность этого отклика существенно меньше длительности сигнального отклика тонального сигнала. 2 ил.
Наверх