Электростатический микроэлектромеханический генератор для подзаряда химического источника тока

Предлагаемое изобретение относится к электротехнике, в частности к микроэлектромеханическим генераторам, преобразующим энергию механических колебаний в электрическую энергию, и может быть использовано для подзаряда химического источника тока. Техническим результатом предлагаемого электростатического микроэлектромеханического генератора для подзаряда химического источника тока является упрощение конструкции. Электростатический микроэлектромеханический генератор для подзаряда химического источника тока содержит постоянный конденсатор, первый диод, первый переменный конденсатор, соединенный с катодом первого диода и постоянным конденсатором, второй диод, соединенный анодом со вторым электродом первого переменного конденсатора, а катодом подключенный к отрицательному полюсу химического источника тока, второй переменный конденсатор, соединенный с анодом второго диода и вторым электродом первого переменного конденсатора, третий диод, соединенный катодом со вторым электродом второго переменного конденсатора и анодом первого диода, а анодом соединенный с катодом второго диода и подключенный к отрицательному полюсу химического источника тока, стабилитрон, соединенный катодом с первым переменным конденсатором, катодом первого диода и постоянным конденсатором, а анодом соединенный с постоянным конденсатором и подключенный к положительному полюсу химического источника тока. 1 ил.

 

Предлагаемое изобретение относится к электротехнике, в частности к микроэлектромеханическим генераторам, преобразующим энергию механических колебаний в электрическую энергию, и может быть использовано для подзаряда химического источника тока.

Известен электростатический микроэлектромеханический генератор для подзаряда химического источника тока, содержащий три диода и два переменных конденсатора (de Queiroz A.C.M. Electrostatic vibrational energy harvesting using a variation of Bennet's doubler // Circuits and systems: Proc. / 53rd IEEE International Midwest Symposium on, Seattle, WA, Aug. 1-4, 2010.-Seattle, 2010. - P. 404-407). Катод первого диода подключен к положительному полюсу химического источника тока и соединен с первым переменным конденсатором, второй электрод первого переменного конденсатора соединен с анодом второго диода и вторым переменным конденсатором, катод второго диода подключен к отрицательному полюсу химического источника тока и соединен с анодом третьего диода, катод третьего диода соединен со вторым электродом второго переменного конденсатора и анодом первого диода.

Однако в указанном устройстве ток подзаряда ограничен напряжением химического источника тока.

Кроме того, известен электростатический микроэлектромеханический генератор для подзаряда химического источника тока (de Queiroz A.C.M., Domingues M. Electrostatic energy harvesting using doublers of electricity// Circuits and systems: Proc. / 54th IEEE International Midwest Symposium on, Seoul, Korea, Aug. 7-10, 2011. - Seoul, 2011. - P. 1-4), являющийся прототипом предлагаемого изобретения и содержащий три диода, электронный ключ, один постоянный конденсатор и два переменных конденсатора. Катод первого диода соединен с постоянным конденсатором, первым переменным конденсатором и электронным ключом, второй электрод электронного ключа подключен к положительному полюсу химического источника тока, второй электрод первого переменного конденсатора соединен с анодом второго диода и вторым переменным конденсатором, катод второго диода соединен со вторым электродом постоянного конденсатора, анодом третьего диода и подключен к отрицательному полюсу химического источника тока, катод третьего диода соединен со вторым электродом второго переменного конденсатора и анодом первого диода.

Однако указанный электростатический микроэлектромеханический генератор для подзаряда химического источника тока содержит электронный ключ, который требует применения дополнительной схемы управления, что усложняет конструкцию.

Задачей предлагаемого изобретения является упрощение конструкции генератора.

Поставленная задача достигается тем, что в известный электростатический микроэлектромеханический генератор для подзаряда химического источника тока, содержащий постоянный конденсатор, первый диод, первый переменный конденсатор, соединенный с катодом первого диода и постоянным конденсатором, второй диод, соединенный анодом со вторым электродом первого переменного конденсатора, а катодом подключенный к отрицательному полюсу химического источника тока, второй переменный конденсатор, соединенный с анодом второго диода и вторым электродом первого переменного конденсатора, третий диод, соединенный катодом со вторым электродом второго переменного конденсатора и анодом первого диода, а анодом соединенный с катодом второго диода и подключенный к отрицательному полюсу химического источника тока, введен стабилитрон, соединенный катодом с первым переменным конденсатором, катодом первого диода и постоянным конденсатором, а анодом соединенный с постоянным конденсатором, при этом положительный полюс химического источника тока подключен непосредственно к постоянному конденсатору и аноду стабилитрона.

На чертеже приведена принципиальная электрическая схема предлагаемого генератора.

Предлагаемый генератор содержит диоды 1-3; переменные конденсаторы 4, 5; стабилитрон 6 и постоянный конденсатор 7. Катод диода 1 соединен с катодом стабилитрона 6, постоянным конденсатором 7 и переменным конденсатором 4, второй электрод переменного конденсатора 4 соединен с анодом диода 2 и переменным конденсатором 5, катод диода 2 подключен к отрицательному полюсу химического источника тока и соединен с анодом диода 3, катод диода 3 соединен со вторым электродом переменного конденсатора 5 и анодом диода 1, второй электрод постоянного конденсатора 7 соединен с анодом стабилитрона 6 и подключен к положительному полюсу химического источника тока.

Предлагаемый генератор работает следующим образом. Под действием внешних механических колебаний емкость переменных конденсаторов 4 и 5 изменяется в противофазе. В течение первых нескольких циклов работы генератора после подключения его к химическому источнику тока постоянный конденсатор 7 зарядится до напряжения стабилизации стабилитрона 6. Затем в установившемся режиме при уменьшении емкости переменного конденсатора 4 (увеличении емкости переменного конденсатора 5) через химический источник тока течет ток подзаряда. При увеличении емкости переменного конденсатора 4 (уменьшении емкости переменного конденсатора 5) через диод 1 течет ток, и переменный конденсатор 4 заряжается до напряжения, которое было на нем в начале цикла.

Таким образом, предлагаемый электростатический микроэлектромеханический генератор для подзаряда химического источника тока имеет более простую конструкцию, т.к. не содержит электронный ключ, который требует применения дополнительной схемы управления.

Электростатический микроэлектромеханический генератор для подзаряда химического источника тока, содержащий постоянный конденсатор, первый диод, первый переменный конденсатор, соединенный с катодом первого диода и постоянным конденсатором, второй диод, соединенный анодом со вторым электродом первого переменного конденсатора, а катодом подключенный к отрицательному полюсу химического источника тока, второй переменный конденсатор, соединенный с анодом второго диода и вторым электродом первого переменного конденсатора, третий диод, соединенный катодом со вторым электродом второго переменного конденсатора и анодом первого диода, а анодом соединенный с катодом второго диода и подключенный к отрицательному полюсу химического источника тока, отличающийся тем, что в него введен стабилитрон, соединенный катодом с первым переменным конденсатором, катодом первого диода и постоянным конденсатором, а анодом соединенный с постоянным конденсатором, при этом положительный полюс химического источника тока подключен непосредственно к постоянному конденсатору и аноду стабилитрона.



 

Похожие патенты:

Изобретение относится к электротехнике. Электростатический генератор содержит расположенный на валу и состоящий из диэлектрического материала цилиндр.

Изобретение относится к технике высоких напряжений, к электростатическим генераторам с транспортерами-проводниками. Технический результат состоит в повышении мощности.

Изобретение относится к области электротехники и направлено на достижение технического результата, состоящего в повышении точности и расширении функциональных возможностей микроэлектромеханических систем за счет использования реверсивного микродвигателя вращения в качестве углового шагового микро-, нанопозиционера, реверсивного высокоэнергоемкого быстродействующего вращательного микропривода в шаговом и квазиустановившимся режимах.

Изобретение относится к области преобразования электрической энергии, а именно к устройствам преобразования статического электричества в электрическую энергию небольших напряжений при малых токах.

Изобретение относится к области генерации электроэнергии путем электризации диэлектрических веществ, а именно к устройствам, в которых тепловая или кинетическая энергия преобразуется в электрическую энергию путем ионизации жидкой или газовой среды и снятия с нее заряда.

Изобретение относится к области генерации электроэнергии путем электризации диэлектрических веществ, а именно к устройствам, в которых тепловая или кинетическая энергия преобразуется в электрическую энергию путем ионизации жидкой или газовой среды и снятия с нее заряда.

Изобретение относится к электротехнике, к устройствам электромеханического преобразования энергии и является быстродействующим высокоэнергоемким емкостным преобразователем энергии, изготавливаемым методами технологии микроэлектроники, может быть использовано в устройствах, в которых необходимо создание больших механических сил за короткое время, например в устройствах впрыска топлива в цилиндры двигателей внутреннего сгорания, инжекторов струй жидкости, в микродвигателях для микролетательных аппаратов и микророботов.

Изобретение относится к электротехнике и может быть использовано для промышленного получения электроэнергии, а также в технологиях индукционного нагрева вещества.

Изобретение относится к электротехнике, к электромеханическому преобразованию электрической энергии в механическую и может найти широкое применение в промышленности, транспорте, бытовой технике.

Изобретение относится к микро- и нанодвигателям и может быть использовано для построения микро- и нанодвигателей систем передвижения и транспортировки различного назначения.

Изобретение относится к области электромашиностроения. Технический результат: повышение эксплуатационной надежности емкостного двигателя, повышение технологичности, упрощение конструкции. Емкостный двигатель содержит подвижный элемент в виде полого диэлектрического цилиндра, металлические электроды, расположенные вокруг ротора. Дополнительно в емкостный двигатель введены кольца регулирования зазора, имеющие сквозные дугообразные пазы, установленные на подшипниковых щитах и защищенные от внешних воздействий крышками подшипников, соединенные между собой планками, а также кольцо регулирования наклона электродов, установленное на переднем подшипниковом щите. 3 ил.

Изобретение относится к области электротехники, а более конкретно - к емкостным преобразователям энергии, и может быть использовано для питания маломощных потребителей энергии в климатических условиях с периодическим перепадом температур, например дневных и ночных, либо в полете искусственного спутника Земли на орбите при вхождении в тень планеты и выходе из нее. Устройство с помощью емкости преобразует энергию перепада температур. Устройство включает брусок из любого диэлектрического материала, имеющего большое изменение своих линейных размеров при изменении внешней температуры, пластины емкости, одна из которых закреплена неподвижно, а вторая подвижная прикреплена к одному концу бруска из диэлектрического материала, при этом второй конец этого бруска жестко закреплен на неподвижном основании, материал, имеющий высокую относительную диэлектрическую проницаемость, например сегнетоэлектрик, пьезоэлемент, установленный в пространство между неподвижным корпусом устройства и концом подвижного диэлектрического материала и жестко закрепленный с ними по обеим сторонам. При этом пьезоэлемент выполняет функции источника питания. Техническим результатом является отсутствие дополнительного потребления энергии для первичной зарядки пластин. 1 ил.

Изобретение относится к системам очистки воздуха с использованием электрического поля для поляризации частиц и материала и может использоваться в системах отопления, вентиляции и кондиционирования воздуха, автономных блоках фильтров или вентиляторах, а также в промышленных системах очистки воздуха. Технический результат состоит в снижении габаритов и расширении функциональных возможностей за счет обеспечения сепарации твердых частиц воздуха. В электростатическом сепараторе диэлектрический корпус состоит из нескольких секций, разделенных разделительными перегородками, и содержит заземляющие решетки, а также заряжающие электроды, предварительно заземленные. Проволочный электрод подключен к источнику положительного постоянного тока напряжением большим, чем напряжение источника питания металлических электродов. Изобретение обеспечивает отделение частиц газов, различающихся по их удельному весу друг от друга, и их раздельный сбор в приемные секционированные ячейки с возможностью их раздельной утилизации путем поляризации частиц газов в электростатическом поле и их осаждения на металлических электродах. 1 ил.

Электростатический генератор высокого напряжения (ЭГВН) относится к устройствам, предназначенным для генерации высокого напряжения или высоковольтных электрических разрядов и может использоваться для генерации импульсов тока высокого напряжения в системах зажигания двигателей внутреннего сгорания. В настоящем изобретении в качестве ЭГВН используется электрический конденсатор переменной емкости (ЭКПЕ), емкость которого зависит от расстояния между электродами ЭКПЕ, главным отличием которого от аналогов является дополнительное использование диэлектрического материала с повышенной электрической прочностью, специально помещаемого в пространство, образующееся между электродами ЭКПЕ при увеличении расстояния между ними в процессе работы ЭКПЕ. Это необходимо для того, чтобы уменьшить величину напряжения электрического пробоя между электродами ЭКПЕ и тем самым во много раз увеличить рабочее напряжение и мощность ЭГВН. Наиболее перспективным является использование для этих целей жидкого диэлектрика, который естественным образом заполняет все внутреннее пространство между электродами ЭКПЕ при отдалении электродов ЭКПЕ друг от друга и вытесняется из этого пространства при обратном сближении электродов ЭКПЕ. 7 з.п. ф-лы.

Способ электромеханического преобразования энергии и электрополевой движитель на его основе относятся к электромашиностроению, в частности к способам и устройствам электромеханического преобразования электрической энергии в механическую и могут найти широкое применение в промышленности, транспорте, бытовой технике, воздухоплавании, космонавтике и других областях человеческой деятельности, заменить существующие неэкономичные двигатели внутреннего сгорания и электрические машины электромагнитной индукции. Согласно изобретению преобразуют энергию электрического поля, действующего между механически связанными между собой заряженными подвижными обкладками электрического конденсатора, в механическую энергию их взаимного вращательного или поступательного движения, для чего указанные обкладки располагают в диэлектрической среде и разворачивают друг относительно друга таким образом, чтобы образующаяся при этом между обкладками результирующая сила электростатического взаимодействия была ориентирована в направлении требуемого их перемещения. Техническим результатом является повышение коэффициента полезного действия и упрощение процесса преобразования энергии электрического поля в механическую энергию. Способ экологически чист. 2 н. и 6 з.п. ф-лы, 5 ил.

Группа изобретений относится к двигательным и энергосистемам транспортных средств (объектов), перемещающихся в любых средах, в т.ч. в воздушно-космическом пространстве. На объекте, взаимодействующем с физическими полями пространства, дополнительно создают генератор электроэнергии (ГЭ), имеющий роторы с дополнительными периферийными массивными телами (РМТ), и разгонно-тормозные блоки, закрепленные на корпусе двух колец, взаимно противоположно вращающихся (с нулевым гироскопическим моментом) соосно валу динамо-машины. Внутри колец на крепежной раме установлены блоки в виде полых цилиндров с параллельными осями симметрии. Внутри них крепят несколько пар РТМ с осями вращения, параллельными оси цилиндра. Все блоки размещены определённым образом по отношению к плоскости симметрии объекта. Магнитные и индуктивные элементы ГЭ располагают в зависимости от оптимальной (по максим. электроэнергии) скорости вращения ротора ГЭ. Синхронизируют моменты прохождения магнитами ротора ГЭ катушек статора ГЭ с моментами прохождения массивными телами РТМ областей их торможения. Техническими результатами изобретений являются возможность автономной работы объекта, увеличение его тяги в выбранном направлении, уменьшение энергозатрат и расширение области применения. 2 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к электротехнике, к преобразователям электрической энергии в механическую и обратно за счет электростатических сил кулоновского притяжения между зарядами противоположных знаков и может использоваться в промышленности и технике в качестве электрических двигателей и генераторов. Технический результат состоит в повышении мощности и улучшении силовых характеристик. Электрическая машина емкостная (ЭМЕ) с ротором и статором, состоящими из множества плоскопараллельных электродов, чередующихся друг за другом, обеспечивает одновременное движение всех электродов ротора между электродами статора. Электроды ЭМЕ плоскопараллельной конструкции совершают маятниковые колебания. Для обоих вариантов используются электроды, выполненные в виде лент или пленок, находящихся в состоянии постоянного натяжения и зафиксированных в таком состоянии в конструкции ЭМЕ, что позволяет размещать в ограниченном объеме большее количество взаимодействующих плоскопараллельных электродов. 2 н. и 17 з.п. ф-лы, 3 ил.
Наверх