Способ получения трифторацетата палладия

Изобретение относится к способу получения трифторацетата палладия. Способ включает растворение металлического палладия в концентрированной азотной кислоте, упаривание полученного раствора. При этом раствор азотнокислого палладия упаривают при температуре (40-80)°C до начала кристаллизации нитрата палладия. В образовавшийся раствор при температуре (30-80)°C добавляют трифторуксусную кислоту в количестве (600-800) % от мольного количества палладия в исходном растворе азотнокислого палладия или ангидрид трифторуксусной кислоты в количестве (350-450) % от мольного количества палладия в исходном растворе азотнокислого палладия до прекращения кристаллизации полимерного трифторацетата палладия. Проводят фильтрацию образовавшегося соединения и его перевод в целевой продукт добавлением ацетонитрила при температуре (10-30)°C при массовом соотношении соединение : ацетонитрил - 1:(0.5-2). Изобретение позволяет усовершенствовать способ получения трифторацетата палладия (II) в кристаллическом монофазовом состоянии [Pd3(CF3COO)6], повысить стабильность синтеза, а так же достичь высокого выхода целевого соединения. 1 з.п. ф-лы, 2 табл., 2 пр.

 

Изобретение относится к области химии платиновых металлов, в частности синтезу соединений палладия, а именно, получению трифторацетата палладия (II), применяемого в качестве реагента для органических синтезов, составной части катализаторов, прекурсоров других соединений палладия, приготовления различных палладий-содержащих материалов и для нанесения металлического палладия методом газофазного пиролиза.

Известен способ получения трифторацетата палладия взаимодействием ацетата палладия с трифторуксусной кислотой, при испарении избытка трифторуксусной кислоты и замещенной уксусной кислоты, и выдерживанием полученного остатка под вакуумом при 40°C (Stephenson N.A., Morehous S.M., Powell A.R., Heffer.J.P., Wilkinson G.//J. Chem. Soc. 1965. №6. p.3632-3640). Недостатком способа является получение вещества в полимерной кристаллической модификации - катена-[Pd(CP3COO)2]n, которое не обладает летучестью, в противоположность молекулярной кристаллической форме - [Pd3(CF3COO)6] (обладающей летучестью). Получение исходного вещества - ацетата палладия требует своей схемы получения, что приводит к расходованию дополнительных реагентов и увеличивает продолжительность всего процесса. При этом для практически полного замещения ацетатной группы трифторацетатом используется большой избыток трифторуксусной кислоты (более чем в 150 раз превышающий стехиометрическое значение), что удорожает получение целевого продукта.

Известен способ получения трифторацетата палладия путем возгона продукта взаимодействия, полученного по предыдущему способу, при нагревании до 190-200°C в вакууме 1.33-0.133 Па и его двойной сублимацией (Гэрбэлэу Н.В., Тимко Г.А., Индричан К.М., Попович Г.А. // Теоретическая и экспериментальная химия. 1986. №3. с.322-330). Недостатком способа является неполный возгон вещества из-за затрудненного перехода в кристаллическом состоянии полимерной модификации трифторацетата палладия в молекулярную и, соответственно, низкий выход продукта (25%).

Известен способ получения пропионата палладия, заключающийся в обработке упаренного раствора азотнокислого палладия ангидридом пронионовой кислоты (Мулагалеев Р.Ф., Кирик С.Д., // Патент РФ №2430926 от 10.10.2011. Бюл. №28.). Упаренный раствор азотнокислого палладия, до введения ангидрида пропионовой кислоты, может быть прекурсором трифторацетата палладия. Данный способ принят за прототип.

Недостатком способа является недостаточная устойчивость этильной группы в пропионовой кислоте или ее ангидриде к нитрующей и окислительной способности катиона нитрония, образующегося в системе азотная кислота - ангидрид пропионовой кислоты. Трифторуксусная кислота или ее ангидрид являются более устойчивыми к таким взаимодействиям.

Техническим результатом, на достижение которого направлено предполагаемое изобретение, является усовершенствование способа получения трифторацетата палладия(II) в кристаллическом монофазовом состоянии [Pd3(CF3COO)6], повышение стабильности синтеза, а так же достижение высокого выхода целевого соединения.

Заданный технический результат достигается тем, что исходный раствор азотнокислого палладия, который был приготовлен растворением палладиевой черни в концентрированной азотной кислоте, упаривают при температуре (40-80)°C до начала кристаллизации нитрата палладия, и в образовавшийся раствор при температуре (30-80)°C добавляют трифторуксусную кислоту в количестве (600-800) % от мольного количества палладия в исходном растворе азотнокислого палладия или ангидрид трифторуксусной кислоты в количестве (350-450) % от мольного количества палладия в исходном растворе азотнокислого палладия до прекращения кристаллизации полимерного трифторацетата палладия, фильтрации образовавшегося соединения и его перевода в целевой продукт добавлением ацетонитрила при температуре (10-30)°C при массовом соотношении соединение: ацетонитрил - 1:(0.5-2). После перевода полимерного трифторацетата палладия в целевой продукт ацетонитрил испаряют при температуре (10-30)°C.

Сущность способа состоит в том, что образованию целевого трифторацетата палладия в молекулярной трехъядерной форме [Pd3(CF3COO)6] предшествует выделение его полимерной модификации - catena-[Pd(CF3COO)2]n, которая является малорастворимой в реакционной среде и может быть переведена в молекулярную форму перекристаллизацией. Для выделения полимерной формы трифторацетата палладия использовано взаимодействие раствора азотнокислого палладия с трифторуксусной кислотой или ее ангидридом. При этом с замещением нитратной группы на трифторацетатную происходят процессы ионизации азотной кислоты с образованием катиона нитрония и ангидрида азотной кислоты. Так как N2O5 термически нестабилен и разлагается с образованием диоксида азота и кислорода, которые, в большей части, удаляются из реакционной системы, и это позволяет снизить содержание нитратных соединений. Появление в системе кислородных соединений азота (IV) является условием проявления нитрозирующих агентов, что, по всей видимости, способствует обратимым координационным взаимодействиям палладия и нитрозильной группы, и является ключевым в выборе пути кристаллизации в полимерный карбоксилат.

Перекристаллизация catena-[Pd(CF3COO)2]n, в [Pd3(CF3COO)2] обусловлена большей термодинамической устойчивостью молекулярной трехъядерной формы (которая существует и в газовой фазе). Для реализации такого перехода с высоким выходом целевого соединения важным является подбор растворителя, так как трифторацетат палладия в растворе является реакционноспособным соединением и способен активировать, например, такие растворители как ацетон, простые и сложные эфиры или толуол. Авторские исследования показали, что из доступных растворителей может быть использован ацетонитрил. Но при этом, количественный переход (без побочных процессов активации ацетонитрила) может происходить только без большого избытка растворителя, его высокой чистоте и при относительно умеренных температурах.

В ходе проведенных исследований установлено, что для проведения процесса получения трифторацетата палладия (II) из раствора азотнокислого палладия и трифторуксусной кислоты или ее ангидрида, оптимальными параметрами являются:

- температура упаривания раствора азотнокислого палладия - (40-80)°C;

- упаривание раствора азотнокислого палладия до начала кристаллизации нитрата палладия;

- температура при взаимодействии раствора азотнокислого палладия с трифторуксусной кислотой или ее ангидридом - (30-80)°C;

- количество добавляемой трифторуксусной кислоты - (600-800) % от мольного количества палладия в исходном растворе азотнокислого палладия;

- количество добавляемого ангидрида трифторуксусной кислоты - (350-450) % от мольного количества палладия в исходном растворе азотнокислого палладия:

- температура перевода промежуточного полимерного трифторацетата палладия в целевой продукт - (10-30)°C;

- массовое соотношение соединение: ацетонитрил при перекристаллизации - 1:(0.5-2);

- температура испарения ацетонитрила после образования целевого соединения (10-30)°C.

Увеличение температуры упаривания исходного раствора азотнокислого палладия выше 80°C может приводить к частичному разложению кристаллизующегося нитрата палладия до оксида, что из-за его нерастворимости в азотной и трифторуксусной кислотах приводит к загрязнению продукта оксидом палладия или требует дополнительной операции - фильтрования упаренного раствора. Это, в свою очередь, требует увеличения продолжительности процесса. Уменьшение температуры упаривания исходного раствора азотнокислого палладия ниже 40°C приводит к замедлению испарения, что также увеличивает продолжительность процесса.

Упаривание раствора азотнокислого палладия, не достигая кристаллизации нитрата палладия, приводит к увеличению содержания азотной кислоты и воды в реакционном растворе, что в дальнейшем приводит к увеличению расходования трифторуксусной кислоты или ее ангидрида.

Увеличение температуры взаимодействия раствора азотнокислого палладия с трифторуксусной кислотой или ее ангидридом выше 80°C приводит к уменьшению растворимости трифторуксусной кислоты или ее ангидрида из-за их испарения и удаления из зоны взаимодействия, что увеличивает расход реагентов. Увеличение температуры также может приводить к вскипанию раствора, что может быть причиной частичного выноса вещества из реактора. Уменьшение температуры взаимодействия раствора азотнокислого палладия с трифторуксусной кислотой или ее ангидридом ниже 30°C приводит к недостаточному разложению азотного ангидрида, что не достаточно снижает содержание нитратных соединений и увеличивает растворимость промежуточного продукта - полимерного трифторацетата палладия.

Увеличение количества добавляемой трифторуксусной кислоты более 800% от мольного количества палладия в исходном растворе азотнокислого палладия приводит к излишнему расходованию реагента. Уменьшение количества добавляемой трифторуксусной кислоты менее 600% от мольного количества палладия в исходном растворе азотнокислого палладия приводит к ее недостатку при образовании промежуточного продукта и снижает как его выход, так и целевое соединение.

Увеличение количества добавляемого ангидрида трифторуксусной кислоты более, чем 450% от мольного количества палладия в исходном растворе азотнокислого палладия приводит к излишнему расходованию реагента. Уменьшение количества добавляемого ангидрида трифторуксусной кислоты менее 350% от мольного количества палладия в исходном растворе азотнокислого палладия приводит к его недостатку при образовании промежуточного продукта, что снижает выход всего процесса.

Увеличение температуры перевода промежуточного полимерного трифторацетата палладия в целевой продукт выше 30°C может приводить к реализации побочных химических процессов с участием растворителя (ацетонитрила), что является причиной загрязнения целевого продукта или его необразования. Уменьшение температуры перевода промежуточного полимерного трифторацетата палладия в целевой продукт ниже 10°C требует применения дополнительного охлаждения, что усложняет процесс.

Увеличение массового соотношения соединение: ацетонитрил при перекристаллизации промежуточного полимерного трифторацетата палладия в целевой продукт более 1:0.5 приводит к недостатку растворителя для растворения catena-[Pd(CF3COO)2]n, что приводит к его неполной перекристаллизации и загрязнения целевого соединения. Уменьшение массового соотношения соединение: ацетонитрил при перекристаллизации промежуточного полимерного трифторацетата палладия в целевой продукт менее 1:2 приводит к избытку растворителя, что приводит к избыточному растворению целевого продукта, тем самым уменьшая его выход, или приводит к увеличению продолжительности процесса, необходимого для частичного или полного испарения растворителя.

Увеличение температуры испарения ацетонитрила после образования целевого соединения выше 30°C может приводить к активации побочных химических процессов с участием растворителя (ацетонитрила), что является причиной загрязнения целевого продукта или его полного перевода в нецелевое соединение. Уменьшение температуры испарения ацетонитрила после образования целевого соединения ниже 10°C приводит к замедлению испарения, что увеличивает продолжительность всего процесса.

Примеры осуществления способа

Пример 1

В упаренный раствор азотнокислого палладия при заданной температуре и перемешивании порционно добавляли рассчитанное количество трифторуксусной кислоты или ее ангидрида до прекращения образования коричневого осадка. Образовавшуюся суспензию охлаждали до комнатной температуры, осадок отфильтровывали, промывали трифторукусуной кислотой и подсушивали на фильтре в потоке сухого и чистого воздуха. Данные опытов приведены в таблице 1. Эксперименты №1-6; 13-14 проведены с использованием трифторуксусной кислоты, эксперименты №7-12; 15-16 - с использованием ангидрида трифторуксусной кислоты.

Осадок полимерного трифторацетата палладия перегружали в реактор и при заданной температуре и перемешивании добавляли необходимое количество ацетонитрила. Растворение осадка промежуточного соединения происходит практически мгновенно, и затем кристаллизуется целевое соединение в виде желтых кристаллов. Продукт отделяли фильтрованием и подсушивали на фильтре в потоке сухого и чистого воздуха, затем при пониженном или нормальном давлении в воздушной атмосфере при 20-25°C. Данные опытов приведены в таблице 2 (эксперименты 1-6).

Пример 2

Процесс проводили по примеру 1, но перекристаллизованный целевой продукт не отфильтровывали, а растворитель испаряли при заданной температуре. При этом повысился выход продукта, но увеличилась продолжительность процесса. Данные опытов приведены в таблице 2 (эксперименты 7-10).

Пояснения к таблицам:

I - температура упаривания исходного раствора азотнокислого палладия (°C);

II - температура раствора азотнокислого палладия при взаимодействии с трифторуксусной кислотой или ее ангидридом (°C);

III - количество добавляемой трифторуксусной кислоты (%) от мольного количества палладия в исходном растворе азотнокислого палладия;

IV - количество добавляемого ангидрида трифторуксусной кислоты (%) от мольного количества палладия в исходном растворе азотнокислого палладия;

V - выход промежуточного catena-[Pd(CF3COO)2]n (%) от количества палладия в исходном растворе азотнокислого палладия;

VI - данные рентгенофазового анализа промежуточного продукта. Качество получаемого вещества определяли методом рентгенофазового анализа при сравнении рентгенограмм с эталонной в порошковой базе ICDD;

VII - температура перевода промежуточного catena-[Pd(CF3COO)2]n в целевой [Pd3(CF3COO)6] (°C);

VIII - массовое соотношение catena-[Pd(CF3COO)2]n:CH3CN;

IX - температура испарения ацетонитрила после образования целевого соединения (°C);

X - выход целевого [Pd3(CF3COO)6] (%) от количества палладия в промежуточном catena-[Pd(CF3COO)2]n;

XI - данные рентгенофазового анализа целевого продукта. Качество получаемою вещества определяли методом рентгенофазового анализа при сравнении рентгенограмм с эталонной (неопубликована) и растворением в ацетонитриле (если имеется нерастворимый осадок определялось его массовое содержание).

Как показано в приведенных примерах, использование заявляемого способа позволяет усовершенствовать способ получения трифторацетата палладия (II) в кристаллическом монофазовом состоянии [Pd3(CF3COO)6], повысить стабильность синтеза, а также достичь высокого выхода целевого соединения.

Таблица 1
Способ получения трифторацетата палладия (получение catena-[Pd(CF3COO)2]n)
I II III IV V VI
1 30 60 600 - 78 catena-[Pd(CF3COO)2]n без примесей
2 90 80 700 - 76 catena-[Pd(CF3COO)2]n с примесью PdO
3 50 20 700 - 72 catena-[Pd(CF3COO)2]n без примесей
4 60 90 800 - 77 то же
5 80 30 500 - 70 то же
6 75 50 900 - 77 то же
7 80 50 - 300 76 то же
8 80 70 - 500 87 то же
9 80 20 - 400 83 то же
10 75 90 - 400 88 то же
11 30 40 - 350 85 то же
12 90 50 - 450 88 catena-[Pd(CF3COO)2]n с примесью PdO
13 75 70 700 - 76 catena-[Pd(CF3COO)2]n без примесей
14 80 80 700 - 78 то же
15 80 40 - 400 88 то же
16 80 50 - 420 88 то же
Таблица 2
Способ получения трифторацетата палладия (получение [Pd3(CF3COO)6])
VII VIM* IX X XI
1 5 1:1 - 92 [Pd3(CF3COO)6] без примесей
2 40 1:0.5 - 90 то же
3 30 1:0.25 - 92 [Pd3(CF3COO)6] с примесью catena-[Pd(CF3COO)2]n
4 20 1:3 - 85 [Pd3(CF3COO)6 без примесей
5 15 1:2 - 92 то же
6 20 1:1 - 90 то же
7 10 1:0.7 5 количественный переход то же
8 25 1:1 40 то же то же, но вещество хуже окристаллизовано; нерастворимый остаток - менее 0.5%
9 20 1:1.5 30 то же [Pd3(CF3COO)6 без примесей
10 20 1:1 20 то же то же
* Был использован ацетонитрил марки “ч.д.а.”, который для дополнительной очистки был перегнан дважды в вакууме: над сульфатом натрия и P2O5, и повторно без реагентов.

1. Способ получения трифторацетата палладия путем растворения металлического палладия в концентрированной азотной кислоте, упаривания полученного раствора, отличающийся тем, что раствор азотнокислого палладия упаривают при температуре (40-80)°C до начала кристаллизации нитрата палладия, в образовавшийся раствор при температуре (30-80)°C добавляют трифторуксусную кислоту в количестве (600-800) % от мольного количества палладия в исходном растворе азотнокислого палладия или ангидрид трифторуксусной кислоты в количестве (350-450) % от мольного количества палладия в исходном растворе азотнокислого палладия до прекращения кристаллизации полимерного трифторацетата палладия, фильтрации образовавшегося соединения и его перевода в целевой продукт добавлением ацетонитрила при температуре (10-30)°C при массовом соотношении соединение : ацетонитрил - 1:(0.5-2).

2. Способ по п.1, отличающийся тем, что после перевода полимерного трифторацетата палладия в целевой продукт ацетонитрил испаряют при температуре (10-30)°C.



 

Похожие патенты:

Изобретение относится к cпособу получения бета-дикетонатов или бета-кетоиминатов палладия(II). Способ включает взаимодействие бета-дикетона с раствором соли палладия в органическом растворителе с последующим осаждением целевого продукта и отделением его из раствора.
Изобретение относится к способу получения (ацетилацетонато)(циклооктадиен)палладия тетрафторбората. Способ заключается во взаимодействии бис(ацетилацетонато)палладия, Pd(acac)2, 1,5-циклооктадиена и эфирата трифторида бора, BF3·OEt2, в среде бензола или толуола в качестве органического растворителя.
Изобретение относится к способу получения бета-кетоиминатов палладия (II). Способ включает взаимодействие дихлорида палладия с бета-кетоимином.
Изобретение относится к способу получения ацетилацетонатов металлов платиновой группы. Способ включает взаимодействие хлорида соответствующего металла с ацетилацетоном с последующей нейтрализацией реакционной смеси и выделением целевого продукта.

Изобретение относится к комплексному соединению самонамагничивающегося металла с саленом. Комплексное соединение представлено формулой (I) где М представляет собой Fe, Cr, Mn, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir или Pt и a-f и Y представляют собой, соответственно, водород, или -NHR3-, -NHCOR3, при условии, что a-f и Y одновременно не являются водородом, где R3 представляет собой лекарственную молекулу, причем R3 обладает переносом заряда, эквивалентного менее чем 0,5 электрона(е); или формулой (II) где М представляет собой Fe, Y, a, c, d, f, g, i, j, l представляют собой, соответственно, водород; b и k представляют собой -NH2, h и e представляют собой -NHR3-, где -R3 представляет собой таксол (паклитаксел), или М представляет собой Fe, Y, a, c, d, f, g, i, j, l представляют собой, соответственно, водород; b, e, h и k представляют собой -NHR3-, где -R3 представляет собой гемфиброзил.

Изобретение относится к красителю, содержащему закрепляющую группу в своей молекулярной структуре, причем указанная закрепляющая группа обеспечивает ковалентное связывание указанного красителя с поверхностью, и указанная закрепляющая группа представлена формулой 1 , в которой место присоединения указанной закрепляющей группы внутри указанной молекулярной структуры указанного красителя находится при терминальном атоме углерода, помеченном звездочкой в указанной выше формуле.
Изобретение относится к способу получения карбоксилатных соединений благородного металла или их растворов. .

Изобретение относится к производству рутениевого катализатора селективного гидрирования ненасыщенных полимеров. .

Изобретение относится к способу получения катионных комплексов палладия, содержащих органические и элементорганические лиганды общей формулы [(acac)Pd(L)]BF4 (где acac - ацетилацетонат, L - бидентатные фосфорорганические лиганды, такие как дифенилфосфинометан, дифенилфосфиноэтан, дифенилфосфинопропан, дифенилфосфинобутан и дифенилфосфиноферроцен).
Изобретение относится к способу получения катионных комплексов палладия общей формулы [(acac)Pd(L)]BF4 , где асас - ацетилацетонат, L - дииминовые лиганды, такие как N,N'-бис(2,6-диизопропилфенил)-2,3-бутандиимин и N,N'-бис(2,6-диметилфенил)-2,3-бутандиимин.
Изобретение относится к способу получения двухводного ацетата цинка. .
Изобретение относится к технологии получения солей карбоновых кислот, в частности уксусной, и касается разработки способа получения высокочистого безводного ацетата цинка.

Изобретение относится к области химического синтеза карбоксилатов свинца, применяемых для получения оксидных твердых растворов, а именно к способам получения безводного ацетата свинца (II) для приготовления безводных пленкообразующих растворов цирконата-титаната свинца, и может быть использовано в технологии микроэлектроники и, в частности, для производства энергонезависимых сегнетоэлектрических запоминающих устройств.
Изобретение относится к области химии платиновых металлов, в частности синтезу соединений палладия, а именно синтезу гетероядерных ацетатов палладия с цветными металлами.
Изобретение относится к способу получения ацетата калия взаимодействием гидроксида калия с водным раствором уксусной кислоты и последующими стадиями обработки полученного ацетата калия.

Изобретение относится к веществам, предназначенным для борьбы с гололедом и снегом на автомобильных и пешеходных дорогах, с обледенением промышленных, транспортных и иных конструкций.
Изобретение относится к способу получения основного ацетата меди (II). .

Изобретение относится к способу получения тетрагидрата ацетата марганца, относящемуся к области химической технологии соединений марганца, и может быть использован для получения чистых солей марганца, применяемых в электронной промышленности в качестве сырья для изготовления оксидно-полупроводниковых конденсаторов.

Изобретение относится к усовершенствованному способу получения ацетата свинца (II) путем прямого взаимодействия металла, его диоксида с карбоновой кислотой в присутствии органической жидкой фазы и стимулирующей добавки йода в бисерной мельнице вертикального типа, где в качестве окислителя и реагента в недостатке берут диоксид свинца в количестве 0,4-0,6 моль/кг, металл и уксусную кислоту дозируют в количествах 0,6-1,5 моль/кг и соответственно в расчете на получение соли-продукта, где - количество моль/кг диоксида свинца в загрузке, в качестве стимулирующей добавки используют йод, в количестве 0,01-0,05 моль/кг жидкой фазы, основу которой вначале составляет органический растворитель и растворенные в нем уксусная кислота и йод, загрузку компонентов реакционной смеси ведут в последовательности: растворитель жидкой фазы, уксусная кислота, металл, его диоксид, молекулярный йод, при этом массовое соотношение загрузки и стеклянного бисера берут не менее 1:1,5; процесс начинают при комнатной температуре и ведут в диапазоне максимальных температур 30-50°С в условиях принудительного охлаждения и при контроле методом отбора проб и определения в них содержаний накопившейся соли и непрореагировавших диоксида свинца и уксусной кислоты до практически полного расходования окислителя, после чего процесс прекращают, суспензию реакционной смеси отделяют от стеклянного бисера и тонких пластинок непрорегировавшего металла путем пропускания через сетку с размерами ячеек 0,3х0,3 мм в качестве фильтровальной перегородки, бисер и непрореагировавший металл возвращают в реактор, где вместе с корпусом, мешалкой и другими элементами реактора отмывают растворителем жидкой фазы от оставшейся при выгрузке реакционной смеси, получая при этом промывной растворитель; суспензию реакционной смеси фильтруют, осадок на фильтре обрабатывают промывным растворителем, хорошо отжимают и направляют на очистку путем перекристаллизации, а полученный фильтрат в смеси с промывным растворителем возвращают в повторный процесс.

Изобретение относится к области синтеза солей платиновых металлов, в частности солей палладия, а именно ацетата палладия. .

Изобретение может быть использовано в производстве поливинилхлоридных смол (ПВХ) при переработке пластических масс, в производстве искусственных кож и линолеума, витаминных таблеток, лекарственных препаратов, в парфюмерно-косметической промышленности.
Наверх