Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата и автономная система электропитания для его реализации

Заявляемая группа изобретений относится к электротехнике и может быть использована при создании и эксплуатации никель-водородных аккумуляторных батарей и автономных систем электропитания космических аппаратов (КА). Техническим результатом изобретения является повышение эффективности использования и надежности эксплуатации никель-водородной аккумуляторной батареи.

Предлагается способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата, заключающейся в проведении заряд-разрядных циклов с ограничением заряда по датчикам давления, установленным на управляющих аккумуляторах аккумуляторной батареи, хранении в заряженном состоянии, проведении периодических дозарядов для компенсации емкости саморазряда аккумуляторов при хранении, контроле токов саморазряда управляющих аккумуляторов и регулировании величины этих токов посредством изменения уставок датчиков давления. Кроме того, предлагается автономная система электропитания космического аппарата, содержащая первичный источник электроэнергии, аккумуляторные батареи, зарядные и разрядные преобразователи, устройства контроля аккумуляторных батарей и нагрузку.

Регулирование величины токов саморазряда управляющих аккумуляторов дополнительно проводят с помощью электронагревателей, установленных на управляющих аккумуляторах, кроме того, питание электронагревателей коммутируют управляемыми коммутаторами, при этом дополнительно контролируют текущие температуры управляющих аккумуляторов, а замыкание и размыкание управляющих коммутаторов проводят в зависимости от этих температур для достижения их равенства и повышения текущей величины, при необходимости. 2 н. и 2 з.п. ф-лы, 1 ил.

 

Заявляемая группа изобретений относится к электротехнической промышленности и может быть использована при создании и эксплуатации никель-водородных аккумуляторных батарей и автономных систем электропитания космических аппаратов (КА).

При эксплуатации никель-водородных аккумуляторных батарей в составе КА основная работа приходится на период теневых орбит. В остальное время на солнечных орбитах, за исключением моментов, когда мощности солнечной батареи недостаточно для обеспечения потребления нагрузки, аккумуляторная батарея работает в режиме хранения с периодическими дозарядами для компенсации саморазряда.

Основной причиной снижения емкостных характеристик никель-водородных аккумуляторных батарей является разбаланс аккумуляторов по емкости в процессе ее эксплуатации. Это обусловлено объективной разницей в величине токов саморазряда отдельных аккумуляторов. В процессе эксплуатации аккумуляторной батареи ее заряд ограничивают наиболее заряженные аккумуляторы, а разряд - наименее заряженные аккумуляторы. Следовательно, чем больше степень разбаланса аккумуляторов по емкости, тем ниже эффективная емкость аккумуляторной батареи.

Учитывая, что величина тока саморазряда увеличивается в зависимости от степени заряженности аккумулятора, важно правильно выбрать степень заряженности управляющих аккумуляторов для ограничения заряда (дозаряда) аккумуляторной батареи.

Известен способ эксплуатации никель-водородной аккумуляторной батареи (патент №2294580, RU), заключающийся в проведении заряд-разрядных циклов с ограничением заряда по аналоговым датчикам давления, установленным на отдельных аккумуляторах аккумуляторной батареи, хранении в заряженном состоянии и проведении периодических дозарядов для компенсации емкости саморазряда аккумуляторов при хранении, при этом аналоговые датчики давления устанавливают на аккумуляторах, находящихся в наиболее теплонапряженных условиях, а включение и отключение дозаряда проводят из условия обеспечения нахождения установившегося тока саморазряда аккумуляторов с аналоговыми датчиками давления равным определенной величине, принятый за прототип.

Известный способ, базируясь на скорости саморазряда управляющих аккумуляторов, позволяет достичь практически максимально возможной степени выравнивания аккумуляторов в аккумуляторной батарее по емкости и, следовательно, максимальной степени заряженности аккумуляторной батареи в целом.

Недостатком известного способа является то, что для достижения высокой степени выравнивания аккумуляторов в аккумуляторной батарее по емкости проводится заряд управляющих аккумуляторов до более высокого уровня, что повышает их среднюю рабочую температуру и отрицательно влияет на их ресурсные характеристики.

Кроме того, в процессе эксплуатации аккумуляторной батареи ее «температурное поле» может измениться (например, при отказе одного из аккумуляторов, что допускается), и управляющий аккумулятор может выйти из требования «находящихся в наиболее теплонапряженных условиях». Это приведет к снижению эффективности эксплуатации аккумуляторной батареи.

Наиболее близким по технической сущности предлагаемому способу является способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата (патант №2331954, RU), заключающийся в проведении заряд-разрядных циклов с ограничением заряда по датчикам давления, установленным на управляющих аккумуляторах аккумуляторной батареи, хранении в заряженном состоянии, проведении периодических дозарядов для компенсации емкости саморазряда аккумуляторов при хранении, контроле токов саморазряда управляющих аккумуляторов и регулировании величины этих токов посредством изменения уставок датчиков давления, отличающийся тем, что регулирование величины токов саморазряда управляющих аккумуляторов дополнительно проводят с помощью внешней разрядной цепи.

В процессе изготовления аккумуляторной батареи управляющие аккумуляторы проходят более тщательный отбор по своим характеристикам (включая токи саморазряда) на предмет их идентичности. Известный способ предполагает различие в температурных условиях управляющих аккумуляторов в процессе их эксплуатации (что объективно) и предлагает компенсировать влияние этого различия путем разряда аккумуляторов на дополнительную внешнюю цепь по определенному алгоритму.

Это позволяет более эффективно эксплуатировать аккумуляторную батарею. Однако, так как борьба с разбалансом управляющих аккумуляторов ведется уже после возникновения такового, эффективность его недостаточна, что является недостатком известного способа,

Известна автономная система электропитания космического аппарата, описанная в материалах патента RU №2334337, принятая за прототип. Известная автономная система электропитания КА содержит солнечную батарею, подключенную к нагрузке через преобразователь напряжения, аккумуляторные батареи, подключенные через зарядные преобразователи к солнечной батарее, а через разрядные преобразователи к входу выходного фильтра преобразователя напряжения. При этом нагрузка в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию. Параллельно аккумуляторным батареям подключены устройства контроля аккумуляторных батарей, связанные входом с аккумуляторными батареями для контроля напряжения, давления и температуры аккумуляторов, а выходом с нагрузкой.

Недостатком известной автономной системы электропитания является то, что она не предусматривает средств управления токами саморазряда управляющих аккумуляторов.

Задачей предлагаемого изобретения является повышение эффективности использования и надежности эксплуатации никель-водородной аккумуляторной батареи.

Поставленная задача решается тем, что при эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата, заключающейся в проведении заряд-разрядных циклов с ограничением заряда по датчикам давления, установленным на управляющих аккумуляторах аккумуляторной батареи, хранении в заряженном состоянии, проведении периодических дозарядов для компенсации емкости саморазряда аккумуляторов при хранении, контроле токов саморазряда управляющих аккумуляторов и регулировании величины этих токов посредством изменения уставок датчиков давления, регулирование величины токов саморазряда управляющих аккумуляторов дополнительно проводят с помощью электронагревателей, установленных на управляющих аккумуляторах, кроме того, питание электронагревателей коммутируют управляемыми коммутаторами, при этом дополнительно контролируют текущие температуры управляющих аккумуляторов, а замыкание и размыкание управляющих коммутаторов проводят в зависимости от этих температур для достижения их равенства и повышения текущей величины, при необходимости. Для реализации этого в автономной системе электропитания космического аппарата, содержащей первичный источник электроэнергии, аккумуляторные батареи, зарядные и разрядные преобразователи, устройства контроля аккумуляторных батарей и нагрузку, в аккумуляторные батареи дополнительно введены электронагреватели для управляющих аккумуляторов, в цепях питания которых установлены управляемые коммутаторы связанные с нагрузкой.

В процессе проведения заряд-разрядных циклов или периодических дозарядов аккумуляторной батареи токи саморазряда всех аккумуляторов приходят к единой величине (установившемуся значению). Это происходит автоматически - каждый аккумулятор выходит на уровень заряженности, при котором его ток саморазряда сравнивается с током саморазряда управляющего аккумулятора. Соответственно аккумулятор, имеющий объективно наибольший саморазряд, выйдет на установившийся наименьший уровень заряженности.

Абсолютно одинаковые аккумуляторы, но находящиеся в разных температурных условиях, также приводят к разбалансу по емкости, если в качестве управляющего аккумулятора будет выбран более холодный аккумулятор. Переход на управление зарядом от аккумулятора с повышением верхней уставки уменьшает риск разбаланса, но может стать причиной повышенного тепловыделения аккумулятора, что тоже нежелательно.

Отрицательный эффект разброса токов саморазряда компенсируется, если управляющие аккумуляторы находятся в одинаковых температурных условиях и в самых теплых секторах конструкции батареи, что гарантирует величину тока саморазряда этих аккумуляторов больше токов саморазряда остальных аккумуляторов и препятствует появлению разбаланса аккумуляторов при эксплуатации аккумуляторной батареи.

Создать реально одинаковые температурные условия для управляющих аккумуляторов возможно только с использованием дополнительных средств, в частности с использованием электронагревателей, подключенных к электропитанию через управляемые коммутаторы, связанные с нагрузкой КА (бортовой ЭВМ). При этом замыкание и размыкание управляющих коммутаторов проводят в зависимости от температуры конкретного управляющего аккумулятора для достижения равенства температуры всех управляющих аккумуляторов, а также повышения текущей величины температуры, при необходимости.

Суть предлагаемого способа поясняется чертежом, где на фиг.1 приведена функциональная схема автономной системы электропитания КА (с одной аккумуляторной батареей из n аккумуляторов соединенных последовательно, из которых k аккумуляторов - управляющие) для реализации заявляемого способа.

Автономная система электропитания КА содержит солнечную батарею 1, подключенную к нагрузке 2, через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 к входу выходного фильтра преобразователя напряжения 3. Аккумуляторная батарея 4 содержит в своем составе последовательно соединенные аккумуляторы 4-1/1-4-1/n, электронагреватели 4-2/1-4-2/k, каждый из которых подключен к шинам аккумуляторной батареи через управляемый коммутатор 4-3/1-4-3/k соответственно.

Нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию (на чертеже не показано).

Параллельно аккумуляторной батарее 4 подключено устройство контроля аккумуляторных батарей 7, связанное с аккумуляторной батареей 4 (для контроля напряжения и температуры аккумуляторов 4-1) и с нагрузкой 2.

В цепи заряда-разряда аккумуляторной батарей установлен измерительный шунт 8.

Зарядный преобразователь 5 состоит из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе 15, транзисторах 16 и выпрямителя на диодах 17.

Разрядный преобразователь 6 состоит из регулирующего ключа 11, управляемого схемой управления 12.

Преобразователь напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра - конденсатор 18 и выходного фильтра на диоде 19, дросселе 20 и конденсаторе 21.

Схемы управления: 10 - зарядного преобразователя 5, 12 - разрядного преобразователя 6, и 14 - преобразователя напряжения 3, выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 10 зарядного преобразователя 5 дополнительно связана с измерительным шунтом 8 и нагрузкой 2, в качестве обратных связей по величине зарядного тока и напряжения нагрузки соответственно.

Устройство работает следующим образом. В процессе эксплуатации аккумуляторная батарея 4 работает в основном в режиме хранения и периодических подзарядов от солнечной батареи 1 через зарядный преобразователь 5. Такой режим работы позволяет содержать ее в постоянной готовности для прохождения теневых участков орбиты или на случай потери ориентации солнечной батареи ИСЗ на Солнце.

Питание нагрузки 2 осуществляется при этом от солнечной батареи 1 через преобразователь напряжения 3.

При прохождении теневых участков орбиты либо при нарушении ориентации нагрузка 2 питается от аккумуляторной батареи 4 через разрядный преобразователь 6.

Устройство контроля аккумуляторов 7 контролирует напряжение и температуру аккумуляторов и передает информацию об их состоянии в нагрузку 2 (бортовую ЭВМ), в которой реализуются следующие технологические операции.

В бортовой ЭВМ обрабатываются данные по текущему значению температуры управляющих аккумуляторов 4-1 аккумуляторной батареи 4. Выбирают управляющий аккумулятор с наибольшей температурой, а на остальных управляющих аккумуляторах включают электронагреватели 4-2 (4-2/1-4-2/k) через управляемые коммутаторы 4-3 (4-3/1-4-3/k). При достижении температуры каждого из этих управляющих аккумуляторов величины выбранного управляющего аккумулятора соответствующий нагреватель выключают. Процесс контролируется и управляется по программе бортовой ЭВМ. При необходимости температура «выбранного» управляющего аккумулятора может быть так же повышена до нужного уровня.

По результатам анализа телеметрических данных, при необходимости, по командам с Земли через командно-измерительную радиолинию алгоритмы управления электронагревателями могут корректироваться.

Таким образом, предлагаемый способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания КА и автономная система электропитания для его реализации позволяют обеспечить температуру управляющих аккумуляторов на одном (комфортном) уровне, что повышает эффективность использования и надежность эксплуатации никель-водородной аккумуляторной батареи.

1. Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата, заключающийся в проведении заряд-разрядных циклов с ограничением заряда по датчикам давления, установленным на управляющих аккумуляторах аккумуляторной батареи, хранении в заряженном состоянии, проведении периодических дозарядов для компенсации емкости саморазряда аккумуляторов при хранении, контроле токов саморазряда управляющих аккумуляторов и регулировании величины этих токов посредством изменения уставок датчиков давления, отличающийся тем, что регулирование величины токов саморазряда управляющих аккумуляторов дополнительно проводят с помощью электронагревателей установленных на управляющих аккумуляторах.

2. Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата по п.1, отличающийся тем, что питание электронагревателей коммутируют управляемыми коммутаторами.

3. Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата по п.1 или 2, отличающийся тем, что дополнительно контролируют текущие температуры управляющих аккумуляторов, а замыкание и размыкание управляющих коммутаторов проводят в зависимости от этих температур для достижения их равенства и повышения текущей величины, при необходимости.

4. Автономная система электропитания космического аппарата для реализации способа по п.1, содержащая первичный источник электроэнергии, аккумуляторные батареи, зарядные и разрядные преобразователи, устройства контроля аккумуляторных батарей и нагрузку, отличающаяся тем, что в аккумуляторные батареи дополнительно введены электронагреватели для управляющих аккумуляторов, в цепях питания которых установлены управляемые коммутаторы, связанные с нагрузкой.



 

Похожие патенты:
Изобретение относится к электротехнике, в частности к устройствам, преобразующим химическую энергию в электрическую, и может найти применение при восстановлении никель-кадмиевых аккумуляторов, входящих в батареи, предназначенные для питания радиостанций, радиотелефонов и т.п.

Заявленное изобретение относится к области электротехники, а именно, к способу получения материала для положительного электрода литий-ионного аккумулятора и к самому аккумулятору.

Заявленное изобретение относится к области электротехники, а именно к биполярному электроду биполярной аккумуляторной батареи и к способу ее изготовления. Биполярный электрод состоит из первого слоя активного материала, который представляет собой, например, слой активного материала положительного электрода, сформированный из первого активного материала на одной стороне токоотвода, и второго слоя активного материала, который представляет собой слой активного материала отрицательного электрода, сформированный из второго активного материала с меньшей прочностью на сжатие, чем у первого активного материала, на другой стороне токоотвода.

Изобретение относится к кожухам аккумуляторов. Технический результат заключается в поддержании низкой температуры элемента путем уменьшения приема тепла во время неиспользования (без генерирования электроэнергии), обеспечении рассеяния тепла во время использования (при генерировании энергии) и сдерживании уменьшения емкости элемента из-за тепловой деградации.

Изобретение относится к устройствам для накапливания электрической энергии и последующего использования ее и преобразования в автономном режиме для функционирования различных аппаратов и может быть использовано, например, в двигателях транспортных средств, эксплуатирующихся в северных районах с низкой зимней температурой.

Изобретение относится к области электротехники. Предложен литиевый аккумулятор, включающий, по крайней мере, два объемных электрода, разделенных сепаратором и помещенных вместе с электролитом, содержащим безводный раствор литиевой соли в органическом полярном растворителе, в корпус аккумулятора, каждый электрод имеет минимальную толщину 0,5 мм, и хотя бы один из этих электродов содержит гомогенный спрессованный раствор электропроводного компонента и активного материала, способного поглощать и выделять литий в присутствии электролита, при этом пористость спрессованных электродов составляет от 25% до 90%, активный материал имеет структуру полых сфер с максимальной толщиной стенки 10 микрометров или структуру агрегатов или агломератов с максимальным размером 30 микрометров, при этом сепаратор содержит высокопористый электроизоляционный керамический материал с открытыми порами и пористостью от 30% до 95%.

Изобретение относится к аккумулированию электрической энергии, полученной в результате преобразования механической энергии ветра, солнечных батарей, геотермальной энергии тепловых источников и др.

Предложена система батарей, обеспечивающая электроснабжение электрических транспортных средств, преимущественно рельсовых, которая сконфигурирована путем последовательного соединения множества батарейных модулей, где каждый из множества батарейных модулей сконфигурирован путем укладки в стопу множества отдельных батарей.

Изобретение относится к электротехнической промышленности и может быть использовано при производстве материала положительного электрода источников тока на основе лития, для питания электронных устройств различной мощности, в частности портативных приборов, транспортных средств и т.д.

Изобретение относится к охлаждающей конструкции для устройства накопления электроэнергии. Конструкция содержит воздухозаборник, канал охлаждающего воздуха, крышку.

Предложенное изобретение относится к аккумуляторной батарее, в которой пакетированный электродный узел (20) с катодом, анодом и сепаратором (22) заключен вместе с раствором электролита между наружными элементами (30). Известна технология соединения внешнего периферийного участка сепаратора вместе с герметизированными участками наружных элементов в аккумуляторной батарее для того, чтобы предотвратить смещение пакетированного электродного узла. Однако проблема при этой технологии состоит в том, что не приняты меры с тем, чтобы пополнять пакетированный электродный узел раствором электролита и предотвращать разрыв в месте соединения на внешнем периферийном участке сепаратора с целью поддержания рабочих характеристик батареи. Настоящее изобретение решает такие проблемы посредством снабжения аккумуляторной батареи множеством мест соединения, в которых внешний периферийный участок сепаратора соединен с наружными элементами, и удерживающей частью, сформированной, по меньшей мере, между местами соединения для того, чтобы удерживать в ней раствор электролита, при этом сумма периметров мест соединения является большей, чем периметр прямоугольника минимальной площади, заключающего в себе все места соединения. 2 н. и 1 з.п. ф-лы, 12 ил., 2 прим.

Изобретение относится к композиции смолы, используемой в качестве герметика, применению такой композиции, герметику для батареи с органическим электролитом, батарее с органическим электролитом и функциональному химическому продукту, содержащему вышеуказанную композицию смолы. Композиция смолы содержит: (A) эпоксидную смолу, содержащую по меньшей мере (E1) эпоксидную смолу, имеющую ароматическое кольцо и алициклическую структуру, и (Е2) эпоксидную смолу, модифицированную каучукоподобным полимером со структурой ядро/оболочка, а также (B) латентный отверждающий агент. Технический результат - получение композиции смолы для использования в качестве герметика, обладающей превосходной адгезионной способностью по отношению к металлу и имеющей высокую устойчивость к органическому растворителю. 6 н. и 16 з.п. ф-лы, 4 табл., 3 ил., 30 пр.

Изобретение относится к электролиту для фотоэлектрических устройств, содержащему полимерную сетку, которая содержит соединение, представленное формулой 2 или продукт его поперечной сшивки, и которая сшита с помощью соединения, представленного формулой 1,где R представляет собой атом водорода или алкильную группу, содержащую от 1 до 4 атомов углерода, А представляет собой алкиленовую группу, содержащую от 1 до 8 атомов углерода, или алкилиденовую группу, содержащую от 1 до 8 атомов углерода, R1 представляет собой водород или алкильную группу, содержащую от 1 до 4 атомов углерода, n представляет собой число от 1 до 17, и m представляет собой число от 2 до 19. Кроме того, предложен предшественник для изготовления электролита и фотоэлектрическое устройство, например сенсибилизированный красителем солнечный элемент, который включает электролит. 3 н. и 20 з.п. ф-лы, 2 ил., 11 пр.

Изобретение относится к двум вариантам литий-ионной перезаряжаемой батареи, в которой в одном из вариантов электролит содержит по меньшей мере 1 мас.% циклического карбоната, содержащего винильную группу, и от 3 до 70 мас.% фторированного циклического карбоната от общей массы раствора электролита. Также изобретение относится к способу зарядки батареи. Предложенная добавка значительно улучшает производительность элементов питания. 3 н. и 53 з.п. ф-лы, 14 пр., 1 табл., 27 ил.

Изобретение относится к электротехнической промышленности и может быть использовано при создании никель-водородных аккумуляторных батарей и автономных систем электропитания космических аппаратов (КА). Техническим результатом заявляемого изобретения является повышение надежности эксплуатации никель-водородной аккумуляторной батареи в составе КА. Поставленная задача решается тем, что предлагается способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата заключающийся в проведении ее зарядов, хранении в заряженном состоянии с периодическими подзарядами, проведении разрядов и термостатировании цилиндрических поверхностей аккумуляторов посредством термоплаты, находящейся с ними в тепловом сопряжении, термостатировании поверхностей аккумуляторов, не находящиеся в тепловом сопряжении с термоплатой, для повышения их текущей температуры и автономная система электропитания космического аппарата для реализации способа, содержащая солнечную батарею, подключенную к нагрузке через преобразователь напряжения, аккумуляторные батареи, зарядные и разрядные преобразователи, устройства контроля аккумуляторных батарей и нагрузку. полусфер аккумуляторов электронагревателями исходя из их текущих зарядных и разрядных напряжений, при этом термостатирование поверхностей аккумуляторов, не находящихся в тепловом сопряжении с термоплатой проводят для аккумуляторов имеющих повышенное зарядное напряжение или пониженное разрядное напряжение, а в автономную систему электропитания космического аппарата дополнительно введен стабилизатор тока, входом подключенный к входным или выходным шинам автономной системы электропитания, а выходом - к электронагревателям, соединенным в последовательную цепь, причем каждый электронагреватель в исходном состоянии шунтируют управляемыми коммутаторами, связанными с устройствами контроля аккумуляторных батарей. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к активирующему устройству с блоком автоматического выключателя для сдвоенной батарейной системы, которая содержит систему батарей питания, соединенную с электрической системой, содержащей стартерный двигатель и схему замка зажигания для транспортного средства, и систему стартерных батарей, выполненную с возможностью параллельного соединения с системой батарей питания посредством блока автоматического выключателя, который выполнен с возможностью переключения между разомкнутым состоянием и замкнутым состоянием, при этом в последнем состоянии система стартерных батарей способна питать электрическую систему энергией. Активирующее устройство содержит блок управления, сигнальный блок, выполненный с возможностью генерирования сигнала yi напряжения и передачи сигнала у напряжения в схему замка зажигания, блок контроля, выполненный с возможностью контроля сигнала у напряжения от соединения замка зажигания и с возможностью генерирования сигнала контроля на основании контролируемого сигнала у напряжения, и блок процессора, выполненный с возможностью сравнения сигнала контроля по меньшей мере с одним заранее определенным критерием детектирования и с возможностью генерирования на основе этого сравнения сигнала управления, который передается в блок управления. Изобретение также содержит способ активации блока автоматического выключателя в сдвоенной батарейной системе. Повышение надежности активирования устройства является техническим результатом изобретения 3 н. и 11 з.п.ф-лы, 5 ил., 3 табл.

Изобретение относится к композиции неводного электролита, включающей: фоновый электролит; органический растворитель; и химическое соединение (а1), представленное общей формулой (1): причем в формуле (1) О представляет собой кислород, Y и Z независимо друг от друга представляют собой один вид элемента, выбранного из группы 14 расширенного варианта Периодической таблицы, т.е. один вид элемента, выбранного из группы, состоящей из углерода (С), кремния (Si), германия (Ge) и олова (Sn), R1 и R2 независимо друг от друга представляют собой по меньшей мере один вид группы, выбранной из группы, состоящей из одновалентных алифатических углеводородных групп, одновалентных алициклических углеводородных групп и одновалентных ароматических углеводородных групп, и по меньшей мере какой-то один представляет собой группу с по меньшей мере одним видом галогена, выбранного из группы, состоящей из фтора (F), хлора (Сl), брома (Br) и йода (I), в качестве составляющего элемента. При этом содержание соединения (а1) составляет не менее чем 0,01 массовой части и не более чем 10 массовых частей по отношению к 100 массовым частям суммарного содержания фонового электролита и органического растворителя. Также изобретение относится к аккумуляторной батарее с неводным электролитом. Предлагаемая композиция обладает превосходной высокотемпературной устойчивостью. 2 н. и 4 з.п. ф-лы, 14 пр., 1 табл.

Изобретение относится к литий-ионным аккумуляторным батареям. Технический результат - увеличение циклов заряд/разряд без усложнения конструкции батареи. Литий-ионная аккумуляторная батарея включает в себя: наружный покровный материал, который заполнен электролитом; токоотвод, который заключен в наружном покровном материале, сформирован с электродным слоем, содержащим активный материал, и электрически соединен с этим электродным слоем; изоляционный слой, который предусмотрен на токоотводе; и элемент с низким потенциалом, который предусмотрен на изоляционном слое, имеет меньший окислительно-восстановительный потенциал, чем активный материал электродного слоя, и обладает восстановительной способностью по отношению к активному материалу.5 н.и 9 з.п. ф-лы, 8 ил.

Изобретение относится к аккумуляторному блоку, сформированному из нескольких аккумуляторных оболочек, уложенных одна поверх другой. Техническим результатом является повышение эффективности обогрева аккумуляторного модуля. Результат достигается тем, что в установленном в транспортном средстве аккумуляторе тонкие обогревательные модули размещаются таким образом, что они обращены к боковой поверхности, включающей в себя сторону вдоль направления укладки аккумуляторных оболочек (12), для аккумуляторного модуля (13), включающего в себя несколько аккумуляторных оболочек (12), уложенных одна поверх другой и имеющих форму прямоугольного параллелепипеда, имеющего три стороны. 4 з.п. ф-лы, 5 ил.

Данное изобретение относится к энергетической системе, использующей двигатель-генератор или общую сеть с источником переменного тока. Технический результат заключается в повышении энергосбережения системы. Энергетическая система, в частности, имеет характеристики, в соответствии с которыми ее максимальный выходной ток ограничен электромагнитными эффектами, и/или выходной постоянный ток или почти постоянный ток установлен ниже максимального выходного тока, для питания нагрузки и зарядки аккумуляторной батареи, или совместного питания нагрузки вместе с аккумуляторной батареей; когда установленный двигатель-генератор используется в качестве источника питания, в процессе своей работы, двигатель работает с лучшим значением удельного расхода топлива при торможении, и/или диапазоном частоты вращения и вращающим моментом для лучшего энергосбережения. 9 з.п. ф-лы, 7 ил.
Наверх