Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей



Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей
H01L51/42 - Приборы на твердом теле, предназначенные для выпрямления, усиления, генерирования или переключения или конденсаторы или резисторы по меньшей мере с одним потенциальным барьером или поверхностным барьером; с использованием органических материалов в качестве активной части или с использованием комбинации органических материалов с другими материалами в качестве активной части; способы или устройства специально предназначенные для производства или обработки таких приборов или их частей (способы или устройства для обработки неорганических полупроводниковых тел, включающей в себя образование или обработку органических слоев на них H01L 21/00,H01L 21/312,H01L 21/47)

Владельцы патента RU 2528416:

Федеральное государственное бюджетное учреждение науки Институт проблем химической физики РАН (ИПХФ РАН) (RU)

Изобретение относится к области органической электроники, а именно к органическим фотовольтаическим устройствам (солнечным батареям и фотодетекторам), изготовленным с использованием органических фторсодержащих соединений в качестве модифицирующих добавок. Изобретение относится к органическому фотовольтаическому устройству с объемным гетеропереходом, содержащему последовательно расположенные подложку, дырочно-собирающий электрод, дырочно-транспортный слой, фотоактивный слой, состоящий из смеси полупроводникового материала n-типа, полупроводникового материала p-типа и органического фторсодержащего соединения, электрон-транспортный слой, электрон-собирающий электрод, подложку. При этом фотоактивный слой дополнительно содержит фторсодержащий модификатор F1-F8 в концентрации от 0.000000001% до 40% по весу. Также изобретение относится к способу изготовления фотовольтаического устройства, который заключается в том, что фторсодержащий модификатор вводят в раствор полупроводниковых компонентов, из которого отливают затем фотоактивные пленки. Также изобретение относится к применению фторсодержащих модификаторов F1-F8 для улучшения характеристик органических солнечных батарей с объемным гетеропереходом. Технический результат заключается в разработке новых добавок-модификаторов наноструктуры полимер-фуллереновых систем, способных улучшать характеристики фотовольтаических устройств. 3 н.п. ф-лы, 14 ил., 8 табл., 8 пр.

 

Изобретение относится к области органической электроники, а именно к органическим фотовольтаическим устройствам (солнечным батареям и фотодетекторам), изготовленным с использованием органических фторсодержащих соединений в качестве модифицирующих добавок, введение которых в композиты полупроводниковых материалов p- и n-типа улучшают их фотовольтаические свойства.

В настоящее время исследования в области органической фотовольтаики сосредоточены на устройствах с объемным гетеропереходом, в которых генерация и транспорт зарядов осуществляется во всем объеме активного слоя. Наиболее перспективными фотоактивными материалами для такого типа устройств являются сопряженные полимеры (материалы p-типа, например Р3НТ) [1 - П.А. Трошин, Р.Н. Любовская, В.Ф. Разумов, Органические солнечные батареи: структура, материалы, критические параметры и перспективы развития. Российские Нанотехнологии. 2008, 3, 6-27] и соединения фуллеренов (материалы n-типа, например [60] РСВМ) [2 - Р.A. Troshin, Н. Норре, J. Renz, M. Egginger, J. Yu. Mayorova, A.E. Goryachev, A.S. Peregudov, R.N. Lyubovskaya, G. Gobsch, N.S. Sariciftci, V.F. Razumov, Material solubility photovoltaic performance relationship in design of novel fullerene derivatives for bulk heterojunction solar cells. Adv. Funct. Mater. 2009, 19, 779-788].

На сегодняшний день максимальная эффективность преобразования энергии солнечного света, достигнутая в батареях данной конфигурации, составляет около 7-8% [3 - F.G. Brunetti, R. Kumar, F. Wudl, Organic electronics from perylene to organic photovoltaics: painting a brief history with a broad brush. J. Mater. Chem., 2010, 20, 2934, 4 - R.F. Service, Outlook Brightens for Plastic Solar Cells. Science, 2011, 332, 293].

Одним из путей увеличения кпд преобразования света органических солнечных батарей с объемным гетеропереходом стало использование фторсодержащих соединений. Было показано, что устройства на основе сопряженного полимера с фторсодержащими концевыми группами F-P3HT и производного фуллерена [60]РСВМ обладают эффективностью 4,5%, что соответствует теоретическому максимуму для системы Р3НТ/[60]РСВМ. [5 - J.S. Kim, Y. Lee, J.H. Lee, J.H. Park, J.K. Kim, K. Cho, High-efficiency organic solar cells based on end-functional-group-modified poly(3-hexylthiophene). Adv. Mater., 2009, 21, 1-6].

Добавление небольшого количества фторированного производного фуллерена F-[60]РСВМ к системе Р3НТ/[60]РСВМ также приводит к значительному улучшению фотовольтаических характеристик устройств, в частности, фактора заполнения [6 - Q. Wei, Т. Nishizawa, K. Tajima, K. Hashimoto, Self-organized buffer layers in organic solar cells. Adv. Mater. 2008, 20, 2211-2216].

Важным открытием стало обнаружение влияния различных модифицирующих химических добавок на морфологию фотоактивного слоя, и, следовательно, на характеристики фотовольтаических устройств на основе полимер-фуллереновой смеси. Так, например, в качестве добавок, улучшающих эффективности преобразования света устройств с объемным гетеропереходом, используют высококипящие растворители [7 - A.J. Moulé, K. Meerholz, Controlling morphology in polymer-fullerene mixtures. Adv. Mater. 2008, 20, P.240-245. 8 - С.V. Hoven, X.-D. Dang, R.C. Coffin, J. Peet, T.-Q. Nguyen, G.C. Bazan, Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives. Adv. Mater. 2010, 22, P. E63-E66].

Помимо классических растворителей в качестве добавок-модификаторов наноструктуры полимер-фуллереновой системы использовали и другие группы химических соединений. Например, в качестве добавок применяли серию различных 1,8-дизамещенных октанов [9 - J.K. Lee, W.L. Ма, С.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim, K. Lee, G.C. Bazan, A.J. Heeger, Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. J. Am. Chem. Soc., 2008, 130, 3619-3623; 10 - G.С. Bazan, Processing additives for fabricating organic photovoltaic cells, патент США US 2009/0108255 A1 от 30.04.2009].

В последние годы идет непрекращающийся поиск новых добавок-модификаторов наноструктуры полимер-фуллереновых систем, способных улучшать характеристики фотовольтаических устройств. Нужно отметить, что все использованные ранее добавки модифицировали морфологию фотоактивного слоя при формировании пленки, но не вводились в состав фотоактивного композита. В заявляемом изобретении защищаются органические фотовольтаические устройства (органические солнечные батареи и фотодетекторы) с объемным гетеропереходом, отличающиеся тем, что их фотоактивный слой (3) состоит из трех компонентов: полупроводниковых материалов n-типа и p-типа, а также фторсодержащего модификатора.

Защищаемую конструкцию фотовольтаического устройства можно схематически представить как:

где слой 1 обозначает:

- дырочно-собирающий электрод на основе электропроводящего материала, представляющего собой электропроводящие металл, сплав, полимер или оксиды металлов. К электропроводящим металлам относятся золото, серебро, алюминий, медь, олово, платина, хром, цинк, титан, никель, палладий, редкоземельные металлы, щелочно-земельные металлы и др. Сплавы вышеперечисленных металлов также являются электропроводящими. Типичными электропроводящими полимерными материалами являются политиофены (например, PEDOT - полиэтилендиокситиофен), полианилины и полипирролы. В качестве электропроводящих оксидов металлов выступают оксиды индия-олова (ITO), допированный фтором оксид олова (FTO), оксид цинка. Возможно использование комбинации из нескольких различных электропроводящих материалов;

где слой 2 обозначает:

- слой дырочного проводника, представляющего собой материал, обладающий хорошими дырочно-транспортными и электрон-блокирующими свойствами для обеспечения эффективного и селективного транспорта положительных зарядов (дырок) к дырочно-собирающему электроду. К таким материалам относятся политиофены (например, PEDOT - полиэтилендиокситиофен), полианилины, поликарбазолы, поливинилкарбазолы, полифенилены, полифениленвинилены, полисиланы, политиенилвинилены и их сополимеры в недопированной или допированной формах. Примером дырочного проводника на основе допированного полимера является PEDOT:PSS, где PSS обозначает допант, представляющий собой полистиролсульфоновую кислоту;

где слой 3 обозначает:

- фотоактивный слой, состоящий из смеси полупроводникового материала n-типа (электрон-акцепторного материала), полупроводникового материала p-типа (электрон-донорного материала) и органического фторсодержащего соединения (добавки-модификатора).

a) В качестве электрон-акцепторного компонента могут быть использованы производные фуллеренов (C60, C70, C›70 и их смеси), модифицированные углеродные нанотрубки, неорганические наночастицы, оксадиазолы, полимеры, содержащие в своей структуре электрон-акцепторные звенья и комбинации вышеперечисленных материалов.

b) Электрон-донорными компонентами являются такие полимерные материалы, как политиофены, полианилины, поликарбазолы, поливинилкарбазолы, полифенилены, полифенилвинилены, полисиланы, политиениленвинилены, полиизотионафталины, полициклопентадитиофены, полисилоциклопентадитиофены, полициклопентадитиазолы, политиазолотиазолы, политиазолы, полибензотиадиазолы, политиадиазолохиноксалины, полибензоизотиазолы, полибензотиазолы, политиенотиофены, полидитиенотиофены, полифлуорены, политетрагидроизоиндолы и их сополимеры. Также к электрон-донорным компонентам относятся низкомолекулярные донорные материалы, например, фталоцианины цинка и меди, олигомеры тиофена, органические красители и другие органические соединения, характеризующиеся способностью образовывать стабильные положительно заряженные частицы при химическом, фото- и электрохимическом окислении. Также в качестве электрон-донорных материалов могут быть использованы неорганические наночастицы, такие как PbS, PbSe, PdTe и коллоидные нанокристаллы, способные отдавать электрон соответствующему акцепторному материалу при облучении светом.

c) В качестве третьего компонента в смеси материалов n-типа и p-типа могут быть использованы различные органические низкомолекулярные и высокомолекулярные соединения, содержащие в своей структуре два и более атомов фтора. Возможно использование комбинаций из нескольких органических фторсодержащих соединений;

где слой 4 обозначает:

- электрон-транспортный (дырочно-блокирующий) слой, представленный такими материалами, как LiF, оксиды металлов (например, оксид цинка, оксид титана), сульфиды металлов (CdS, ZnS, Sb2S3 и др.), трисоксихинолятом алюминия, хинолятами щелочных и щелочноземельных металлов и др.;

где слой 5 обозначает:

- электрон-собирающий электрод, образуемый, главным образом, из одного или более электропроводящих материалов, описанных выше для слоя 1;

где слои 0 и 6 обозначают:

- Слои 0 и 6 являются технологическими, т.к. они не влияют непосредственно на работу устройства, а лишь обеспечивают ему необходимые механические свойства и стабильность. Слой 0 и/или слой 6, например, может быть подложкой, на которой располагается дырочно-собирающий или электрон-собирающий электрод. Подложка, как правило, должна быть прозрачна. Она может быть гибкой (на основе полимерных материалов, например, полиэтилентерефталата, полиимидов, полиэтиленнафталатов и др.), полужесткой или жесткой (например, стекло). Также подложки могут одновременно располагаться по обе стороны устройства, контактируя с соответствующими электродами и образуя сэндвичевую структуру.

Помимо подложки фотовольтаическое устройство должно содержать защитные (барьерные) слои, препятствующие воздействию влаги и кислорода воздуха на остальные слои.

Наиболее близкими прототипами защищаемых трехкомпонентных органических фотовольтаических устройств с объемным гетеропереходом являются полимер-фуллереновые органические солнечные батареи с буферным слоем перфтордекалина, гексафторбензола, перфтортолуола или 1,1,1,3,3,3-гексафтор-2-пропанола [10 - S. Yamamoto, D. Kitazawa, J. Tsukamoto, Photovoltaic device, active layer material, and manufacturing method for photovoltaic device, заявка на международный патент WO 2009113450 A1 от 17.09.2009]. Отличительной особенностью этих устройств является локализация фторсодержащих соединений в виде отдельного слоя на границе между фотоактивным слоем и анодом (электродом, собирающим положительные носители зарядов - дырки).

Принципиальное отличие защищаемых трехкомпонентных органических фотовольтаических устройств заключается в том, что в таких системах фторсодержащее соединение распределяется во всем объеме фотоактивного слоя или, в отдельных случаях, аккумулируется на границе раздела с катодом (электрон-собирающим электродом). Введение фторсодержащего модификатора в активный слой фотовольтаических устройств повышает фактор заполнения FF и эффективность преобразования солнечного света (кпд) Лучший из модификаторов позволил увеличить эффективность фотовольтаических устройств на 32% относительно характеристик реперных устройств.

Наличие фторсодержащего модификатора в фотоактивном слое устройств на основе трехкомпонентных систем подтверждает масс-спектрометрический анализ пленок фотоактивной смеси. В качестве примера были изучены трехкомпонентные системы Р3НТ/[60]РСВМ/фторсодержащее соединение (Фиг.2 и Фиг.3). Для этого растворы реперной системы Р3НТ/[60]РСВМ и трехкомпонентной системы Р3НТ/[60]РСВМ/фторсодержащее соединение, например F-8, в хлорбензоле, были высушены в открытых чашках Петри. Готовые пленки композита Р3НТ/[60]РСВМ без и с фторсодержащей добавкой F-8 прогревали в течение 3 минут при температуре 155°С в атмосфере инертного газа (аргоновый бокс) и выдерживали в вакуумной камере (10-6 мБар) в течение 1 часа для того, чтобы максимально приблизить условия изготовления образцов для масс-спектрометрического анализа к условиям изготовления пленок фотоактивной слоя устройств. В масс-спектре композита Р3НТ/[60]РСВМ с добавлением фторсодержащего модификатора F-8 (Фиг.4c и 4d) были обнаружены новые пики при 70, 80, 81 и 142 m/z, характерные для молекулярных ионов CF3H, CF2CH2O, CF2CH2OH и CCF2CF2COH, соответственно, отсутствующие в масс-спектре реперной системы (Фиг.4a и 4b). Таким образом, было показано, что фторсодержащее соединение присутствует в фотоактивном слое трехкомпонентной системы.

В данном изобретении защищается также способ изготовления фотовольтаических устройств с фторсодержащими модификаторами, общая схема которых представлена на Фиг.1. В качестве подложки используются прозрачные гибкие, полужесткие или жесткие пластины, на которые наносится слой дырочно-собирающего электрода. Далее на электроды наносится слой дырочно-транспортного (электрон-блокирующего материала). Готовый раствор для приготовления фотоактивного слоя, представляющий собой смесь полупроводникового материала n-типа (электрон-акцепторного материала), полупроводникового материала p-типа (электрон-донорного материала) и органического фторсодержащего соединения, предварительно фильтруется и наносится на дырочно-транспортный слой. Материал, обладающий электрон-транспортными (дырочно-блокирующими) свойствами используется в качестве 4 слоя фотовольтаических устройств (Фиг.1). На слой электрон-транспортного материала наносится электрон-собирающий электрод, образуемый, главным образом, из одного или более электропроводящих материалов. Для защиты фотовольтаического устройства от воздействия влаги и кислорода воздуха используется барьерный слой.

Даннное изобретение иллюстрируется, но никак не ограничивается следующими примерами.

Пример 1.

На основе трехкомпонентной системы Р3НТ/[60]РСВМ/фторсодержащее соединение F-1 (Фиг.2 и Фиг.3), а также реперной двухкомпонентной системы Р3НТ/[60]РСВМ были изготовлены органические солнечные батареи с объемным гетеропереходом, имеющие конструкцию, представленную на Фиг.1. В качестве подложек использовали специальные стеклянные пластины размером 2.5×2.5 см, одна сторона которых покрыта электропроводящим слоем оксида индия-олова (ITO). Нанесение слоя PEDOT-PSS (Baytron РН) осуществляли с помощью спинкоутера при скоростях вращения подложки 3000 об/мин. После нанесения пленки PEDOT-PSS прогревались при 150°C в течение 15 минут.

Раствор композита Р3НТ/[60]РСВМ в хлорбензоле с соотношением 1.8:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору добавили фторсодержащий модификатор F-1 в количестве 2,5 мг на 1 мл раствора композита Р3НТ/[60]РСВМ. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 900 об/мин. После нанесения пленки композита Р3НТ/[60]РСВМ без и с фторсодержащей добавкой F-1 прогревали в течение 3 минут при температуре 155°C в атмосфере инертного газа (аргоновый бокс). Напыление катода Ca (~20 нм)-Ag (100 нм) проводили в вакуумной камере (10-6 мБар), встроенной внутри аргонового бокса. Измерение вольтамперных характеристик батарей проводили в стандартизованных условиях. В качестве источника света использовался солнечный симулятор KHS Steuernagel Lichttechnik со спектром AM1.5 (100 мВт/см2). Для записи вольтамперных кривых (Фиг.5) использовали источник-измеритель Kethley 2400.

Использование фторсодержащей добавки F-1 привело к значительному увеличению фактора заполнения FF устройств от 53% до 65%. Эффективность преобразования солнечного света возросла на 32% и составила 4,5%, что близко к теоретическому максимуму для солнечных батарей на основе системы Р3НТ/[60]РСВМ (Табл.1).

Пример 2.

На основе трехкомпонентной системы Р3НТ/[60]РСВМ/фторсодержащее соединение F-2 (Фиг.2 и Фиг.3), а также реперной двухкомпонентной системы Р3НТ/[60]РСВМ были изготовлены органические солнечные батареи с объемным гетеропереходом, имеющие конструкцию, представленную на Фиг.1. В качестве подложек использовали специальные стеклянные пластины размером 2.5×2.5 см, одна сторона которых покрыта электропроводящим слоем оксида индия-олова (ITO). Нанесение слоя PEDOT-PSS (Baytron РН) осуществляли с помощью спинкоутера при скоростях вращения подложки 3000 об/мин. После нанесения пленки PEDOT-PSS прогревались при 150°C в течение 15 минут.

Раствор композита Р3НТ/[60]РСВМ в хлорбензоле с соотношением 1.8:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору добавили фторсодержащий модификатор F-2 в количестве 2,5 мг на 1 мл раствора композита Р3НТ/[60]РСВМ. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 900 об/мин. После нанесения пленки композита Р3НТ/[60]РСВМ без и с фторсодержащей добавкой F-2 прогревали в течение 3 минут при температуре 155°C в атмосфере инертного газа (аргоновый бокс). Напыление катода Ca (~20 нм)-Ag (100 нм) проводили в вакуумной камере (10-6 мБар), встроенной внутри аргонового бокса. Измерение вольтамперных характеристик батарей проводили в стандартизованных условиях. В качестве источника света использовался солнечный симулятор KHS Steuernagel Lichttechnik со спектром AM1.5 (100 мВт/см2). Для записи вольтамперных кривых (Фиг.6) использовали источник-измеритель Kethley 2400.

Устройство с фторсодержащим модификатором F-2 показало лучшие характеристики по сравнению с реперным устройством (Табл.2).

Пример 3.

На основе трехкомпонентной системы Р3НТ/[60]РСВМ/фторсодержащее соединение F-3 (Фиг.2 и Фиг.3), а также реперной двухкомпонентной системы Р3НТ/[60]РСВМ были изготовлены органические солнечные батареи с объемным гетеропереходом, имеющие конструкцию, представленную на Фиг.1. В качестве подложек использовали специальные стеклянные пластины размером 2.5×2.5 см, одна сторона которых покрыта электропроводящим слоем оксида индия-олова (ITO). Нанесение слоя PEDOT-PSS (Baytron РН) осуществляли с помощью спинкоутера при скоростях вращения подложки 3000 об/мин. После нанесения пленки PEDOT-PSS прогревались при 150°C в течение 15 минут.

Раствор композита Р3НТ/[60]РСВМ в хлорбензоле с соотношением 1.8:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору композита Р3НТ/[60]РСВМ добавили фторсодержащий модификатор F-3 в количестве 5 объемных процентов. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 900 об/мин. После нанесения пленки композита Р3НТ/[60]РСВМ без и с фторсодержащей добавкой F-3 прогревали в течение 3 минут при температуре 155°C в атмосфере инертного газа (аргоновый бокс). Напыление катода Ca (~20 нм)-Ag (100 нм) проводили в вакуумной камере (10-6 мБар), встроенной внутри аргонового бокса. Измерение вольтамперных характеристик батарей проводили в стандартизованных условиях. В качестве источника света использовался солнечный симулятор KHS Steuernagel Lichttechnik со спектром AMI.5 (100 мВт/см2). Для записи вольтамперных кривых (Фиг.7) использовали источник-измеритель Kethley 2400.

Устройство с фторсодержащим модификатором F-3 показало лучшие характеристики по сравнению с реперным устройством (Табл.3).

Пример 4.

На основе трехкомпонентной системы Р3НТ/[60]РСВМ/фторсодержащее соединение F-4 (Фиг.2 и Фиг.3), а также реперной двухкомпонентной системы Р3НТ/[60]РСВМ были изготовлены органические солнечные батареи с объемным гетеропереходом, имеющие конструкцию, представленную на Фиг.1. В качестве подложек использовали специальные стеклянные пластины размером 2.5×2.5 см, одна сторона которых покрыта электропроводящим слоем оксида индия-олова (ITO). Нанесение слоя PEDOT-PSS (Baytron РН) осуществляли с помощью спинкоутера при скоростях вращения подложки 3000 об/мин. После нанесения пленки PEDOT-PSS прогревались при 150°C в течение 15 минут.

Раствор композита Р3НТ/[60]РСВМ в хлорбензоле с соотношением 1.8:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору добавили фторсодержащий модификатор F-2 в количестве 2,5 мг на 1 мл раствора композита Р3НТ/[60]РСВМ. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 900 об/мин. После нанесения пленки композита Р3НТ/[60]РСВМ без и с фторсодержащей добавкой F-4 прогревали в течение 3 минут при температуре 155°C в атмосфере инертного газа (аргоновый бокс). Напыление катода Ca (~20 нм)-Ag (100 нм) проводили в вакуумной камере (10-6 мБар), встроенной внутри аргонового бокса. Измерение вольтамперных характеристик батарей проводили в стандартизованных условиях. В качестве источника света использовался солнечный симулятор KHS Steuernagel Lichttechnik со спектром AM1.5 (100 мВт/см2). Для записи вольтамперных кривых (Фиг.8) использовали источник-измеритель Kethley 2400.

Устройство с фторсодержащим модификатором F-4 показало лучшие характеристики по сравнению с реперным устройством (Табл.4).

Пример 5.

На основе трехкомпонентной системы Р3НТ/[60]РСВМ/фторсодержащее соединение F-5 (Фиг.2 и Фиг.3), а также реперной двухкомпонентной системы Р3НТ/[60]РСВМ были изготовлены органические солнечные батареи с объемным гетеропереходом, имеющие конструкцию, представленную на Фиг.1. В качестве подложек использовали специальные стеклянные пластины размером 2.5×2.5 см, одна сторона которых покрыта электропроводящим слоем оксида индия-олова (ITO). Нанесение слоя PEDOT-PSS (Baytron РН) осуществляли с помощью спинкоутера при скоростях вращения подложки 3000 об/мин. После нанесения пленки PEDOT-PSS прогревались при 150°C в течение 15 минут.

Раствор композита Р3НТ/[60]РСВМ в хлорбензоле с соотношением 1.8:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору добавили фторсодержащий модификатор F-5 в количестве 2,5 мг на 1 мл раствора композита Р3НТ/[60]РСВМ. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 900 об/мин. После нанесения пленки композита Р3НТ/[60]РСВМ без и с фторсодержащей добавкой F-5 прогревали в течение 3 минут при температуре 155°C в атмосфере инертного газа (аргоновый бокс). Напыление катода Ca (~20 нм)-Ag (100 нм) проводили в вакуумной камере (10-6 мБар), встроенной внутри аргонового бокса. Измерение вольтамперных характеристик батарей проводили в стандартизованных условиях. В качестве источника света использовался солнечный симулятор KHS Steuernagel Lichttechnik со спектром AM1.5 (100 мВт/см2). Для записи вольтамперных кривых (Фиг.9) использовали источник-измеритель Kethley 2400.

Устройство с фторсодержащим модификатором F-5 показало лучшие характеристики по сравнению с реперным устройством (Табл.5).

Пример 6.

На основе трехкомпонентной системы Р3НТ/[60]РСВМ/фторсодержащее соединение F-6 (Фиг.2 и Фиг.3), а также реперной двухкомпонентной системы Р3НТ/[60]РСВМ были изготовлены органические солнечные батареи с объемным гетеропереходом, имеющие конструкцию, представленную на Фиг.1. В качестве подложек использовали специальные стеклянные пластины размером 2.5×2.5 см, одна сторона которых покрыта электропроводящим слоем оксида индия-олова (ITO). Нанесение слоя PEDOT-PSS (Baytron РН) осуществляли с помощью спинкоутера при скоростях вращения подложки 3000 об/мин. После нанесения пленки PEDOT-PSS прогревались при 150°C в течение 15 минут.

Раствор композита Р3НТ/[60]РСВМ в хлорбензоле с соотношением 1.8:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору добавили фторсодержащий модификатор F-6 в количестве 2,5 мг на 1 мл раствора композита Р3НТ/[60]РСВМ. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 900 об/мин. После нанесения пленки композита Р3НТ/[60]РСВМ без и с фторсодержащей добавкой F-6 прогревали в течение 3 минут при температуре 155°C в атмосфере инертного газа (аргоновый бокс). Напыление катода Ca (~20 нм)-Ag (100 нм) проводили в вакуумной камере (10-6 мБар), встроенной внутри аргонового бокса. Измерение вольтамперных характеристик батарей проводили в стандартизованных условиях. В качестве источника света использовался солнечный симулятор KHS Steuernagel Lichttechnik со спектром AM1.5 (100 мВт/см2). Для записи вольтамперных кривых (Фиг.10) использовали источник-измеритель Kethley 2400.

Устройство с фторсодержащим модификатором F-6 показало лучшие характеристики по сравнению с реперным устройством (Табл.6).

Пример 7.

Фторсодержащее соединение F-7 было использовано в качестве третьего компонента фотоактивного слоя при создании органических солнечных батарей с объемным гетеропереходом на основе полимер/фуллереновых систем Р3НТ/[60]РСВМ и P3HT/ICBA (Фиг.2 и Фиг.3). В качестве подложек использовали специальные стеклянные пластины размером 2.5×2.5 см, одна сторона которых покрыта электропроводящим слоем оксида индия-олова (ITO). Нанесение слоя PEDOT-PSS (Baytron PR) осуществляли с помощью спинкоутера при скоростях вращения подложки 3000 об/мин. После нанесения пленки PEDOT-PSS прогревались при 150°C в течение 15 минут.

Раствор композита Р3НТ/[60]РСВМ в хлорбензоле с соотношением 1.8:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору добавили фторсодержащий модификатор F-7 в количестве 2,5 мг на 1 мл раствора композита Р3НТ/[60]РСВМ. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 900 об/мин. После нанесения пленки композита Р3НТ/[60]РСВМ без и с фторсодержащей добавкой F-6 прогревали в течение 3 минут при температуре 155°C в атмосфере инертного газа (аргоновый бокс).

Раствор композита P3HT/ICBA в 1,2-дихлорбензоле с соотношением 1:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору добавили фторсодержащий модификатор F-7 в количестве 2,5 мг на 1 мл раствора композита P3HT/ICBA. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 1200 об/мин. Готовые пленки обрабатывали парами растворителя в чашках Петри в течение 6-8 часов. Далее пленки композита P3HT/ICBA без и с фторсодержащей добавкой F-7 прогревали в течение 10 минут при температуре 155°С в атмосфере инертного газа (аргоновый бокс).

Напыление катода Ca (~20 нм)-Ag (100 нм) проводили в вакуумной камере (10-6 мБар), встроенной внутри аргонового бокса. Измерение вольтамперных характеристик батарей проводили в стандартизованных условиях. В качестве источника света использовался солнечный симулятор KHS Steuernagel Lichttechnik со спектром AM1.5 (100 мВт/см2). Для записи вольтамперных кривых (Фиг.11a и 11b) использовали источник-измеритель Kethley 2400.

Устройства с фторсодержащими модификаторами показали лучшие характеристики по сравнению с реперными устройствами без добавок (Табл.7).

Пример 8.

Фторсодержащее соединение F-8 было использовано в качестве третьего компонента фотоактивного слоя при создании органических солнечных батарей с объемным гетеропереходом на основе полимер/фуллереновых систем Р3НТ/[60]РСВМ и P3HT/ICBA (Фиг.2 и Фиг.3). В качестве подложек использовали специальные стеклянные пластины размером 2.5×2.5 см, одна сторона которых покрыта электропроводящим слоем оксида индия-олова (ITO). Нанесение слоя PEDOT-PSS (Baytron PH) осуществляли с помощью спинкоутера при скоростях вращения подложки 3000 об/мин. После нанесения пленки PEDOT-PSS прогревались при 150°C в течение 15 минут.

Раствор композита Р3НТ/[60]РСВМ в хлорбензоле с соотношением 1.8:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору добавили фторсодержащий модификатор F-8 в количестве 2,5 мг на 1 мл раствора композита Р3НТ/[60]РСВМ. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 900 об/мин. После нанесения пленки композита Р3НТ/[60]РСВМ без и с фторсодержащей добавкой F-8 прогревали в течение 3 минут при температуре 155°C в атмосфере инертного газа (аргоновый бокс).

Раствор композита P3HT/ICBA в 1,2-дихлорбензоле с соотношением 1:1 фильтровали через мембранный фильтр (PTFE, 0.2-0.45 мкм). Для приготовления трехкомпонентной системы к профильтрованному раствору добавили фторсодержащий модификатор F-8 в количестве 2,5 мг на 1 мл раствора композита P3HT/ICBA. Полученные растворы без и с модификатором наносили на пленки PEDOT-PSS с помощью спинкоутера при скоростях вращения подложки 1200 об/мин. Готовые пленки обрабатывали парами растворителя в чашках Петри в течение 6-8 часов. Далее пленки композита P3HT/ICBA без и с фторсодержащей добавкой F-8 прогревали в течение 10 минут при температуре 155°C в атмосфере инертного газа (аргоновый бокс).

Напыление катода Ca (~20 нм)-Ag (100 нм) проводили в вакуумной камере (10-6 мБар), встроенной внутри аргонового бокса. Измерение вольтамперных характеристик батарей проводили в стандартизованных условиях. В качестве источника света использовался солнечный симулятор KHS Steuernagel Lichttechnik со спектром AM1.5 (100 мВт/см2). Для записи вольтамперных кривых (Фиг.12a и 12b) использовали источник-измеритель Kethley 2400.

Из полученных вольтамперных зависимостей следует, что факторы заполнения FF устройств с модификатором F-8 значительно выше, чем для устройств без добавок. Основные фотовольтаические характеристики представлены в Табл.8.

1. Органическое фотовольтаическое устройство с объемным гетеропереходом, содержащее последовательно расположенные:
подложку, дырочно-собирающий электрод, дырочно-транспортный слой, фотоактивный слой, состоящий из смеси полупроводникового материала n-типа, полупроводникового материала p-типа и органического фторсодержащего соединения, электрон-транспортный слой, электрон-собирающий электрод, подложку, отличающееся тем, что фотоактивный слой дополнительно содержит фторсодержащий модификатор:



в концентрации от 0.000000001% до 40% по весу.

2. Способ изготовления фотовольтаического устройства по п.1, отличающийся тем, что фторсодержащий модификатор вводят в раствор полупроводниковых компонентов, из которого отливают затем фотоактивные пленки.

3. Применение фторсодержащих модификаторов



для улучшения характеристик органических солнечных батарей с объемным гетеропереходом.



 

Похожие патенты:

Изобретение относится к органическому светоизлучающему устройству (OLED). Технический результат - предоставление устройства OLED, которое предоставляет улучшенную интенсивность излучаемого света, особенно для использования на большой площади.

Использование: для изготовления органических светоизлучающих диодов. Сущность изобретения заключается в том, что светоизлучающий диод содержит прозрачную или частично прозрачную подложку с нанесенной на нее слоистой структурой, содержащей по меньшей мере один органический электролюминесцентный слой и транспортные подслои из органических веществ n- и p-типов проводимости, расположенных на границах электролюминесцентный слой - контактный слой.

Изобретение относится к электролюминесцентному устройству (10), содержащему систему слоев с подложкой (40) и поверх подложки (40) электродом (20) подложки, противоэлектродом (30) и набором электролюминесцентных слоев, по меньшей мере, с одним органическим электролюминесцентным слоем (50), расположенным между электродом (20) подложки и противоэлектродом (30), отличающееся тем, что, по меньшей мере, одно оптическое прозрачное выводящее тело (71) обеспечено поверх электрода (20) подложки, чтобы увеличить вывод света, генерируемого, по меньшей мере, одним органическим электролюминесцентным слоем (50), по меньшей мере, частично покрывающим оптическое прозрачное выводящее тело (71).

Изобретение относится к электролюминесцентному устройству (10), которое содержит подложку (40), расположенный на этой подложке электрод (20) подложки, противоэлектрод (30) и пачку электролюминесцентного слоя с, по меньшей мере, одним органическим электролюминесцентным слоем (50), расположенным между упомянутым электродом (20) подложки и упомянутым противоэлектродом (30), средство (90) инкапсуляции, которое, по меньшей мере, инкапсулирует упомянутую пачку электролюминесцентного слоя, по меньшей мере, один разделитель (80, 80'), который разделяет, по меньшей мере, упомянутый противоэлектрод (30) на множество электрически разделенных сегментов (110, 110', 110") противоэлектрода, и находящееся под упомянутым разделителем (80, 80') электрически непроводящее защитное средство (70), которое расположено на упомянутом электроде (20) подложки, которое больше упомянутого разделителя (80, 80") и которое имеет форму, подходящую для предотвращения затенения края.

Изобретение относится к органическому светодиоду со свойствами стойкости к продольному изгибу. Способ производства структурированного органического светоизлучающего диода содержит этапы, на которых обеспечивают подложку, помещают на подложку набор слоев, причем набор слоев содержит, по меньшей мере, органический светоизлучающий слой, расположенный между катодным слоем и анодным слоем, и облучают выбранные части органического светоизлучающего слоя светом с длиной волны, лежащей в полосе поглощения органического светоизлучающего слоя, для обеспечения локально сниженных светоизлучающих свойств, образующих структуру.

Изобретение относится к способу обеспечения защитного, пассивирующего или герметизирующего слоя на органическом электронном устройстве или его компоненте путем осаждения слабо ускоренных частиц методом распыления пучка ионов или плазмы либо методом прямого осаждения пучка ионов или плазмы.

Изобретение относится к способу формирования рисунка электронного или фотонного материала на подложке, применению фторполимера в приготовлении снабженного рисунком электронного или фотонного материала на подложке, способу изготовления электронного прибора на подложке, а также к электронному или фотонному прибору.

Изобретение относится к электролюминесцентному устройству (10), содержащему подложку и сверху подложки электрод подложки, противоэлектрод и набор электролюминесцентных слоев по меньшей мере с одним органическим электролюминесцентным слоем (50), размещенным между электродом (20) подложки и противоэлектродом (30), и средство (90) герметизации, герметизирующее по меньшей мере набор электролюминесцентных слоев, причем электролюминесцентное устройство (10) содержит по меньшей мере одно контактное средство (60) для электрического контакта противоэлектрода (30) с источником электропитания.

Изобретение относится к технологиям изготовления приборов, содержащих фотоэлементы, используемые в качестве преобразователей световой энергии. Согласно изобретению способ изготовления твердотельного фотоэлемента на основе фталоцианинов для преобразования световой энергии в электрическую включает нанесение на подложку из неорганического полупроводника n-типа органического полимера с полупроводниковыми свойствами и размещение их между двумя электродами, при этом в качестве органического полимера используют антрацианин меди (р-CuAc) или антрацианин цинка (p-ZnAc), который наносят в вакууме слоем толщиной 15-20 нм на подложку из арсенида галлия (nGaAs).

Изобретение относится к области химии, биологии и молекулярной медицины, а именно к способу получения наноразмерной системы доставки нуклеозидтрифосфатов. Способ включает модификацию носителя, в качестве которого используют аминосодержащие наночастицы диоксида кремния размером до 24 нм, путем обработки последних N-гидроксисукцинимидным эфиром алифатической азидокислоты, далее получение модифицированного нуклеозидтрифосфата (pppN) путем обработки последнего смесью трифенилфосфин/дитиодипиридин с последующим инкубированием образующегося активного производного pppN с 3-пропинилоксипропиламином и последующую иммобилизацию модифицированного pppN на полученных азидомодифицированных наночастицах в течение 2-4 ч.

Изобретение относится к химической промышленности и может быть использовано при изготовлении стеклянных шариков как цельных, так и пустотелых, например, для фильтров различного назначения, светоотражающих устройств.
Изобретение относится к технологии получения естественных загустителей и может быть использовано в пищевой промышленности. Способ получения пектина из створок зеленого гороха предусматривает замачивание предварительно измельченных створок зеленого гороха в воде.
Изобретение относится к технологии изготовления композиционных ионообменных мембран, обладающих свойством селективности сорбции или переноса нитрат-аниона. Предложена композиционная ионообменная мембрана, характеризующаяся повышенной подвижностью нитрат-анионов и повышенной константой ионного обмена по отношению к нитрат-аниону.

Изобретение относится к получению тонкодисперсных органических суспензий, включающих металл/углеродный нанокомпозит, и может использоваться для создания функциональных полимерных материалов.

Изобретение относится к области машиностроения и ремонта техники, в частности металлических деталей и узлов машин. Композиция для склеивания металлических изделий содержит анаэробный герметик АН-111 и наполнитель - углеродные нанотрубки «Таунит-М».

Изобретение относится к технологии нанесения пленок и касается конструкций, включающих молекулярные структуры с высоким аспектным соотношением (ВАСМ-структуры), и способа их изготовления.
Изобретение относится к нанотехнологии и может быть использовано для эффективного изменения оптоэлектронных свойств ансамблей покрытых лигандной оболочкой наночастиц серебра в вязких средах и пленках.
Изобретение может быть использовано для оптических приборов и методов исследования в различных областях науки и техники. Светоперераспределяющее покрытие включает в качестве пленкообразующей основы тетраэтоксисилан, этиловый спирт и соляную кислоту.

Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.

Заявлен способ изготовления поглощающего покрытия для солнечного нагрева, наносимого на металлическую подложку, в частности наносимого на тонкий алюминиевый лист, и покрытие, изготовленное таким способом. Покрытие представляет собой покрытие золь-гель типа на основе золя оксида металла, в котором частицы пигмента тщательно перемешивают с золем, с последующим нанесением лака смешанного золя на подложку, затем высушивают при температуре 180-600°С на воздухе при повышенной температуре для получения золь-гель покрытия, в котором покрытие представляет собой покрытие золь-гель типа на основе золя оксида металла с частицами пигмента черного феррита марганца (Mn3Cu2FeO8), которые тщательно перемешаны с золем до нанесения на подложку. Изобретение предлагает способ и покрытие, в котором требования по поглощению солнечной энергии, термоэмиссионной способности, термостабильности и стойкости реализованы в приемлемой степени. 2 н. и 12 з.п. ф-лы, 3 ил., 2 табл.
Наверх