Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации

Использование: область анализа газовых сред для определения их компонентного состава и устройства измерительно-аналитических комплексов, с помощью которых они определяются. Задача: разработка способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройства для его реализации, обеспечивающего определение состава газовых многокомпонентных смесей и других параметров этих смесей. Изобретение заключается в том, что осуществляют отбор проб многокомпонентной газовой среды герметизированных контейнеров дискретно с использованием пробоотборного устройства, аналоговый измерительный сигнал получают путем регистрации показаний и селективных, и неселективных датчиков, измеряющих и содержания газовых компонентов, и температуру, и влажность, и давление многокомпонентной газовой среды, затем полученный аналоговый измерительный сигнал преобразуют в цифровой сигнал, который передают в компьютер с установленным программным обеспечением, где графически и математически обрабатывают текущие значения измеренных параметров и формируют базы данных из всех измеренных параметров, и сравнивают полученные результаты с базами данных критических значений этих параметров для каждого из анализируемых герметизированных контейнеров. Указанный способ реализуется при помощи устройства, содержащего датчики, позволяющие измерить указанные выше параметры, и компьютер, позволяющий обработать результаты измерений. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области анализа многокомпонентных газовых сред для определения их компонентного состава и к устройствам измерительно-аналитических комплексов, с помощью которых они определяются.

Из предшествующего уровня техники известно устройство для анализа газовых смесей (патент РФ №2274855, МПК G01N 27/416, опубл. 20.04.06), содержащее пробоотборное устройство, газоанализатор с измерительными ячейками, снабженными датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, выбранное в качестве прототипа предлагаемого устройства.

Известен способ анализа многокомпонентной газовой смеси (патент РФ №2274855, МПК G01N 27/416, опубл. 20.04.06), включающий отбор пробы многокомпонентной газовой среды с использованием пробоотборного устройства, пропускание отобранной пробы через измерительную ячейку газоанализатора с датчиками, последующее измерение параметров многокомпонентной газовой среды с получением аналогового измерительного сигнала, регистрируемого датчиками, с преобразованием его в цифровой сигнал для передачи его в ПК.

К недостаткам аналогов относится отсутствие возможности измерения одновременно параметров температуры, влажности, давления и состава измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможности сравнения текущих параметров этой среды с критическими значениями их, допустимыми для конструкций данного типа.

Задачей авторов изобретения является разработка способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройства для его реализации, обеспечивающего определение состава газовых многокомпонентных смесей и других параметров этих смесей.

Технический результат, обеспечиваемый при использовании предлагаемого способа и устройства заключается в обеспечении возможности одновременного измерения температуры, влажности, давления и состава измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможности сравнения текущих параметров этой среды с критическими значениями их, допустимыми для конструкций данного типа.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, включающего отбор пробы многокомпонентной газовой среды герметизированных контейнеров с электронными приборами с использованием пробоотборного устройства, пропускание отобранной пробы через измерительную ячейку газоанализатора с датчиками, последующее измерение параметров многокомпонентной газовой среды с получением аналогового измерительного сигнала, регистрируемого датчиками, с преобразованием его в цифровой сигнал, согласно предлагаемому способу отбор проб многокомпонентной газовой среды герметизированных контейнеров ведут автоматически дискретно с использованием пробоотборного устройства, аналоговый измерительный сигнал получают путем регистрации показаний и селективных, и неселективных датчиков, измеряющих и содержания газовых компонентов, и температуру, и влажность, и давление многокомпонентной газовой среды, затем полученный аналоговый измерительный сигнал преобразуют в цифровой сигнал, который передают в компьютер с установленным программным обеспечением, где графически и математически обрабатывают текущие значения измеренных параметров и формируют БД из всех измеренных параметров, и сравнивают полученные результаты с БД критических значений этих параметров для каждого из анализируемых герметизированных контейнеров.

Указанные задача и технический результат обеспечиваются тем, что в отличие от известного устройства для реализации способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, содержащего пробоотборное устройство, газоанализатор с измерительной ячейкой, снабженной датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, в предлагаемом устройстве дополнительно в месте сопряжения пробоотборного устройства с анализируемым герметизированным контейнером установлен сменный переходной элемент, одна часть которого постоянного сечения посажена на выходной штуцер пробоотборного устройства, а противоположная часть, выполненная с ответной частью, соответствующей сечению штуцера обратного клапана какого-либо из числа анализируемых герметизированных контейнеров, посажена на штуцер обратного клапана, сменный переходной элемент, газоанализатор, выполненный переносным, измерительная ячейка газоанализатора с измерительными датчиками составляют единую пневматическую цепь с пробоотборным устройством, измерительная ячейка снабжена селективными и неселективными датчиками для измерения содержания компонентов анализируемой газовой среды и, дополнительно, селективными датчиками для измерения температуры, влажности и давления указанной среды, газоанализатор подключен посредством электрического соединения своим выходным портом к входному порту переносного компьютера с установленным программным обеспечением, реализующим алгоритм графической и математической обработки текущих значений измеренных параметров, составления базы данных (БД) текущих и БД критических значений параметров и их сравнения, все элементы единой пневмомагистрали совместно с компьютером составляют измерительно-аналитический автоматизированный комплекс.

Предлагаемый способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации поясняются следующим образом.

На фиг.1 представлен вид устройства для реализации способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, где:

1 - контейнер с электронными приборами и обратным клапаном; 2 - датчик температуры и влажности; 3 - аналитический блок с измерительной ячейкой; 4 - блок управления; 5 - кабель-переходник; 6 - переносной компьютер; 7 - аккумуляторный блок питания; 8 - газоанализатор; 9 - пробоотборное устройство; 10 - переходное устройство; 11 - разъем для подключения зарядного устройства; 12 - разъемы для соединения газоанализатора и компьютера.

При эксплуатации удаленных объектов с токсичными и горючими газовыми компонентами возникает необходимость оперативного контроля их внутренних сред для исключения возникновения критических ситуаций, характеризующихся приближением концентраций составляющих их компонентов к критическим значениям, превышающих ДК (допустимые концентрации). Для своевременного и оперативного предотвращения подобных ситуаций в предлагаемом способе и устройстве для его реализации предусмотрено использование в составе измерительно-аналитического оборудования пробоотборного устройства со съемными переходными устройствами разного конструктивного исполнения с возможностью подключения к различным контролируемым устройствам, пропускание анализируемых проб через измерительную ячейку газоанализатора с последующим сравнением измеренных показателей с заложенной в памяти персонального компьютера (ПК) БД критических величин, позволяющим произвести корректировку состава газовой смеси.

В предлагаемом устройстве для анализа многокомпонентной газовой среды герметизированных контейнеров 1 с электронными приборами, содержащем пробоотборное устройство, газоанализатор с измерительной ячейкой, снабженной датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, предлагается дополнительно в месте сопряжения пробоотборного устройства с анализируемым герметизированным контейнером установить сменный переходной элемент, одна часть постоянного сечения которого посажена на входной штуцер пробоотборного устройства, противоположная часть, выполненная с ответной частью, соответствующей сечению штуцера обратного клапана какого-либо из числа анализируемых герметизированных контейнеров, посажена на штуцер обратного клапана контейнера. В предлагаемом устройстве сменный переходной элемент, газоанализатор, выполненный переносным, измерительная ячейка газоанализатора с измерительными датчиками составляют единую пневматическую цепь с пробоотборным устройством, измерительная ячейка снабжена неселективными датчиками для измерения содержания компонентов анализируемой газовой среды и селективными датчиками для измерения температуры, влажности и давления указанной среды. Газоанализатор подключен посредством электрического соединения своим выходным портом к входному порту ПК.

В ПК установлено программное обеспечение, реализующее алгоритм графической и математической обработки текущих значений измеренных параметров, составления БД текущих и БД критических значений параметров и их сравнения между собой. Предлагаемое устройство измерительно-аналитического автоматического комплекса (ИААК) представляет собой объединенные единой пневмомагистралью все элементы пневматической цепи с пробоотборным устройством, датчиками 2 и измерительной ячейкой 3 газоанализатора 8 (питаемый автономно блоком питания 7 или зарядным устройством через разъем 11) и с переносным компьютером 6. Компьютер 6 соединен разъемом 12 с газоанализатором 8. Такая система позволяет измерять текущие значения концентраций, температур, влажности, давления, сравнивать их с критическими посредством блока управления 4 и компьютера 6 и реагировать на сложившуюся ситуацию в разных анализируемых объектах.

Использование в предлагаемом ИААК набора сменных переходных элементов для подключения к контейнерам, одна часть каждого из которых выполнена с ответной частью, соответствующей сечению штуцера обратного клапана какого-либо из числа анализируемых герметизированных контейнеров, обеспечивает возможность последовательного контроля за наблюдаемыми объектами, что исключает необходимость использования для этого множества ИААК с однотипными переходными элементами и обеспечивает его универсальность.

В качестве газоанализатора в предлагаемом ИААК используется переносной комбинированный газоанализатор 8, измеряющий содержания газовых компонентов (кислород, водород) и температуру, влажность и давление среды контролируемых объектов.

Работает ИААК следующим образом. Первоначально подключают соответствующим переходным элементом 10 газоанализатор 8 к контролируемому объекту - герметизированному контейнеру 1 - через имеющийся в нем обратный клапан. Затем электрически подключают газоанализатор 8 к компьютеру 6, подают питание на компьютер 6 и газоанализатор 8. Производят измерения текущих значений параметров контролируемых сред по программам, заложенным в компьютер 6 и газоанализатор 8. В том случае, если текущее значение измеренного параметра не превышает критический порог, наблюдение за текущими параметрами анализируемой среды продолжают, а в случае превышения оператор, обслуживающий ИААК, принимает меры по корректировке состава газовой смеси.

Таким образом, использование предлагаемых способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройства для его реализации позволяет обеспечить возможность одновременного измерения параметров температуры, влажности, давления и состава измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможность сравнения текущих параметров этой среды с критическими значениями их, допустимыми для конструкций данного типа, без разгерметизации герметизированных контейнеров.

Возможность промышленной реализации предлагаемых способа и устройства подтверждается следующим примером.

Пример 1. В лабораторных условиях реализован предлагаемый способ на опытном образце устройства, представленного на фиг.1. В предлагаемом устройстве в качестве газоанализатора использован прибор марки ГК-ЭИ.07, в качестве переносного компьютера использован переносной ПК типа «Ноутбук», каждое переходное устройство из набора выполнено из нержавеющей стали. Опытный образец заявляемого герметизированного контейнера с электронными приборами выполнен стальным с электронными приборами в виде измерительных и регистрирующих приборов, снабженный обратным клапаном для сообщения с внешней средой. В контейнере сформирована газовая среда, содержащая воздух и водород, пары воды, при этом измерения проводили в двух случаях:

- при содержании водорода, значительно меньшем нижнего предела горючей концентрации (0,1% объемн.),

- при содержании водорода, равном нижнему пределу горючей концентрации (4% объемн.).

Как показали эксперименты, использование предлагаемых способа для анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройства для его реализации обеспечивает технический результат, заключающийся в обеспечении возможности одновременного измерения температуры, влажности, давления и состава измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможности сравнения текущих параметров этой среды с их критическими значениями, допустимыми для конструкций данного типа.

1. Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, включающий отбор пробы многокомпонентной газовой среды герметизированных контейнеров с электронными приборами с использованием пробоотборного устройства, пропускание отобранной пробы через измерительную ячейку газоанализатора с датчиками, последующее измерение параметров многокомпонентной газовой среды с получением аналогового измерительного сигнала, регистрируемого датчиками, с преобразованием его в цифровой сигнал, отличающийся тем, что отбор проб многокомпонентной газовой среды герметизированных контейнеров ведут автоматически дискретно с использованием пробоотборного устройства, аналоговый измерительный сигнал получают путем регистрации показаний и селективных, и неселективных датчиков, измеряющих и содержания газовых компонентов, и температуру, и влажность, и давление многокомпонентной газовой среды, затем полученный аналоговый измерительный сигнал преобразуют в цифровой сигнал, который передают в компьютер с установленным программным обеспечением, где графически и математически обрабатывают текущие значения измеренных параметров и формируют БД из всех измеренных параметров, и сравнивают полученные результаты с БД критических значений этих параметров для каждого из анализируемых герметизированных контейнеров.

2. Устройство для реализации способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами по п.1, содержащее пробоотборное устройство, газоанализатор с измерительной ячейкой, снабженными датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, отличающееся тем, что дополнительно в герметизированном контейнере установлен сменный переходной элемент, одна часть которого постоянного сечения посажена на входной штуцер пробоотборного устройства, а противоположная часть, выполненная с ответной частью, соответствующей сечению штуцера обратного клапана какого-либо из числа анализируемых герметизированных контейнеров, посажена на штуцер обратного клапана контейнера, сменный переходной элемент, газоанализатор, выполненный переносным, измерительная ячейка газоанализатора с измерительными датчиками составляют единую пневматическую цепь с пробоотборным устройством, измерительная ячейка снабжена селективными и неселективными датчиками для измерения содержания компонентов анализируемой газовой среды и, дополнительно, селективными датчиками для измерения температуры, влажности и давления указанной среды, газоанализатор подключен посредством электрического соединения своим выходным портом к входному порту переносного компьютера с установленным программным обеспечением, реализующим алгоритм графической и математической обработки текущих значений измеренных параметров, составления БД текущих и БД критических значений параметров и их сравнения, все элементы единой пневмомагистрали совместно с компьютером составляют измерительно-аналитический автоматизированный комплекс.



 

Похожие патенты:

Изобретение относится к ферментному электроду, включающему частицы углерода, несущие глюкозодегидрогеназу (GDH) с флавинадениндинуклеотидом (FAD) в качестве кофермента; и электродный слой, контактирующий с указанными частицами углерода, причем частицы углерода и электродный слой состоят из частиц углерода с диаметром частицы не более 100 нм и удельной поверхностью по меньшей мере 200 м2 /г.

Изобретение относится к измерению концентрации золота в цианистых растворах и пульпах. .

Изобретение относится к измерительной технике, в частности к измерению концентрации ионов водорода. .

Изобретение относится к устройствам для анализа биологической текучей среды. .

Изобретение относится к способу определения пассивирующих свойств смеси (11), содержащей по меньшей мере два компонента, которыми являются цемент и вода. .

Изобретение относится к измерительной системе для выполнения анализа жидкости организма. .

Изобретение относится к способу для электрохимического обнаружения исследуемого вещества. .

Изобретение относится к способам анализа и контроля концентрации ионов в различных средах и устройствам для этого и может быть использовано, например, в пищевой промышленности для определения превышения предельно допустимого количества нитратов в продуктах.

Использование: область анализа газовых сред для определения их компонентного состава и устройства измерительно-аналитических комплексов, с помощью которых они определяются. Задача: разработка способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройства для его реализации, обеспечивающего максимально достоверное определение динамики изменения состава газовых многокомпонентных смесей и других параметров их при непосредственном контакте с указанной смесью. Сущность изобретения: в отличие от известного способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, включающего измерение параметров многокомпонентной газовой среды с получением аналогового измерительного сигнала, поступающего от датчиков, размещенных в измерительной ячейке газоанализатора, с преобразованием его в цифровой сигнал, согласно предлагаемому способу, измерение параметров многокомпонентной газовой среды герметизированных контейнеров ведут автоматически дискретно по заложенной в газоанализатор программе с получением аналогового измерительного сигнала путем регистрации показаний и селективных и неселективных датчиков, измеряющих и содержания газовых компонентов, и температуры, и влажности, и давления многокомпонентной газовой среды с использованием измерительной ячейки газоанализатора, имеющей непосредственное сообщение с внутренним объемом контейнера, затем полученный аналоговый измерительный сигнал преобразуют в цифровой сигнал, который передают в съемное запоминающее устройство, с записью в его памяти результатов проведенных динамических измерений. В устройстве для реализации способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, содержащем газоанализатор с измерительной ячейкой, снабженной датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, в предлагаемом устройстве дополнительно в месте сопряжения газоанализатора с анализируемым герметизированным контейнером установлен переходной элемент, который с одной стороны посажен на входной штуцер газоанализатора, а противоположной частью соединен с обратным клапаном анализируемого герметизированного контейнера с образованием единого герметизированного объема для непосредственного диффузионного обмена анализируемой многокомпонентной газовой среды с внутренним объемом измерительной ячейки газоанализатора, выполненного взрывозащищенным, малогабаритным и переносным, измерительная ячейка газоанализатора снабжена селективными и неселективными датчиками для измерения и содержания компонентов анализируемой газовой среды, и температуры, и влажности, и давления указанной среды, газоанализатор выполнен с возможностью подключения к нему съемной Флеш-карты в качестве съемного запоминающего устройства, все элементы измерительной системы газоанализатора совместно с компьютером и с Флеш-картой составляют измерительно-аналитический автоматизированный комплекс (ИААК). Технический результат: обеспечение возможности одновременного и непосредственного измерения состава, параметров температуры, влажности, давления измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможности сравнения текущих параметров этой среды с их критическими значениями, допустимыми для конструкций данного типа, и исследования закономерностей изменения во времени указанных параметров. 2 н. и 1 з.п. ф-лы, 1 пр., 1 ил.

Сущность изобретения: в отличие от известного способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, согласно предлагаемому способу используют газоанализатор с датчиками, вынесенными наружу и контактирующими с анализируемой многокомпонентной средой, измерения ведут по заданной программе автоматически, дискретно, по показаниям датчиков, непосредственно контактирующих с внутренней средой всех анализируемых герметизированных контейнеров, аналоговый измерительный сигнал получают путем регистрации показаний и селективных и неселективных датчиков, измеряющих и содержания газовых компонентов, и температуры, и влажности, и давления многокомпонентной газовой среды одновременно в каждой из локальных зон всех анализируемых контейнеров, с поочередным опросом каждого из датчиков, затем полученный аналоговый сигнал преобразуют в цифровой или непосредственно в каждом датчике, или в электронном блоке газоанализатора, и этот цифровой сигнал передают в управляющий ПК, позволяющий графически и математически обрабатывать текущие значения измеренных параметров, формировать базу данных (БД) из всех измеренных параметров, сравнивать полученные результаты с БД критических значений этих параметров и передавать накопленные результаты по этой группе герметизированных контейнеров в съемное запоминающее устройство (ЗУ). Это ЗУ транспортируют в центр компьютерной обработки, результаты проведенных динамических измерений передают в удаленный ПК с программным обеспечением, позволяющим статистически обрабатывать значения измеренных параметров по всем группам герметизированных контейнеров, формировать БД из всех измеренных параметров и сравнивать результаты с БД значений этих параметров для каждого из всех групп анализируемых герметизированных контейнеров с установлением общих или частных закономерностей процессов, протекающих в многокомпонентных газовых средах герметизированных контейнеров. Также заявлено устройство, реализующее вышеуказанный способ, в котором блоки датчиков газоанализатора объединены единой электрической связью с электронным блоком газоанализатора посредством герметизированных проходных электрических разъемов. Технический результат: обеспечение возможности одновременного и непосредственного измерения состава, параметров температуры, влажности, давления измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможность сравнения текущих параметров этой среды с их критическими значениями, допустимыми для конструкций данного типа, и проведение исследования закономерностей изменения во времени указанных параметров, в том числе и в критических условиях. 2 н. и 1 з.п. ф-лы, 2 ил.,1 пр.

Изобретение относится к аналитической химии и химической технологии и может быть использовано для сложных по составу растворов, содержащих ванадий и уран. В способе титриметрического определения урана в растворах в присутствии ванадия, к анализируемому раствору добавляют фосфорную кислоту, далее 10-15 мл 2 моль/дм3 серной кислоты и 5-10 мл трет-бутанола. В дальнейшем уран и другие компоненты смеси восстанавливаются хлоридом титана (III). Затем к раствору добавляют 2-3 капли насыщенного раствора хлорида железа(III) и раствор нитрита натрия. После чего добавляют мочевину. Титрование проводят путем окисления урана с помощью сернокислого раствора ванадата аммония с регистрацией скачка потенциала в пределах 550-600 мВ. Определяют концентрацию урана по количеству ванадата аммония, пошедшего на достижение пика производной кривой титрования. Достигается повышение точности и чувствительности, а также - ускорение анализа. 2 пр., 3 табл.

Группа изобретений относится к области медицины и может быть использована для определения концентрации аналита в образце. Способ определения концентрации анализируемого вещества в биологическом образце содержит этапы, на которых: генерируют выходной сигнал в ответ на реакцию окисления/восстановления анализируемого вещества в биологическом образце; генерируют вторичный выходной сигнал из биологического образца от дополнительного электрода в ответ на содержание гематокрита в образце; определяют по меньшей мере одну индексную функцию, зависящую от множества параметров ошибки и определяют концентрацию анализируемого вещества по меньшей мере по одному выходному сигналу и уравнению компенсации наклона, зависящему от индексной функции, причем уравнение компенсации наклона включает в себя опорную корреляцию и отклонение наклона. Группа изобретений относится также к системе биологического датчика для определения концентрации аналита в образце. Группа изобретений обеспечивает повышение точности анализа. 3 н. и 49 з.п. ф-лы, 7 ил., 2 табл.

Группа изобретений относится к биосенсорам с системой распознавания недостаточного заполнения. Способ оценки объема образца в биосенсоре содержит подачу регулярной последовательности опроса, обнаружение наличия образца, подачу расширенной последовательности опроса и определение того, является ли объем образца достаточным для анализа. Расширенная последовательность опроса содержит, по меньшей мере, один отличающийся расширенный входной импульс. При этом регулярная и расширенная последовательности опроса по существу исключают необратимые изменения концентрации аналита в образце. Также раскрывается вариант способа оценки объема образца в биосенсоре, который дополнительно включает указание, когда объем образца является недостаточным, и подачу возбуждающего измерительного сигнала, когда объем образца является достаточным, а также биосенсор с системой распознавания недостаточного заполнения. Группа изобретений обеспечивает более точное и достоверное обнаружение недостаточного заполнения сенсорных полосок. 3 н. и 42 з.п. ф-лы, 16 ил.

Использование: для контроля значения pH раствора. Сущность изобретения заключается в том, что устройство контроля pH содержит камеру для вмещения раствора, полимер, погружаемый в раствор, причем размер полимера способен изменяться в зависимости от того, превышает ли pH раствора пороговое значение, детектор для обнаружения изменения размера полимера. Технический результат: обеспечение возможности упрощения измерения pH раствора. 4 н. и 9 з.п. ф-лы, 8 ил.

Использование: область методов анализа газовых сред и устройств для измерения параметров газовых сред, для контроля и определения физико-химических параметров указанных сред. Способ измерения температуры, влажности и скорости их изменения в герметичном контейнере с газовой средой включает установку в контейнере исследуемых объектов с переменными во времени физико-химическими параметрами и датчиков температуры и влажности, динамическое измерение показателей газовой среды с помощью указанных датчиков температуры и влажности, преобразование измеренных аналоговых сигналов датчиков в конечный вид данных. Причем перед измерением показателей газовой среды осуществляют установку в каждой труднодоступной зоне контейнера с исследуемыми объектами в качестве измерительных приборов комбинированных датчиков температуры и влажности и последующую герметизацию малогабаритного контейнера с исследуемыми объектами и измерительными приборами, который затем располагают дополнительно в защитном разборном контейнере, пространство которого заполнено дополнительными измерительными приборами, а защитный контейнер помещают в ограниченную климатическую зону с заданными температурно-влажностными условиями. Затем включают измерительные приборы и осуществляют динамическое измерение показателей газовой среды и в герметичном контейнере с исследуемыми объектами, и в защитном контейнере, от которого измеренные сигналы передают на соответствующие разъемы автономного измерительно-преобразовательного блока (АИПБ), а преобразованные сигналы передают в ПК, где сравнивают их с критическими значениями. В отличие от известного устройства для измерения температуры и влажности и скорости их изменения в герметичном контейнере с газовой средой с помещенными в нем исследуемыми объектами, характеризующимися переменными во времени физико-химическими параметрами, и снабженным измерительными приборами, согласно изобретению герметичный контейнер с исследуемыми объектами размещен в защитном контейнере с измерительными приборами, установленном в климатической зоне с заданными температурно-влажностными условиями, каждый из измерительных приборов укомплектован индивидуальными элементами коммутации, при этом все элементы коммутации, проводящие измеряемые сигналы от измерительного оборудования, собраны в единую магистраль элементов коммутации и подключены к единым разъемам (гермопереходам), установленным последовательно в герметичном контейнере с исследуемыми объектами и в защитном контейнере, и подсоединены к соответствующим разъемам автономного измерительно-преобразовательного блока (АИПБ). Техническим результатом является обеспечение возможности изоляции от воздействия внешних факторов, обеспечение динамического контроля за изменяющейся во времени газовой средой герметичных контейнеров с исследуемыми объектами, в которых имеются труднодоступные для установки измерительного оборудования зоны, минимизация операционного процесса и сокращение трудовых ресурсов операторов, оптимизация процесса измерения и контроля. 2 н.п. ф-лы, 1 пр., 1 ил.

Изобретение относится к области потенциометрических методов анализа и мембранных технологий и может быть использовано для совместного определения органических и неорганических ионов в многокомпонентных водных средах. Способ одновременной оценки потенциала Доннана в восьми электромембранных системах заключается в измерении ЭДС восьми электрохимических цепей с помощью девятисекционной ячейки из непроводящего материала, в которой каждая из восьми ионообменных мембран одним концом погружена в центральный корпус с исследуемым раствором, а другим концом - в одну из восьми секций с раствором сравнения, при этом измерение откликов восьми хлоридсеребряных электродов, погруженных в секции с раствором сравнения, осуществляют одновременно относительно хлоридсеребряного электрода, погруженного в корпус с исследуемым раствором, с помощью многоканального потенциометра, при этом каждая из восьми электрохимических цепей замыкается вдоль мембраны и диффузия в мембранах является бесконечно медленной относительно времени эксперимента. Технический результат: точная экспрессная оценка потенциала Доннана одновременно в восьми электромембранных системах. 5 ил., 2 пр.

Изобретение относится к устройству для определения концентрации газа: оксида серы (SOX), содержащегося в выхлопных газах из двигателя внутреннего сгорания. Устройство определения концентрации газа включает в себя элемент определения концентрации газа и электронный блок управления. Элемент определения концентрации газа включает в себя первый электрохимический элемент и второй электрохимический элемент. Электронный блок управления выполнен с возможностью определения концентрации оксида серы, содержащегося в исследуемом газе, на основании полученного первого определенного значения, согласованного с током, текущим через первый электрохимический элемент, когда первое удаляющее напряжение подано на второй электрохимический элемент, и измерительное напряжение подано на первый электрохимический элемент. Изобретение обеспечивает возможность концентрации газа - оксида серы, содержащегося в выхлопных газах, с наивысшей степенью точности, возможной при использовании газоанализатора предельного тока. 11 з.п. ф-лы, 6 ил.

Группа изобретений относится к определению аналита в биологической текучей среде. Представлена электрохимическая аналитическая тест-полоска для определения аналита в образце биологической текучей среды, содержащая: первую камеру для приема образца, содержащую: первое отверстие для нанесения образца; и второе отверстие для нанесения образца; первый электрод, размещенный в первой камере для приема образца между первым отверстием для нанесения образца и вторым отверстием для нанесения образца; второй электрод, размещенный в первой камере для приема образца между первым отверстием для нанесения образца и вторым отверстием для нанесения образца; вторую камеру для приема образца, которая пересекает первую камеру для приема образца между первым электродом и вторым электродом, образуя таким образом пересечение камер, и по меньшей мере первый рабочий электрод, второй рабочий электрод и противоэлектрод/электрод сравнения, размещенные во второй камере для приема образца. Также описан способ определения аналита в образце биологической текучей среды. Достигается повышение эффективности анализа при минимальном объеме анализируемого образца. 2 н. и 18 з.п. ф-лы, 6 ил.
Наверх