Способ обесшламливания оборотных сапонитсодержащих вод и устройство для его реализации

Изобретение может быть использовано в горнодобывающей промышленности и относится к обесшламливанию оборотных сапонитсодержащих вод. Обесшламливание осуществляют посредством воздействия электрическим током на пропускаемую между барабанами-катодами 1 и барабаном-анодом 2 оборотную воду с последующим разделением на сгущенный продукт и осветленную жидкость. Одновременно с барабанов-катодов 1 извлекают осветленный слив, а с барабана-анода 2 - сапонитсодержащие вещества. В проточном режиме контролируют параметры сепарации: производительность, линейный ток, напряжение, частоту вращения барабанов. Изобретение позволяет снизить содержание сапонитсодержащих веществ в оборотной воде до требований оборотного водоснабжения обогатительной фабрики при степени очистки оборотных вод до 99,5%. 2 н.п. ф-лы, 6 ил., 1 табл.

 

Изобретение относится к горнодобывающей промышленности и может быть использовано для обесшламливания технических (оборотные воды, сливы хвостохранилищ и др.) вод, содержащих тонкодисперсные взвешенные вещества, образованные разрушением минералов монтмориллонитовой группы (напр., сапонита).

Известен способ очистки растворов от взвешенных (в т.ч. глинистых) частиц, в котором сточную воду отстаивают, затем фильтруют через гранулированный графитовый материал со степенью угловатости 200-400 м-1, помещенный между катодом и анодом. Плотность тока поддерживают в пределах 20-50 А/м2 [Патент RU 2038319, Кл. C02F 1/46, опубл. 27.06.1995].

Известен способ очистки жидкости от взвешенных и коллоидных примесей, в котором она проходит через последовательно установленные электролизер, флотатор и фильтр [Патент SU 1761676, Кл. C02F 1/00, опубл. 15.09.1992].

Известен способ обезвоживания илового осадка, включающий его обработку в диафрагменном электролизере в области положительного электрода с последующим разделением на сгущенный продукт и осветленную жидкость. Обработку осадка проводят при pH 1-4 при плотности электрического тока 1-3 - мА/см2 в течение 0,5-2,0 часов, затем насыщают воздухом под давлением, далее разделение осуществляют флотацией [Патент RU 2006477, Кл. C02F 1/46, опубл. 30.01.1994].

Все перечисленные способы и устройства обесшламливания технических вод, содержащих тонкодисперсные взвешенные вещества, не позволяют извлечь сапонитсодержащие вещества из оборотных вод с одновременным получением осветленного слива и непригодны для очистки вод с концентрацией глинистых частиц до 257 г/дм3.

Наиболее близким по технической сущности и достигаемому результату является способ интенсификации процесса обесшламливания оборотных сапонитсодержащих вод, включающий обработку оборотной воды электрическим током в пластинчатом монополярном электролизере бездиафрагменного типа [статья: В.А. Чантурия, Б.Е. Горячев. Обогащение алмазосодержащих кимберлитов. Горный журнал, 2007, №2, с.43-44]. Способ основан на перезарядке минеральных частиц при контакте с анодной поверхностью с целью их последующей коагуляции (укрупнения).

Недостатками указанного способа являются:

1. Способ не позволяет сразу разделить сапонитсодержащие воды на сгущенный сапонитсодержащий продукт и осветленный слив, а только интенсифицирует последующий процесс обесшламливания оборотных сапонитсодержащих вод: содержание шламов в оборотной воде в зависимости от продолжительности процесса последующего осветления после предварительной электрохимической обработки воды снижается в 1,6-5,6 раз.

2. Конструкция электролизеров не предусмотрена для обработки вод с высокой (более 50 г/дм3) концентрацией твердой фазы, так как при этом происходит зарастание анодов, выполненных в виде пластин, тонкодисперсными минеральными частицами, что приводит к выходу электролизеров из строя.

3. Низкое содержание (менее 240 г/дм3) твердой фазы в осадке после процесса осветления, а также высокое ее содержание в осветленном сливе (3-12 г/дм3) при низком содержании шламов в исходной воде.

Целью изобретения является повышение степени очистки и интенсификации процесса обесшламливания оборотных вод от сапонитсодержащих веществ.

Технический результат заключается в снижении содержания сапонитсодержащих веществ в оборотной воде до требуемого уровня качества воды оборотного водоснабжения обогатительной фабрики (менее 30 г/дм3) при степени очистки оборотных вод до 99,5%. Изобретение может быть использовано для обесшламливания технических (оборотные воды, сливы хвостохранилищ и др.) вод, характеризующихся высоким (до 257 г/дм3) содержанием тонкодисперсных взвешенных веществ, образованных разрушением минералов монтмориллонитовой группы (напр., сапонита).

Указанная цель достигается обработкой вод электрическим током с одновременным разделением на сгущенный продукт и осветленную жидкость, включая воздействие электрического тока на барабаны-катоды и барабан-анод, и, как следствие, на пропускаемую между ними оборотную воду, при этом одновременно с барабанов-катодов извлекают осветленный слив, а с барабана-анода - сапонитсодержащие вещества.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена принципиальная схема сепаратора для реализации электрохимического воздействия на сапонитсодержащие воды; на фиг.2 - изменение выхода слива с аппарата в зависимости от частоты вращения барабанов-катодов; на фиг.3 - изменение содержания твердой фазы в сливе аппарата в зависимости от его производительности при исходном содержании шламов 82 г/дм3; на фиг.4 - изменение содержания твердой фазы в сливе аппарата в зависимости от содержания шламов в питании при производительности аппарата 40 дм3/ч и напряжении 30 В; на фиг.5 - изменение извлечения сапонита в зависимости от величины напряжения на электродах при производительности аппарата 40 дм3/ч; на фиг.6 - зависимость степени очистки сапонитсодержащих вод от производительности аппарата по осветленному сливу и исходного содержания шламов при напряжении 30 В; в таблице приведены рабочие параметры опытной установки.

Устройство (электрохимический сепаратор) содержит два отрицательно заряженных барабана - 1 (катоды), положительно заряженный барабан - 2 (анод), элеваторное колесо - 3, приводы элеватора - 4, шнек - 5, переливные карманы - 6, подшипниковые узлы - 7, пружинное скребковое устройство - 8, токосъемники - 9, прижимные пластины - 10.

Способ реализуется следующим образом.

На сапонитсодержащую оборотную воду воздействуют электрическим током при ее прохождении объема между барабанами-катодами и барабаном-анодом, выполненными из электропроводящего материала (напр., сталь марки Ст.3). Барабаны-катоды наполовину погружают в оборотную воду. Барабан-анод находится под барабанами-катодами ровно посередине (поверхности всех барабанов параллельны). Расстояние между барабаном-анодом и барабанами-катодами регулируют поднятием или опусканием барабана-анода. Напряжение между разноименно заряженными барабанами выдерживают от 30 до 60 В. Вращение барабанов-катодов осуществляют в противоположные стороны с частотой от 10 до 40 мин-1. При этом частоту вращения барабана-анода выдерживают в пределах от 0,5 до 2,0 мин-1, т.к. ее увеличение приводит к обводнению сгущенного сапонитсодержащего продукта. Извлечение сапонитсодержащих веществ с поверхности барабана-анода осуществляют непрерывно.

Оборотную воду, содержащую сапонитсодержащие взвешенные вещества, имеющие отрицательный заряд, подают сверху между двумя барабанами-катодами в направлении вращения барабанов (вращаются в противоположные стороны).

Устройство работает и при вращении барабанов-катодов навстречу подаваемой исходной шламосодержащей воде - в противоточном режиме.

Устройство оборудуют прижимными пластинами - 10 для более эффективной работы и снятия осветленного слива с барабанов-катодов после выхода поверхности барабанов из оборотной воды (рабочего объема) при их вращении. В случае отсутствия прижимных пластин осветленный слив получается переливом.

Таким образом, оборотную воду, содержащую сапонитсодержащие вещества, подвергают воздействию электрического тока. На барабанах-катодах из оборотной воды за счет электроосмотических явлений извлекают водную фазу, а глинистый материал за счет электростатических (электрофоретических) сил закрепляют на положительно заряженной поверхности барабана-анода. При этом в проточном режиме контролируют параметры сепарации: производительность, линейный ток, напряжение, частоту вращения барабанов.

Устройство работает следующим образом.

Поверхность барабанов - 1 и 2 выполнена из электропроводящего материала, а сами барабаны крепятся к корпусу через подшипниковые узлы - 1, оборудованные уплотнителями-сальниками для предотвращения попадания шламов внутрь подшипников, барабаны-катоды - 1 приводятся во вращение от одного двигателя, через редуктор, карданный вал и цепную передачу, барабан-анод - 2 приводится во вращение от серводвигателя через планетарный редуктор, элеваторное колесо - 3 также приводится во вращение от двигателя через редуктор, поверхность барабанов-катодов - 2 через токосъемники и шины подключена к отрицательному полюсу источника постоянного напряжения, поверхность барабана-анода - 2 через токосъемники и шины подключена к положительному полюсу источника постоянного напряжения.

Исходная сапонитсодержащая вода подается в устройство (электрохимический сепаратор) сверху между барабанами-катодами - 1, частицы минералов монтмориллонитовой группы, имеющие отрицательный заряд и находящиеся в воде, проходя по двум питающим полостям, образованным между барабанами-катодами - 1 и барабаном-анодом - 2, за счет электростатических сил закрепляются на положительно заряженной поверхности барабана-анода и удаляются с нее пружинным скребковым устройством - 8 в область дна ванны электрохимического сепаратора и далее разгружаются с помощью шнека - 5 в ванну элеваторного устройства, а далее черпаками элеваторного колеса; а осветленный слив за счет осмотического движения воды к катодам собирается в области барабанов-катодов - 1 и отводится при их вращении с помощью прижимных пластин - 10 через отверстия в двух переливных карманах - 6.

Описание экспериментов

Напряжение между барабанами-катодами и барабаном-анодом - 30 В (данная величина выбрана на основании теоретических исследований электроповерхностных свойств частиц сапонита, их электрофоретической скорости и осмотической скорости воды в сапонитсодержащих водах). При этом, рациональная производительность аппарата, обеспечивающая требуемое качество осветленного слива при степени очистки от 75 до 88,3% (в зависимости от содержания шламов в исходной оборотной воде - 80-257 г/дм3), составляет 40 дм3/ч. Увеличение производительности аппарата по сливу до 60 дм3/ч, регулируемое частотой вращения барабанов-катодов (фиг.2), при величине напряжения между барабанами-катодами и барабаном-анодом 30 В, приводит к повышению содержания твердой фазы в осветленном сливе до 40 г/дм3 (фиг.3), что выше требуемого содержания - 30 г3/дм.

На фиг.4 представлены результаты изучения зависимости содержания твердой фазы в сливе аппарата от содержания шламов в исходной оборотной воде при производительности аппарата по сливу - 40 дм3/ч и напряжении 30 В. Установлено, что содержание шламов в исходной воде практически не влияет на качество осветленного слива: увеличение содержания шламов в исходной воде более чем на 200 г/дм3 (с 50 до 257 г/дм3) приводит к незначительному увеличению содержания шламов в осветленном сливе с 20 г/дм3 до 30 г/дм3, т.е. всего на 10 г/дм3.

Повышение напряжения между барабанами до 60 В позволяет повысить производительность аппарата по сливу до 60 дм3/ч и/или повысить извлечение сапонита (шламов) до 93% (фиг.5).

В зависимости от частоты вращения барабанов-катодов (6-20 мин-1), обеспечивающей заданную производительность по сливу от 10 до 40 дм3/ч (фиг.2), и напряжения обеспечивается:

- выход осветленного слива из исходной оборотной воды, характеризующейся содержанием твердой фазы до 257 г/дм3, до 76%, при степени очистки шламосодержащей воды до 99,5% (фиг.6) и содержании твердой фазы в сливе от 1 до 30 г/дм3 (фиг.3);

- извлечение в сгущенный продукт до 93% минералов монтмориллонитовой группы (сапонита). При этом сгущенный продукт характеризуется содержанием твердой фазы от 450 до 600 г/дм3.

В соответствии с вышеизложенным:

- выход осветленного слива из исходной оборотной воды, характеризующейся содержанием твердой фазы до 257 г/дм3, до 76%, при степени очистки шламосодержащей воды до 99,5% и содержании твердой фазы в сливе от 1 до 30 г/дм3;

- извлечение в сгущенный продукт до 93% минералов монтмориллонитовой группы (сапонита). При этом сгущенный продукт характеризуется содержанием твердой фазы от 450 до 600 г/дм3.

На основе разработанной схемы устройства была изготовлена действующая модель сепаратора, технические характеристики которого приведены в таблице, и проведена его апробация в условиях обогатительной фабрики №1 (ОФ №1) ОАО «Севералмаз».

Результаты проведенных экспериментов подтвердили высокую эффективность электрохимического метода и аппарата для обесшламливания оборотных вод ОФ №1.

Пример

Исходные параметры электрохимической сепарации:

- производительность аппарата по исходной воде - 60 дм3/ч (по осветленному сливу - 40 дм3/ч, по сгущенному продукту - 20 дм3/ч);

- частота вращения барабанов-катодов - 20 мин-1;

- частота вращения барабана-анода - 1 мин-1;

- содержание твердой фазы в исходной воде - 200 г/дм3;

- величина напряжения на электродах - 30 В;

- величина линейного тока - 10 А;

Результат:

- извлечение воды в осветленный слив - 72,4%;

- извлечение твердой фазы в сгущенный продукт - 90,8%;

- содержание твердой фазы в осветленном сливе - 27,6 г/дм3;

- содержание твердой фазы в сгущенном продукте - 545 г/дм3;

- степень очистки слива - 86,2%.

Таблица
Технические характеристики опытной установки
Наименование параметра Ед. измерения Величина
1 Производительность по исходному питанию до дм3 80
2 Производительность по осветленному сливу до дм3 60
3 Производительность по сгущенному продукту дм3 10-40
4 Производительность по твердому осадку до кг/ч 12
5 Удельный расход электроэнергии на получение 1 м3 осветленного слива кВт*ч/м3 4-12
6 Величина потребляемого линейного тока (постоянного) А 9-12
7 Величина рабочего напряжения В 20-60
8 Расстояние между барабаном - катодом и барабаном - анодом мм 11-30
9 Частота вращения барабанов - катодов мин-1 10-40
10 Частота вращения барабана - анода мин-1 0,01-2
11 Объем ванны аппарата дм3 120
12 Частота вращения вала элеватора мин-1 0,2-5
13 Объем ковша элеватора дм3 0,3
14 Количество ковшей элеватора шт 3

1. Способ обесшламливания оборотных сапонитсодержащих вод, заключающийся в обработке вод электрическим током с последующим разделением на сгущенный продукт и осветленную жидкость, отличающийся тем, что, воздействуя электрическим током на барабаны-катоды и барабан-анод, воздействуют на пропускаемую между ними оборотную воду, одновременно с барабанов-катодов извлекают осветленный слив, а с барабана-анода - сапонитсодержащие вещества, при этом в проточном режиме контролируют параметры сепарации: производительность, линейный ток, напряжение, частоту вращения барабанов.

2. Устройство обесшламливания оборотных сапонитсодержащих вод, отличающееся тем, что оно выполнено в виде двух отрицательно заряженных барабанов-катодов, положительно заряженного барабана-анода, элеваторного устройства, приводов элеваторов, шнека барабанов, переливных карманов, подшипниковых узлов, скребкового устройства, прижимных пластин и токосъемников, при этом поверхность барабанов выполнена из электропроводящего материала, а барабаны прикреплены к корпусу через подшипниковые узлы, оборудованные уплотнителями-сальниками, выполненные с возможностью предотвращения попадания шламов внутрь подшипников; барабаны-катоды выполнены с возможностью вращения от одного двигателя через редуктор, карданный вал и цепную передачу; барабан-анод выполнен с возможностью вращения от серводвигателя через планетарный редуктор; элеваторное колесо выполнено с возможностью вращения от двигателя через редуктор; поверхность барабанов-катодов через токосъемники и шины подключена к отрицательному полюсу источника постоянного напряжения; поверхность барабана-анода через токосъемники и шины подключена к положительному полюсу источника постоянного напряжения; между барабанами-катодами и барабаном-анодом образованы две питающие полости, при этом скребковый механизм выполнен с возможностью удаления с положительно заряженной поверхности барабана частиц минералов, прижимные пластины - с возможностью удаления осветленного слива в переливные карманы, отверстия в двух переливных карманах выполнены с возможностью отвода осветленного слива электрохимической сепарации, при этом в устройстве установлен шнек для разгрузки твердой фазы сепарации в ванну элеваторного устройства и черпаки элеваторного колеса для дальнейшей выгрузки твердой фазы.



 

Похожие патенты:
Изобретение относится к очистке воды и может быть использовано для селективного извлечения фтора и/или фосфатов из сточных или природных вод. Способ включает обработку воды при перемешивании кальцийсодержащим композиционным сорбентом с получением твердых продуктов обработки и очищенной воды.

Изобретение относится к устройству для очистки и поддержания безопасности питьевой воды. Устройство для очистки воды содержит по меньшей мере две фильтрующие среды, имеющие такие размеры относительно друг друга, чтобы обеспечить вначале насыщение фильтрующей среды, фильтрующей первое загрязняющее вещество в воде, и с задержкой по времени насыщение фильтрующей среды, фильтрующей второе загрязняющее вещество.
Изобретение относится к области биотехнологии. Предложен биоразлагаемый композиционный сорбент нефти и нефтепродуктов.
Изобретение относится к способу получения жидкого средства для очистки воды. Способ включает электролиз водного раствора хлорида натрия в электролизере с неразделенными катодным и анодным пространствами и характеризуется тем, что электролиз осуществляют с использованием анода, изготовленного из алюминия или из сплавов алюминия.
Изобретение относится к обработке воды с применением магнитных полей и может быть использовано в пищевой промышленности, медицине и фармакологии. Способ получения питьевой воды включает забор воды из природного источника, очистку от твердых примесей и обработку путем пропускания воды через аппарат, представляющий собой устройство, имеющее внешний и внутренний цилиндр.

Изобретение относится к способам устранения биологических загрязнений текучих сред, используемых для обработки подземных скважин, и может быть использовано в нефтегазовой промышленности.

Изобретение относится к области пищевой промышленности и может найти применение для очистки сточных вод рыбообрабатывающего предприятия. Система включает отстойную камеру, емкость приема всплывшей жиромассы, шнек, заключенный в перфорированный корпус, связанные с ним емкость для сбора обезвоженных отходов и емкость для сбора жидкости.
Изобретение относится к получению сорбентов. Способ заключается во взаимодействии соли трехвалентного железа с гидроксидом натрия в водной среде, содержащей фибриллированные целлюлозные волокна (ФЦВ).

Изобретение относится к сельскому хозяйству, в частности к орошаемому земледелию при утилизации минерализованного дренажного стока гидромелиоративных систем, а также при испарении сточных вод различного генезиса, минерализация которых сформирована преимущественно минеральными солями.

Изобретение относится к сельскому хозяйству, в частности к орошаемому земледелию для утилизации минерализованного дренажного стока гидромелиоративных систем, а также для испарения сточных вод различного генезиса.

Изобретение относится к области сорбционной очистки растворов. Способ очистки водных растворов от эндотоксинов осуществляют путем пропускания раствора через цеолит, модифицированный хитозаном, который дополнительно обработан последовательно растворами сульфата меди и железистосинеродистого калия. Изобретение обеспечивает повышение эффективности очистки. 1 ил., 3 табл., 4 пр.

Изобретение относится к химии полимеров, к твердофазной модификации исходного продукта, а именно к способу модификации флокулянта на основе полиакриламида, необходимого для ускорения осаждения твердой фазы и повышения степени очистки суспензий. Способ модификации флокулянта на основе полиакриламида включает использование микроволнового излучения, направленного на исходный кристаллический продукт полиакриламид. Характеристика микроволнового излучения: частота 2,45 ГГц, мощность 700 Вт, продолжительность облучения кристаллов исходного флокулянта 5-7 с. Способ создает условия для дополнительного взаимодействия макромолекул друг с другом и увеличения их молекулярной массы, что улучшает технологию процесса. 1 табл., 2 пр.

Изобретение может быть использовано для очистки маломутных вод, при подготовке воды хозяйственно-питьевого назначения из природных поверхностных источников, при очистке промышленных сточных вод с высоким содержанием дисперсной фазы от взвесей, нефтепродуктов, жировых, белковых и других загрязнений минерального и органического происхождения. Для осуществления способа проводят смешение (0,1÷0,2)%-ного водного раствора слабозаряженного поликатионита с катионным зарядом (1,65÷9,23) с солью алюминия, взятой в виде золя пентагидроксохлорида алюминия, при мольном отношении Al3+: звено поликатионита, равном (2÷6:1). Способ обеспечивает повышение эффективности использования высокомолекулярных полиэлектролитов и снижение их дозы при одновременном увеличении степени очистки воды. 2 ил., 5 пр., 5 табл.

Изобретение относится к области биотехнологии. Предложен биосорбент для ликвидации нефти с поверхности водоемов. Биосорбент содержит (мас.%): глину - 70-80; отходы обогащения бурого угля - 19,5-28,5; штамм Pseudomonas fluorescens ВКГ RCAM00538 - 0,5-1,5. Изобретение направлено на эффективную очистку поверхности водоемов от нефти при сокращении времени и затрат с использованием биосорбента с высокой углеводородокисляющей активностью. 2 табл., 5 пр.
Изобретение относится к способу консервации водного препарата соединений кальция, который включает следующие стадии: (a) получение водного препарата по меньшей мере одного соединения кальция; (b) добавление к водному препарату стадии a) одного или более источников ионов лития в таком количестве, чтобы общее количество ионов лития в водном препарате составляло от 750 до менее 3000 промилле, вычисленное по отношению к воде в препарате; (c) добавление к водному препарату стадии a) одного или более источников ионов натрия и/или калия в таком количестве, чтобы общее количество ионов натрия и/или калия в водном препарате составляло от 3000 до менее 7500 промилле, вычисленное по отношению к воде в препарате, где стадии (b) и (c) могут быть выполнены одновременно или по отдельности в любом порядке. 6 н. и 17 з.п. ф-лы, 2 пр.

Изобретение относится к области природоохранных технологий и химии кремнийорганических соединений и может быть использовано для очистки загрязненных грунтовых вод, донных отложений и почв путем установки реакционных барьеров. Предложен способ получения гуминового производного взаимодействием гуминового вещества с аминоалкоксисиланом в водной среде с последующей отгонкой водного растворителя и прогреванием полученного вещества при температуре 120-150°С. Предложены также полученное указанным способом гуминовое производное и варианты его применения. Технический результат - предложенный способ позволяет получить гуминовые силанольные производные, способные прочно сорбироваться на минеральных гидроксилсодержащих твердых поверхностях, которые могут использоваться как в растворенном, так и в иммобилизованном виде. Получаемое покрытие является устойчивым к возможным изменениям в кислотно-основных или окислительно-восстановительных условиях окружающей среды, что предотвращает возможность высвобождения связанных экотоксикантов. 4 н. и 9 з.п. ф-лы, 10 ил., 7 табл., 8 пр.
Изобретение относится к обогащению полезных ископаемых и может быть использовано при доводке магнетитовых концентратов с высоким содержанием серы (более 0,08%). Способ очистки магнетитовых концентратов от серы включает обработку окислителем, в качестве которого используют электролитический раствор гипохлорита, полученный из исходных хлоридсодержащих водных систем, в качестве которых используют природные, технические и модельные хлоридсодержащие воды с концентрацией хлорид-ионов от 6 до 30 г/л, путем их электрохимической обработки в бездиафрагменном моно- или биполярном электролизере с нерастворимыми анодами при анодной плотности тока от 250 А/м2 до 1000 А/м2 в течение 5-15 минут. Полученный раствор гипохлорита с концентрацией активного хлора от 0,5 до 7,0 г/л смешивают с магнетитовым концентратом при соотношении Т:Ж от 1:5 до 1:100, выдерживают до 5-ти часов, снижая содержание серы в магнетитовом концентрате до 0,01%, обезвоживают и высушивают концентрат. Применение полученных растворов гипохлорита позволяет в динамических условиях за 5 часов удалить до 90% сульфидной серы и обеспечивает снижение ее содержания в магнетитовом концентрате до 0,01%. Потери магнетита при этом не превышают 1% . 1 з.п. ф-лы, 1 пр.
Изобретение может быть использовано при очистке промышленных стоков предприятий металлургической, пищевой, фармацевтической, кожевенной, текстильной, лакокрасочной отраслей промышленности, содержащих ионы цветных и тяжелых металлов, взвешенные вещества, масла и жиры. Способ включает усреднение сточных вод, коррекцию рН до величины не менее 10,5, смешивание их с раствором сернокислого алюминия и раствором флокулянта с концентрацией 0,1-0,2 мас.%. Проводят напорную флотацию при подаче в сточные воды 40-60 м3/ч очищенного оборотного стока под давлением 0,11-0,25 МПа с одновременной подачей в него сжатого воздуха и удаляют флотошлам. Перед подачей в сточные воды очищенный оборотный сток обрабатывают ультразвуковым полем с частотой 25-35 кГц. Коррекцию рН ведут добавлением в сточную воду суспензии гашеной извести или растворов гидроксида натрия или карбоната натрия. Расход флокулянта составляет 30-40 мг/л. В качестве флокулянта используют высокомолекулярные катионные флокулянты. Обработку ультразвуковым полем ведут с использованием водно-газового эжектора с газоструйным генератором ультразвука при подаче сжатого воздуха в эжектор под давлением 0,25-0,45 МПа. Способ обеспечивает упрощение процесса очистки, уменьшение времени очистки от ионов цветных и тяжелых металлов, взвешенных веществ, масел и жиров до 16-20 мин при сохранении заданной эффективности очистки. 5 з.п. ф-лы, 1 табл., 5 пр.
Изобретение относится к очистке сточных вод кожевенного производства. Способ включает усреднение сточных вод, смешивание их с раствором алюмосодержащего коагулянта, коррекцию рН, напорную флотацию при насыщении сточных вод воздухом и удаление флотошлама. Коррекцию рН проводят при усреднении сточных вод до величины не менее 10,5 путем введения 4%-ной суспензии гашеной извести в присутствии бората этаноламина при его расходе 4,0-6,0 мг/л. В качестве алюмосодержащего коагулянта используют 10%-ный водный раствор гидроксохлорида алюминия при его расходе 10,0-20,0 мг/л. Перед напорной флотацией в смесь добавляют 0,2%-ный водный раствор флокулянта и борат этаноламина при их расходе соответственно 15,0-25,0 и 3,0-5,0 мг/л. Насыщение сточных вод воздухом при флотации ведут принудительной подачей в их объем под давлением 0,11-0,25 МПа очищенного оборотного стока после его обработки ультразвуковым полем с частотой 25-35 КГц с одновременной подачей в него сжатого воздуха. Изобретение позволяет упростить процесс очистки, уменьшить время очистки, расширить технологические возможности способа за счет обеспечения очистки всех сточных вод, в том числе кислых стоков с содержанием трехвалентного хрома до 100 мг/л. 5 з.п. ф-лы, 1 табл.

Изобретение относится к концентраторам жидкости, а точнее к компактным передвижным недорогим концентраторам сточных вод, которые легко можно подключать к источникам отбросного тепла и использовать их для концентрирования жидкости. Компактный передвижной концентратор жидкости содержит газовпускной патрубок, газовыпускное отверстие и проточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие, причем проточный канал содержит суженный участок, который увеличивает скорость протекания газа по проточному каналу. Впускной патрубок жидкости впрыскивают жидкость в поток газа перед суженным участком таким образом, чтобы газожидкостная смесь полностью перемешивалась в проточном канале, вызывая частичное испарение жидкости. Туманоуловитель или газопромывной аппарат за суженным участком удаляет из потока газа унесенные им капельки жидкости и возвращает собранную жидкость во впускной патрубок жидкости по рециркуляционному контуру. Свежую жидкость, поступившую на концентрирование, также подают в рециркуляционный контур со скоростью, достаточно большой, чтобы компенсировать испарившееся в проточном канале количество жидкости. Техническим результатом изобретения является обеспечение надежного концентратора, обладающего большим сроком службы, который в непрерывном режиме концентрирует сточные воды, сильно отличающиеся друг от друга по своим параметрам. 2 н. и 18 з.п. ф-лы, 16 ил.
Наверх