Способ изготовления струйного генератора

Изобретение относится к устройствам автоматики и может быть использовано для измерения расхода и количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ. Способ изготовления струйного генератора, содержащего проточную часть в виде плоских струйных элементов с каналами управления, приемными, питания и слива, конструктивно расположенных друг над другом, по которому разрабатывают 3D-модель струйного генератора, выбирают рабочий материал для выращивания струйного генератора, определяют ось модели 3D струйного генератора в качестве оси выращивания, подбирают в формате 3D ее положение для выращивания (полимеризации), которое определяет минимум уменьшения проходных сечений проточной части, формируют послойные сечения струйного генератора в формате 3D в направлении оси выращивания, технологически выращивают послойно всю конструкцию струйного генератора. Технический результат - надежность герметичности между слоями и каналами передачи информации, уменьшение количества времени на изготовление струйного генератора, упрощение размещения цельного корпуса струйного генератора в любой конструкции за счет неразборности, сложность копирования. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к устройствам автоматики и может быть использовано для измерения расхода и количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ.

Известен способ изготовления путем литья пластмассы в пресс-форму струйного генераторы, применяемого в счетчиках-расходомерах газа и жидкости (1. С.Л. Трескунов и др. Струйные автогенераторные расходомеры - новый тип измерителей расходов. Ж. П и СУ, №11, 1990).

Известный способ изготовления струйных элементов с помощью стальных закаленных пуансонов и сборных высококачественных пресс-форм позволил использовать перспективный термореактивный пластик, но очень сложен в производстве, в связи с дальнейшей обработкой (2. Новое в пневмонике. M.: Наука. 1969. С.182-198). Недостаток этого известного способа заключен в многоступенчатом технологическом цикле изготовления. Изготовленные струйные элементы проходят выбраковку на соответствие требованиям технических данных. Подбирается клей, например ВК-9, которым промазывается вся поверхность струйного элемента и крышки (или другого струйного элемента при сборе в пакет, стопку). Перед склейкой пассивные поверхности (не содержащие геометрию струйного элемента) обрабатываются в пескоструйной камере. Толщина слоя клея выбирается такой, чтобы обеспечить надежное склеивание и в то же время не допустить затекания клея в каналы и образования большого мениска, который нарушает работу струйного элемента. Далее сушка и временное выдерживание в специальном боксе. После склейки все струйные элементы и модули проходят проверку на функционирование, из которых выбраковываются с неудовлетворительными характеристиками.

Известные способы изготовления порождают недостатки в работе струйных генераторов (1, 2). Основным недостатком таких устройств является недостаточный динамический диапазон измеряемого расхода, сравнительно большой нижний уровень расхода, с которого начинается измерение, поскольку известный струйный генератор конструктивно выполнен на одном струйном элементе. Для преодоления этих недостатков требуется увеличение количества струйных элементов, которые приходится компоновать в пакет или стопку с зажимными устройствами (винты, склеивание и др.). Отдельно изготовленные пластины с конфигурацией струйных элементов требуют различной доводки: обеспечение плоскостности и шлифовки, отсутствия усадки, внешних размерных габаритов и др.

Известен способ гальванопластики, при котором струйные элементы, входящие в состав струйного генератора, изготовлены в виде интегральной схемы в плоскости (3. Пневматические средства и системы управления. M.: Наука. 1970. С.372-377).

Недостатками известного способа изготовления струйного генератора из подобных струйных элементов является расположение геометрии в пространстве толщины листа, использование ее полностью в пределах плоскостей герметизации, т.е. контактной поверхности, для исключения перетечек между каналами питания, слива, управляющими и приемными, а также для отсутствия дренажа в атмосферу.

Далее, достаточно большая толщина листа с отношением в струйном элементе глубины канала к его ширине 3-4 (2,3) при изготовлении приводит к деформации плоскости герметизации, трудности изготовления при штамповке (заменяется тремя-четырьмя профилями меньшей толщины, но уже прорезными) - перерасходу электрической энергии при искровой обработке кромок геометрии струйного элемента, при литье в форму - также к возможности перерасхода материала, необходимости большого прессового давления для предотвращения образования пустот и деформации профиля геометрии струйного элемента.

При прорезной конструкции сливные каналы для связи с атмосферой практически разрезают листовой материал, что ухудшает плоскостность конструкции, появляется возможность деформации геометрии в процессе обработки, искривление поверхности струйного элемента и протечки по поверхности герметизации.

К недостаткам известного способа изготовления струйных элементов относится большая площадь герметизации с проблемами ненадежности от дополнительных элементов крепежа или увеличения усилия затяжки крепления, подбора и размещения скрепляемых зажимов, чтобы они не разошлись при вибрации, не нарушилась герметизация и их функционирование, что удорожает производство струйных элементов.

Для исправления недостатков известных способов изготовления струйных элементов необходимо применять доводку поверхностей рабочих плат алмазными кругами с использованием смазочно-охлаждающих жидкостей.

Наиболее близким по технической сущности к предложенному изобретению и принятому за прототип является способ изготовления штампом пластинок, содержащих струйные элементы для струйного генератора и укладываемых послойно в пакет (3. Wissensspeicher Fluidtechnik. VEB Fachbuchverlag Leipzig. 1988. С.127).

Указанная конструкция, содержит в плоской пластине проточную полость с каналами питания, слива, управляющими и приемными, которые вырезаны, выдавлены, отлиты или изготовлены другим способом. При традиционных способах изготовления почти всегда отделяется лишний материал от требуемой конфигурации детали, что является недостатком известного решения. Попутно с геометрией струйного элемента остаются излишки материала, служащие для прочности и жесткости самой пластинки сверх меры. Площади плоскости герметизации завышены, соотношение глубины проточной полости элемента и ширины, например, сопла питания малы и не соответствуют современным представлением об оптимальном соотношении для функционирования струйного элемента. Не используется возможность послойного построения физической детали (выращивание) в соответствии с ее трехмерной моделью (3D) с сокращением времени ее изготовления.

Техническим результатом предложенного способа изготовления устройства является неразборность конструкции, отсутствие возможности просмотра и копирования внутренности устройства и обнаружения ноу-хау, уменьшение количества времени на изготовление проточной части струйного генератора, отсутствие крепление струйных элементов между собой, отсутствие прокладок между элементами, надежность в герметичности между слоями (струйными элементами) и каналами передачи информации, упрощение размещения цельного корпуса струйного генератора в любой конструкции за счет неразборности (меньше крепежных элементов).

Технический результат достигается тем, что предложен способ изготовления струйного генератора, содержащего проточную часть в виде плоских струйных элементов с каналами управления, приемными, питания и слива, расположенных друг над другом (конструктивно расположенных слоями в стопку), разрабатывают 3D-модель струйного генератора, выбирают рабочий материал для выращивания струйного генератора, определяют ось модели 3D струйного генератора в качестве оси выращивания, подбирают в формате 3D ее положение для выращивания (полимеризации), которое определяет минимум уменьшения проходных сечений проточной части, формируют послойные сечения струйного генератора в формате 3D в направлении оси выращивания, технологически выращивают послойно всю конструкцию струйного генератора.

По предложенному способу ось полимеризации, совпадающая с осью проточной части третьего элемента, составляет угол α=0°±5° с вертикальной осью Z в плоскости XZ, угол β=50°±5° - в плоскости YZ.

По предложенному способу рабочий материал выращивания - жидкий фотополимер.

На фиг.1а, б представлено устройство - струйный генератор с проточной частью, выполненное выращиванием по способу стереолитографии (протипирования), в двух проекциях. На фиг.1а представлен разрез устройства в плоскости YZ. На фиг.1б представлена проекция корпуса струйного генератора - вид сверху. На фиг.2 представлена схема струйного генератора, состоящего из трех струйных элементов, соединенных последовательно друг с другом в одну информационную цепь. Эта схема реализована в виде монолитной конструкции, показанной на фиг.1. На фиг.2 схема составлена из сечений корпуса 1 струйного генератора по АА, ББ и ВВ, на которых показаны соответственно геометрия первого струйного элемента 2, второго струйного элемента 3 и третьего струйного элемента 4. На фиг.2 показаны функциональные связи между элементами.

На фиг.1а, б и фиг.2 представлен корпус 1 струйного генератора с проточными частями трех струйных элементов и межслойными каналами связи между элементами, каналы 5 управления первого струйного элемента 2, каналы 6 слива или дренажа первого струйного элемента 2, приемные каналы 7 с выходами первого струйного элемента 2, канал 8 питания первого струйного элемента 2, каналы 9 управления второго струйного элемента 3, каналы 10 слива или дренажа второго струйного элемента 3, приемные каналы 11 с выходами второго струйного элемента 3, канал 12 питания второго струйного элемента 3, каналы 13 управления третьего струйного элемента 4, каналы 14 слива или дренажа третьего струйного элемента 4, приемные каналы 15 с выходами третьего струйного элемента 4, канал 16 питания третьего струйного элемента 4.

На фиг.2 функциональные связи между приемными каналами с выходами 7, 11, 15 и каналами управления (входами) 5, 9, 13 выполнены через дополнительные каналы 17, 18, 19 между слоями (плоскостями) струйных элементов соответственно для струйных элементов 2, 3, 4.

В проточную часть струйного генератора входят проточные части трех струйных элементов генератора. В проточную часть первого струйного элемента 2 входят канал питания 8, каналы управления 5, каналы слива 6, приемные каналы 7 с выходами, которые связаны межслойными каналами 17 с управляющими каналами 9 второго струйного элемента.

В проточную часть второго струйного элемента 3 входят канал питания 12, каналы управления 9, каналы слива 10, приемные каналы 11 с выходами, которые связаны межслойными каналами 18 с управляющими каналами 13 третьего струйного элемента.

В проточную часть третьего струйного элемента 4 входят канал питания 16, каналы управления 13, каналы слива 14, приемные каналы 15 с выходами, которые связаны межслойными каналами 19 с управляющими каналами 5 первого струйного элемента.

Выращивание корпуса 1 проточной части струйного генератора происходит методом стереолитографии (прототипирования).

Для этого подготавливается электронная модель 3D по технической документации (чертежи) на все устройство струйного генератора с проточной частью. Далее определяют ось модели 3D проточной части в качестве оси выращивания. В данном случае этой осью служит линия, расположенная на нижней кромке корпуса 1 (фиг.1а).

При использовании жидкого рабочего материала для выращивания струйного генератора возникает необходимость выбора пространственной оси кристаллизации при наращивании слоев. Выращивание слоев и плоскостей при расположении оси кристаллизации перпендикулярно плоскостям сечения АА, ББ, ВВ требует установки некоторых перемычек для поддержания этих плоскостей при наличии пустоты на плоскости в местах предшествующих наращиванию. Установка таких перемычек, стоек и др. в местах по каналам управления, выхода, проточной камеры струйных элементов нарушает работу, т.к. проточная часть в каналах изменяет свое проходное сечение и приводит к уменьшению потоков управления в каналах управления 5, 9, 12 и выходных каналах 7, 11, 15.

Для исключения этого недостатка предварительно при проектировании в электронной модели-3D проточной части подбирают пространственное направление оси полимеризации жидкого рабочего тела, которое позволяет расположить перемычки и межслойные технологические поддержки и их количество на участках геометрии струйных элементов с минимальным ущербом для функциональной работы струйного генератора, т.е. с минимальным отклонением (искажением) от заданных технических характеристик струйного генератора, так, чтобы минимум уменьшал проходные сечения проточной части. Допустимая величина отклонения определяется по проекту.

Сечение перемычек и межслойных поддержек, уменьшающих сечение проточной части струйных элементов, целесообразней установить в проточных каналах слива.

Далее выполняют послойные сечения проточной части струйного генератора в направлении оси кристаллизации, с заданной толщиной слоев по проекту и возможностям технологического центра, выполняющего операцию выращивания..

Далее загружают в технологический центр рабочую среду и подготовленные плоскостные слои (срезы) проточной части струйного генератора с осью полимеризации, выявленной при ее поиске и составляющей с вертикальной осью Z с плоскостью XZ угол α≈0° и в плоскости YZ - угол β≈50°.

Выращивание начинают со стороны канала питания с нижней кромки корпуса (третьего струйного элемента), расположенной в плоскости XY на фиг.1а, которая в 3D будет иметь расположение с найденными углами α≈0° и β≈50°.

После подачи рабочей жидкости размерной толщины, соответствующему проектному слою проточной части струйного генератора в технологическом центре, происходит засвечивание поданного слоя для полимеризации и дальнейшая временная выдержка на отверждение поданного слоя. Последующие операции повторяются до тех пор, пока не будет выращен весь корпус 1 проточной части струйного генератора с послойной конфигурацией струйных элементов и межплоскостными каналами.

Преимущества предложенного способа при выращивании струйного генератора: отсутствует крепление элементов между собой, отсутствие прокладок между элементами, надежность герметичности между слоями (струйными элементами) и каналами передачи информации, уменьшение количества времени на изготовление струйного генератора, упрощение размещения цельного корпуса струйного генератора в любой конструкции за счет неразборности (меньше крепежных элементов) и самое важное - ноу-хау внутри, снаружи нельзя посмотреть, т.к. конструкция неразборная, что представляет сложность копирования.

1. Способ изготовления струйного генератора, содержащего проточную часть в виде плоских струйных элементов с каналами управления, приемными, питания и слива, размещенных друг над другом, отличающийся тем, что разрабатывают 3D-модель струйного генератора, выбирают рабочий материал для выращивания струйного генератора, определяют ось модели 3D струйного генератора в качестве оси выращивания, подбирают в формате 3D ее положение для выращивания (полимеризации), которое определяет минимум уменьшения проходных сечений проточной части, формируют послойные сечения струйного генератора в формате 3D в направлении оси выращивания, технологически выращивают послойно всю конструкцию струйного генератора.

2. Способ изготовления струйного генератора по п.1, отличающийся тем, что ось полимеризации, совпадающая с осью проточной части третьего элемента, составляет угол α=0°±5° с вертикальной осью Z в плоскости XZ, угол β=50°±5° - в плоскости YZ.

3. Способ изготовления проточной части струйного генератора по п.1, отличающийся тем, что рабочий материал выращивания - жидкий фотополимер.



 

Похожие патенты:

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к измерительной технике и может быть использовано для измерения объема и объемного расхода жидких сред. Счетчик состоит из входного (1) и выходного (2) коллекторов, корпуса (3), ротора (4), имеющего возможность вращаться вокруг оси в точке O, и лопастей (5), шарнирно закрепленных на роторе в точках A, A′, A′′.

Устройство для регулирования уровня жидкости содержит сепарационную емкость, коллектор входа газожидкостной смеси, газовую трубу, жидкостную трубу, выходной коллектор.

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью электромагнитного способа, т.е. способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения покомпонентного расхода газожидкостной смеси включает измерение объемного расхода и передачу данных вычислителю.

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах. Способ измерения массового расхода среды включает измерение объемного расхода по частоте вращения измерителя при нулевом перепаде давления и передачу данных вычислителю.

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде давления и передачу данных вычислителю.

Изобретение относится к области контроля правильности загрузки железнодорожных цистерн нефтепродуктами и может применяться для контроля уровня загрузки железнодорожных цистерн непосредственно в процессе налива нефтепродуктов, например мазута, на наливных эстакадах для исключения (предупреждения) перелива или недолива цистерн.

Турбинный расходомер содержит корпус с измерительным каналом, в котором между двумя обтекателями, соответственно струенаправляющего аппарата и струевыпрямителя, с возможностью осевого перемещения и вращения расположена турбинка, а также узел съема сигнала.

Изобретение относится к методам измерения объемного расхода, а именно определения эффективной площади натекания и механизма поступления природного газа радона в помещение.

Изобретение относится преимущественно к ракетной технике и используется для поддержания заданного расхода компонентов топлива при изменении давления на входе в двигатель. Устройство имеет регулирующий орган, с соответствующим ему дросселирующим отверстием, корпус с входной и выходной полостями, между которыми расположен чувствительный элемент в виде сильфона с неподвижным фланцем, закрепленным в корпусе на выходе из устройства и подвижным фланцем, расположенным на входе в устройство. Согласно изобретению сильфон подпружинен пружиной сжатия, а дросселирующее отверстие выполнено в подвижном фланце сильфона и взаимодействует с неподвижно установленным профилированным регулирующим органом. Дополнительно в неподвижном фланце могут быть выполнены одно или несколько дросселирующих отверстий, соединяющих входную и выходную полости. Технический результат - повышение точности поддержания заданного расхода рабочего тела в расширенном диапазоне изменения давления на входе и улучшение динамики выхода двигателя на режим при включении. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для калибровочных жидкостей, жидкостные насосы, измеритель скорости потока, анализатор жидкости, включающий генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, дополнительно содержит один или несколько трубопроводов, соединенных с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество трубопроводов равно количеству калибровочных жидкостей, трубопроводы закрепляются на трубопроводе для прокачки многофазной жидкости параллельно ему и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, количество гамма-спектрометров равно или больше количества трубопроводов, измеритель скорости потока располагается на трубопроводе для прокачки многофазной жидкости на расстоянии L>V × t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения. Технический результат - расширение области применения устройства. 1 ил.

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Монитор многофазной жидкости содержит обходной трубопровод с возможностью его соединения с трубопроводом для прокачки многофазной жидкости, резервуары для калибровочных жидкостей, жидкостные насосы, анализатор жидкости, измеритель скорости потока, анализатор жидкости включает генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на обходном трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на обходном трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, дополнительно содержит трубопроводы, соединенные с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество этих трубопроводов равно количеству калибровочных жидкостей, трубопроводы располагаются параллельно обходному трубопроводу и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, их количество равно или больше количества трубопроводов, измеритель скорости потока располагается на обходном трубопроводе на расстоянии L>V×t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения. Технический результат - повышение производительности и точности измерений. 1 ил.

Использование: для анализа многофазной жидкости. Сущность изобретения заключается в том, что анализатор многофазной жидкости содержит импульсный источник быстрых нейтронов и источник электромагнитного излучения, гамма спектрометр, детектор гамма лучей и сцинтиллятор, расположенный диаметрально источнику электромагнитного излучения на противоположной стороне трубопровода, при этом импульсный источник быстрых нейтронов является одновременно и импульсным источником электромагнитного излучения, дополнительно содержащим мониторный детектор быстрых нейтронов и мониторный детектор электромагнитного излучения, гамма спектрометр дополнительно содержит коллиматор гамма лучей и расположен рядом с импульсным источником быстрых нейтронов и электромагнитного излучения, детектор гамма лучей расположен на одной стороне трубопровода с импульсным источником быстрых нейтронов и электромагнитного излучения на заданном расстоянии от импульсного источника быстрых нейтронов и электромагнитного излучения по направлению течения многофазной жидкости, детектор быстрых нейтронов, расположен диаметрально импульсному источнику быстрых нейтронов и электромагнитного излучения на противоположной стороне трубопровода, детектор тепловых и эпитепловых нейтронов расположены от импульсного источника быстрых нейтронов и электромагнитного излучения на расстоянии, равном длине замедления быстрых нейтронов в многофазной жидкости, а гамма спектрометр, мониторный детектор электромагнитного излучения и сцинтиллятор выполнены с возможностью измерения спектра импульсного электромагнитного излучения. Технический результат: повышение точности измерения фракционного состава и расхода многофазной жидкости. 1 ил.

Устройство для измерения расхода топлива ДВС, содержащее датчик расхода топлива в виде гидромотора аксиально-поршневого типа, редуктор, соединенный с валом гидромотора, фильтр, датчики давления и температуры, установленные в нагнетающую линию топливной системы, электромотор, соединенный с валом редуктора, регулятор частоты вращения электромотора, датчик частоты вращения вала аксиально-поршневого гидромотора и микропроцессор, связанный электрически с датчиками давления, температуры, частоты вращения вала гидромотора аксиально-поршневого типа и регулятором частоты вращения вала электромотора, дополнительно снабжено гидромотором с героторным зацеплением, выполняющим роль подпорного клапана в сливной линии топливной системы и датчика расхода топлива, датчиками давления, температуры, установленными в сливной линии топливной системы, датчиком частоты вращения вала гидромотора с героторным зацеплением. При этом датчики давления, температуры и частоты вращения вала этого гидромотора электрически связаны с микропроцессором. Технический результат - повышение надежности работы ДВС при работе с системами измерения топлива и повышение точности измерения расходов топлива. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Объемный расходомер содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока, устройство сравнения расходов и индикатор расхода. При этом до сумматора для обратного потока подключен насос с характеристикой «даление-расход», связанный с устройством сравнения расходов и который выключается по его сигналу. Технический результат - расширение диапазона измерения расхода, уменьшение погрешности и возможность получения различной функциональной связи между величинами напорного и обратного потоков среды. 1 з.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к области приборостроения и может быть использовано для установки и поддержания малых расходов жидкости в технологических процессах различных отраслей промышленности. Технический результат - повышение точности регулирования малых расходов жидкости. Регулятор малых расходов жидкости, включающий корпус с входным и выходным отверстиями для жидкости, профилированную иглу со штоком для изменения задающего сечения. При этом профилированная игла, соединенная регулировочным штоком с управляющим приводом, выполнена с возможностью полного перекрытия центрального канала седла задающего сечения, параллельно регулировочному штоку в корпусе регулятора герметично расположена неподвижная гильза, закрытая сверху гибкой мембраной и имеющая внутри подвижный ступенчатый золотник, подпираемый снизу пружиной со сменной шайбой. В нижней части гильзы выполнены выступающая кромка для опоры золотника и кольцевой зазор для выхода жидкости из регулятора через выходное отверстие, причем выходное отверстие регулятора и пространство над седлом задающего сечения гидравлически связаны стабилизирующим каналом малого диаметра с наружной стороной гибкой мембраны гильзы, а центральный канал седла задающего сечения гидравлически связан обводным каналом с нижней торцевой частью золотника. 4 ил.

Изобретение относится к технике непрерывного весового дозирования сыпучих материалов и может быть использовано в производстве строительных материалов, пищевой, химической и других отраслях народного хозяйства. Предлагаемое устройство для измерения расхода сыпучих материалов содержит корпус с загрузочной воронкой, размещенный под ней на горизонтальном приводном валу барабан с радиальными лопастями на внешней поверхности и потокочувствительный элемент в виде пластины, установленной на пути вылетающего из ячеек материала, связанной с силоизмерительным устройством. Ячейки для размещения материала, сформированные между лопастями барабана, имеют чашеобразную форму, которая образована противолежащими поверхностями соседних лопастей, скругленными к дну ячейки по радиусу, соответствующему высоте лопасти, и соединенными между собой со стороны каждой из торцевых поверхностей барабана боковыми стенками, внутренняя поверхность которых, обращенная в объем ячейки, также выполнена скругленной к дну ячейки по радиусу, соответствующему высоте лопасти. Технический результат - повышение эффективности работы устройства, исключение налипания материала в ячейках барабана и повышение точности измерений за счет уменьшения разброса материала при ударении о чувствительную пластину. 6 з.п. ф-лы, 7 ил.

Группа изобретений относится к области измерительной техники и может быть использовано для измерения расхода и количества газообразных сред. Клапан с гистерезисной характеристикой для измерения расхода газовой среды содержит корпус с закрепленной в нем втулкой, имеющей две поверхности запирания, подвижный поршень, притягивающиеся постоянные магниты, один из которых закреплен во втулке, другой в тарелке поршня, дополнительно содержит катушку индуктивности, размещенную в зоне взаимодействия магнитов. Система измерения расхода газовой среды, содержащей линию подачи газа, клапан с гистерезисной характеристикой и измерительную камеру, имеющую фиксированный объем, дополнительно содержит критическое сопло. Технический результат - повышение точности измерения расхода. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к бытовым счетчикам для учета расхода холодной (горячей) воды индивидуальными потребителями в условиях изменения режимов и тарифов, а также автоматизированного согласованного с потребителем изменения режимов и тарифов, передачи информации о количестве потребленной воды и оплате за указанную услугу, а также предупреждения аварийных ситуаций. Счетчик потребления холодной (горячей) воды с адаптивной системой автоматического управления содержит корпус с крыльчаткой и магнитами, счетный механизм, датчик для дистанционной передачи показаний и пломбировочный элемент. Согласно изобретению счетчик имеет блок контроля за водопотреблением и датчик утечки воды на основе замыкания электрических контактов, расположенных в самом низком или другом месте помещения, где наибольшая вероятность стекания вытекающей в результате аварии воды, блок автоматического отключения подачи воды и электроэнергии, блок информационного обеспечения потребителя, поставщика воды, поставщика электроэнергии, службы МЧС, аварийный блок питания. Технический результат - повышение безопасности потребления воды в быту и на производстве, информационный обмен с поставщиком воды по вопросам оказания услуги и ее оплаты, отключение подачи воды в аварийном случае и в случае несвоевременной оплаты оказанной услуги потребителем. 1 ил.
Наверх