Термоанемометр и способ нагрева его терморезисторной структуры

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры в потоках газов и жидкостей. Предлагается устройство термоанемометра, в котором на одной оптической оси последовательно друг за другом расположены источник света, ТЧЭ в виде терморезистивной структуры с внешними электрическими выводами и пластина, выполняющая роль отражающей поверхности. Пластина установлена за терморезистивной структурой. Центр пластины совпадает с оптической осью, а высота пластины больше размера поперечного сечения термочувствительного элемента. Также заявлен способ нагрева терморезистивной структуры термоанемометра, в котором на обратной, теневой, стороне терморезистивной структуры также формируется источник теплового потока. Технический результат - повышение точности получаемых данных. 2 н. п. ф-лы, 2 ил.

 

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры в потоках газов и жидкостей.

Известны термоанемометры (ТА), конструкция которых включает термочувствительный элемент (ТЧЭ) на основе терморезистора, при этом нагрев ТЧЭ осуществляется с помощью постоянного или переменного электрического тока [Кремлевский П.П. Расходомеры и счетчики количества веществ: Справочник: Кн.2 / Под общ. Ред. Е.А. Шорникова. - 5-е изд., перераб. и доп. - СПб.: Политехника, 2004].

Недостатками таких термоанемометров является сильная зависимость греющего тока от электрического сопротивления ТЧЭ и, как следствие, невозможность использования ТЧЭ с высокими значениями электрического сопротивления, а также сложность измерительных электрических цепей.

Известны термоанемометры, у которых осуществляется бесконтактный нагрев ТЧЭ с помощью электромагнитного поля, включая сверхвысокочастотное (СВЧ) [Кремлевский П.П. Расходомеры и счетчики количества веществ: Справочник: Кн.2 / Под общ. Ред. Е. А. Шорникова. - 5-е изд., перераб. и доп. - СПб.: Политехника, 2004].

Недостатками таких устройств является сильная зависимость температуры нагрева ТЧЭ от коэффициента связи, формы элемента. Кроме того, одновременный нагрев электромагнитным полем крепежной арматуры, внешних выводов и других элементов конструкции увеличивает погрешность измерения скорости потока, ухудшает надежность конструкции.

Наиболее близким по техническому решению является принятый за прототип оптико-волоконный термоанемометр и способ его нагрева (см. RU №2060504, G01P 5/10, 20.05.1996), состоящий из ТЧЭ, оптически согласованного с радиационным нагревателем (источником направленного потока излучения). Излучение от источника света поглощается поверхностью ТЧЭ, обращенной в сторону этого источника, формируя источник теплового потока.

Недостатками такого термоанемометра являются: влияние кондуктивной связи внешних выводов (сток тепловой энергии), невысокая степень изотермичности поверхности ТЧЭ (неравномерное температурное поле), обусловленные возникновением тени с противоположной стороны поверхности ТЧЭ от источника направленного потока излучения.

Задачей изобретения является повышение быстродействия за счет обеспечения равномерного нагрева термочувствительного элемента и уменьшение погрешности измерений термоанемометра за счет использования высокоомной терморезистивной структуры.

Для решения данной задачи предложен термоанемометр, состоящий из расположенных на одной оптической оси последовательно друг за другом: источника света, ТЧЭ в виде терморезистивной структуры (ТРС) с внешними электрическими выводами и отражающей пластины, обладающей способностью прогиба вдоль этой оси, причем центр пластины совпадает с оптической осью. Высота пластины больше размера поперечного сечения ТЧЭ, что обеспечивает попадание излучения от источника света на пластину. Способность пластины фокусировать излучение обеспечивается за счет согласованной с формой ТЧЭ формой прогиба пластины. Причем ТЧЭ находится на таком расстоянии от пластины, чтобы сформированный источник теплового потока располагался на всей теневой поверхности ТЧЭ.

Способ осуществляется следующим образом.

Источник света создает поток излучения, направленный вдоль оптической оси, распространяющийся в газовой или жидкостной среде. За счет поглощения энергии излучения, длина волны которого согласована с коэффициентом поглощения терморезистивной структуры, на поверхности ТЧЭ, расположенного перпендикулярно этому потоку, формируется источник теплового потока [Дульнев Г.Н. Тепло и массообмен в радиоэлектронной аппаратуре: Учебник для вузов по спец. «Конструир. И произв. радиоаппаратуры». - М.: Высш. шк., 1984]. В связи с тем, что размер поперечного сечения ТЧЭ меньше размера поперечного сечения потока излучения, то по закону прямолинейного распространения света [Ландсберг Г.С. Оптика. Учеб. пособие для вузов. - 6-е изд., стереот. - М.: ФИЗМАТЛИТ, 2003] исходное излучение попадает на расположенную за ТЧЭ пластину. Причем коэффициент отражения пластины согласован с длиной волны излучения источника света, что приводит к отражению исходного излучения в направлении обратной (теневой) стороны ТЧЭ. Форма прогиба пластины обеспечивает формирование дополнительного источника теплового потока на обратной (теневой) поверхности ТЧЭ в виде круглого или вытянутого пятна. Причем ТЧЭ находится на таком расстоянии от пластины, чтобы сформированный источник теплового потока располагался на всей теневой поверхности ТЧЭ. Таким образом, происходит формирование двух поверхностных источников теплового потока с противоположных сторон ТЧЭ: со стороны источника излучения и со стороны пластины. Тем самым происходит увеличение быстродействия ТЧЭ за счет удвоения количества источников теплового потока на его поверхности, сокращается время нагрева (реагирования). В свою очередь, расположение двух источников теплового потока с противоположных сторон на поверхности ТЧЭ обеспечивает равномерный нагрев (создается изотермическая поверхность). Способ нагрева ТЧЭ позволяет использовать высокоомные ТРС с положительным или отрицательным температурным коэффициентом сопротивления (ТКС), что снижает погрешность при измерениях.

Сущность изобретения поясняется чертежами.

На фиг.1 изображена оптико-геометрическая схема нагрева ТЧЭ направленным потоком излучения от источника света.

На фиг.2 изображен общий вид конструкции ТА с пластиной без прогиба.

При этом на фиг.1-2 и далее по тексту:

1 - источника света;

2 - термочувствительный элемент (ТЧЭ);

3 - терморезистивная структура (ТРС);

4 - внешние электрические выводы;

5 - пластины с прогибом;

6 - направленный поток излучения.

Устройство работает следующим образом.

При помощи направленного потока излучения 6 от источника света 1 на поверхности ТЧЭ 2, представленного в виде ТРС 3 с внешними электрическими выводами 4, формируется источник теплового потока. Часть исходного потока излучения 6, отражаясь от пластины с прогибом 5, которая расположена за ТЧЭ 2, попадает на обратную (теневую) поверхность ТЧЭ 3. Так как центр пластины с прогибом 5 находится на одной оптической оси с ТЧЭ 2 и источником света 1, то происходит формирование дополнительного теплового потока за счет поглощения энергии излучения. Регистрация параметров ТЧЭ и фиксация его в пространстве осуществляется при помощи внешних электрических выводов 4.

Следует отметить, что несмотря на то, что изобретение проиллюстрировано конструкцией термоанемометра, в котором отражающая поверхность имеет форму пластины с прогибом в виде цилиндрической поверхности, ось которой пересекается с оптической осью, отражающая поверхность может быть иной формы.

1. Термоанемометр, включающий расположенные на оптической оси термочувствительный элемент (ТЧЭ), выполненный в виде терморезистивной структуры с внешними электрическими выводами, и источник света, формирующий направленный поток излучения, отличающийся тем, что на оптической оси за терморезистивной структурой установлена пластина, выполняющая роль отражающей поверхности, что формирует на обратной стороне терморезистивной структуры источник теплового потока, причем центр пластины совпадает с оптической осью, а высота пластины больше размера поперечного сечения термочувствительного элемента.

2. Способ нагрева терморезистивной структуры термоанемометра, включающий формирование с помощью исходного направленного потока излучения от источника света на поверхности терморезистивной структуры, обращенной в сторону этого источника света, источника теплового потока, отличающийся тем, что одновременно на обратной, теневой, стороне терморезистивной структуры также формируется источник теплового потока.



 

Похожие патенты:

Изобретение относится к области приборостроения и может быть использовано при выполнении анемометрических измерений. Заявлен анемометрический зонд с проволочкой или с n (n≥1) проволочками, параллельными между собой, для измерения вблизи стенки, содержащий для каждой проволочки два стержня (4, 6) крепления проволочки.

Изобретение относится к устройству и способу измерения скорости, направления и ориентации течения газообразной текучей среды, такой, например, как воздух. .

Изобретение относится к области исследования скважин и может быть использовано при контроле разработки нефтяных месторождений. .

Изобретение относится к устройству измерения потока для определения направления потока флюида. .

Изобретение относится к устройству измерения потока для определения направления потока флюида. .

Изобретение относится к области исследования скважин и может быть использовано для определения скорости потока жидкости в скважинах при контроле разработки нефтяных месторождений.

Изобретение относится к технике приборостроения. .

Изобретение относится к способам определения скорости течения и может быть использовано в гидрологии. .

Изобретение относится к измерительной технике и может использоваться для определения скорости однофазного потока жидкости в стационарных и переходных режимах. .

Изобретение относится к измерительной технике и может быть использовано для измерения средних скоростей и градиентов скоростей морских течений. .

Изобретение относится к измерительной технике и может быть использовано для измерения параметров потоков жидкостей и газов. Техническим результатом изобретения является повышение точности измерения и расширение функциональных возможностей способа. Способ измерения параметров газовых и жидких сред датчиком температуры с подогревом по периодической функции, на фоне постоянной составляющей, включает фиксацию температуры датчика и мощности подогрева, а также использование градуировочных зависимостей параметров среды от параметров датчика. Согласно изобретению выполняют по три отсчета температуры датчика и мощности нагрева на одном периоде функции подогрева и параметры датчика и температуру среды определяют по формулам для интегрального коэффициента теплообмена для теплоемкости датчика для температуры среды где θ(t) и θ'(t) - мгновенная температура датчика и ее производная; P(t) - мгновенная мощность нагрева; α - коэффициент теплообмена датчика со средой; S - площадь поверхности датчика; m - масса датчика; с - удельная теплоемкость материала датчика.

Изобретение относится к термоанемометрическим средствам измерения скорости и направления потока жидкости или газа и может быть применено при исследовании различных сред, в том числе агрессивных, в любых водоёмах и в атмосфере. Технический результат каждого из изобретений, входящих в заявленную группу - повышение чувствительности. При этом обеспечивается значительное снижение энергозатрат на измерения. Сущность изобретения: используют расположенные в рабочей зоне измерителя в двух ортогональных плоскостях две пары подогреваемых датчиков температуры и вычисляют разность значений температур датчиков в каждой паре, измеряют температуру потока расположенным в рабочей зоне неподогреваемым датчиком, определяют скорость потока по разности среднеарифметического значения температур четырех подогреваемых датчиков и значения температуры неподогреваемого датчика, и определяют направление потока α в выбранной относительно плоскостей расположения пар датчиков системе координат по выражению при ΔТ2>0 α = 0°-180°; при ΔТ2<0 а=180°-360°, где Т1, Т2 и Т3, Т4 - значения температур подогреваемых датчиков соответственно в первой и второй парах. Сущность изобретения-устройства: термоанемометрический измеритель скорости и направления потока жидкости или газа содержит закрепленный в приборе (2) и имеющий контакт с потоком корпус (1) в виде тонкостенного полого цилиндра, который выполнен из теплопроводящего материала, наполнен заполнителем (3) в виде теплоизоляционного материала или воздуха и закрыт крышкой (10), которая выполнена куполообразной из теплоизоляционного материала. Расположенные в рабочей зоне измерителя в поперечной плоскости корпуса (1) в двух ортогональных плоскостях две пары подогреваемых датчиков температуры (4, 6 и 5, 7), которые имеют непосредственный тепловой контакт с внутренней стенкой корпуса (1), и выводы которых подключены к измерительному блоку прибора. Нагреватель (8), который имеет непосредственный тепловой контакт с корпусом (1). Закрепленный на оси крышки (9) расположенный в рабочей зоне и имеющий непосредственный контакт с потоком неподогреваемый датчик температуры (10), вывод которого подключен к измерительному блоку прибора. 2 н. п. ф-лы, 4 ил.

Изобретение может быть использовано для измерения скорости течений и ветра, а также расхода жидкостей и газа в трубопроводах. Технический результат - повышение точности, упрощение технической реализации способа измерения скорости потока и расширение областей применения. Сущность: для измерения скорости направленного потока используют первичный измерительный преобразователь меток в потоке с равномерно распределенной измерительной базой известной длины L, размещают измерительную базу в потоке под известным острым углом α к направлению потока, подают выходной сигнал R(t) первичного, измерительного преобразователя через вторичный измерительный преобразователь на спектроанализатор, вычисляют известным способом текущую за время Τ функцию спектральной плотности сигнала SR(f). В силу того, что распределенный первичный измерительный преобразователь осуществляет скользящее осреднение на базе L и на отрезке времени сигнала меток в потоке, функция SR(f) будет иметь минимумы (нули) на дискретных частотах fi в порядке возрастания , причем . Определяют частоты fi по функции SR(f), вычисляют среднюю за время T скорость потока по формуле При использовании в качестве меток в потоке неоднородностей температуры, коэффициента теплообмена (зависящего от пульсаций скорости, плотности, теплоемкости, теплопроводности, кинематической вязкости потока), пульсаций гидростатического давления, неоднородности удельной электропроводимости, коэффициентов ослабления света и звука - используют соответствующие распределенные первичные измерительные преобразователи меток в электрический сигнал. 17 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения физических параметров и скорости потоков жидкостей и газов. Техническим результатом изобретения является повышение точности измерения и повышение быстродействия способа. Суть способа состоит в том, что в потоке локально устанавливают три идентичных терморезисторных элемента с подогревом - охлаждением управляемыми контролируемыми источниками разной переменной мощности, измеряют сопротивления терморезисторных элементов во времени, определяют мгновенные значения температуры терморезисторных элементов и их производных, определянэт мгновенное значение параметра потока по градуировочной зависимости от интегрального коэффициента теплообмена a(t)S тер-морезисторного элемента со средой или по градуировочной зависимости от теплоемкости тс терморезисторного элемента, которые вычисляют.по формулам где θ1(t), θ2(t) и θ3(t) - мгновенные температуры первого, второго и третьего терморезисторных элементов; θ1'(t), θ2'(t) и θ3'(t) - мгновенные производные температур первого, второго и третьего терморезисторных элементов; Ρ1(t), Ρ2(t) и Ρ3(t) - мгновенные мощности нагрева первого, второго и третьего терморезисторных элементов, температуру потока θc(t) определяют по формуле.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры потока неоднородных, химически агрессивных и абразивосодержащих газов. Предлагается устройство в виде тепловой микросистемы, выполненной из полупроводникового материала и состоящей из площадки круглой формы и конструктивно связанной с ней ножки, содержащей по крайней мере одно сквозное отверстие. Поверхность круглой площадки с двух сторон в пределах периметра содержит электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры. Также на ножке в пределах периметра содержится электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры. Кроме того, тепловая микросистема может содержать элементы электрической коммутации. Технический результат - повышение точности и достоверности получаемых результатов. 2 ил.
Наверх