Электродная масса для самообжигающихся электродов ферросплавных печей


C25B11/12 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2529235:

ОАО "Серовский завод ферросплавов" (RU)

Изобретение относится к электродной промышленности и ферросплавного производства и может быть использовано при изготовлении самообжигающихся электродов ферросплавных рудовосстановительных печей. Электродная масса для самообжигающихся электродов включает антрацит, литейный кокс, каменноугольный пек и отходы кремнистых и хромистых ферросплавов. Изобретение позволяет повысить электропроводность и увеличить механическую прочность электродов, а также снизить расход применяемого кокса и каменноугольного пека и полезно использовать мелкие отходы ферросплавов. 2 табл.

 

Изобретение относится к области электродной промышленности и ферросплавного производства и предназначено для использования при изготовлении самообжигающихся электродов ферросплавных рудовосстановительных печей.

Известно, что углеродистая электродная масса, как правило, состоит из термоантрацита, прокаленного кокса (доменного, литейного) и связующего, в качестве которого обычно используется каменноугольный пек (Гасик М.И. Электроды рудовосстановительных электропечей. М.: Металлургия, 1985. - 284 с.).

Значительным недостатком известной электродной массы и получаемых из нее обожженных электродов является низкая электропроводность и механическая прочность.

Высокая удельная электропроводность является одним из основных требований, предъявляемых к самообжигающимся электродам, т.к. электрические потери в электродах составляют 25-45% от всех потерь в электрической сети ферросплавных печей.

Уменьшение потерь электроэнергии в электроде можно достичь, снижая электросопротивление обожженной электродной массы, при этом увеличивая механическую прочность рабочего конца электрода, что положительно сказывается на технико-экономических показателях производства ферросплавов.

С целью снижения электрического сопротивления, увеличения термической стойкости, повышения пластичности электродных масс в состав их шихты вводят различные графитовые и минеральные добавки.

Известна электродная масса для самообжигающихся электродов, включающая термоантрацит и каменноугольный пек, отличающаяся тем, она дополнительно содержит железококс, который состоит из железной руды, магнетита и окалины. Соотношение компонентов массы составляет, масс.%: термоантрацит 23-57; железококс 25-55; каменноугольный пек - остальное (патент РФ №2255043, С01В 31/02, С25В 11/12 от 30.01.2004). Этот способ хотя и снижает электросопротивление массы на 10%, но требует отдельно приготовленного по специальной технологии железококса, его дробления и сортировки. Это усложняет технологию и удорожает продукт.

Другим примером нового состава углеродной массы является композиция, состоящая из термоантрацита и каменноугольного пека, отличающаяся тем, что она дополнительно содержит полукокс при следующем соотношении компонентов, масс.%: полукокс 20-45; каменноугольный пек 20-28 и термоантрацит - остальное (авторское свидетельство СССР №704896, С01В 31/02, С25В 11/12 от 12.10.1977). Этот способ не снижает затрат на шихтовые материалы, поскольку полукокс имеет примерно одинаковую стоимость с коксом. Кроме того, замена кокса на полукокс не повышает электропроводность электродной массы.

В качестве прототипа принят наиболее близкий по технологической сущности к заявляемой электродной массе состав, в который входят следующие компоненты, масс.%: термоантрацит 10-40; кокс 10-40; карбид кремния 25-50; каменноугольный пек 18-28 (авторское свидетельство СССР №783366, С25В 11/12 от 16.03.1979). Этот состав имеет серьезный недостаток, состоящий в том, что предлагаемая добавка к электродной массе (карбид кремния) должен производиться отдельно в электропечах на блок с высоким удельным расходом электроэнергии. Кроме того, основные служебные характеристики (электросопротивление, теплопроводность) электродной массы, полученной по этому изобретению, незначительно отличается от показателей прототипа.

Задачей нашего изобретения является создание такого состава электродной массы для самообжигающихся электродов, который обеспечивает повышение электропроводности и прочности электродов за счет повышения степени их графитизации.

Поставленная задача решается тем, что электродная масса для самообжигающихся электродов ферросплавных печей, включающая антрацит, литейный кокс и каменноугольный пек, согласно изобретению дополнительно содержит отходы кремнистых и хромистых ферросплавов при следующем соотношении компонентов, масс.%:

антрацит 35-45
литейный кокс 32-40
отходы кремнистых и хромовых ферросплавов 3-6
каменноугольный пек остальное

Причинно-следственная связь между совокупностью существенных признаков заявляемого изобретения и техническим результатом, которого мы достигаем, состоит в том, что введение в состав электродной массы для электродов отходов кремнистых и хромистых ферросплавов повышает степень графитизации электродов за счет высокотемпературного взаимодействия компонентов ферросплавов (кремния, железа, хрома и др.) с углеродом электродной массы с образованием карбида кремния, железа и хрома. Эти карбиды, воздействуя на процесс графитизации, увеличивают электро- и теплопроводность, прочность рабочего конца, электроотходы кремнистых и хромистых ферросплавов представляют собой порошковый материал, образующийся при дроблении ферросилиция марок ФС45 и ФС65 (содержание кремния соответственно 45 и 65%, остальное - железо) и углеродистого феррохрома (65% Cr; 7% C; остальное - железо). Смесь этих отходов кремнистых и хромистых ферросплавов имеет средний химический состав, масс.%: кремния 30-45; хрома 10-20; углерода 1-2; остальное - железо.

Гранулометрический состав отходов приведен ниже.

Размер частиц, мм Количество частиц, %
>2,5 0,2-0,5
2,5-1,6 6,3-0,7
1,6-1,0 0,6-1,0
1,0-0,2 26-29
0,2-0,16 10-12
<0,16 57-62

Приготовление электродной массы происходит по принятой на предприятии технологии. Антрацит и кокс дробят, рассевают и прокаливают, затем дозируют в соответствии с рецептурой вместе с отходами кремнистых и хромистых ферросплавов и каменноугольным пеком, подают в смеситель, где осуществляется их перемешивание в течение 3-5 мин при температуре 130-180°C. После этого масса формуется в блоки, которые загружаются в стальной кожух самообжигающегося электрода рудовосстановительной электропечи.

Заявляемый состав электродной массы был опробован на ОАО «Серовский завод ферросплавов». Кампания по применению пылевидных отходов ферросплавов включала 2 этапа: производство электродной массы на участке электродной массы ОАО «СЗФ» и испытание ее при эксплуатации электродов рудовосстановительных печей, выплавляющих ферросилиций и высокоуглеродистый феррохром в плавильном цехе №1.

При производстве электродной массы заявляемого состава использовали оборудование, имеющееся на участке электродной массы.

В процессе производства электродной массы с применением получаемых на этом же заводе отходов кремнистых и хромистых ферросплавов отмечено снижение расхода связующего пека). Это объясняется тем, что пористость металлической пыли ниже, чем углеродистых материалов. Образцы электродной массы обжигались и испытывались на стандартных приборах на механическую прочность и удельное электросопротивление.

Электродную массу заявленного состава, применяли для набивки самообжигающихся электродов диаметром 1200 мм на электропечах мощностью 22 МВА.

Полученные в ходе испытания предлагаемого состава массы данные в сравнении с прототипом и обычным составом массы (состав 1) представлены в таблице.

Таблица
Влияние состава электродной массы на ее физические свойства
Компоненты шихты Состав электродной массы, %
прототип 1 2 3 4 5 6
Антрацит (термоантрацит) 50 39 39 39 39 39 39
Литейный кокс - 39 37 36 35 34 34
Железококс 33 - - - - - -
Отходы кремнистых и хромистых ферросплавов - - - 3,5 4,5 6 7
Каменноугольный пек 17 22 21 21,5 21,5 21 20
Физические свойства обожженной электродной массы
УЭС, мкОм·м 91 93 93 92 87 86 87
Механическая прочность, МПа 1,79 1,78 1,80 1,80 1,92 1,85 1,88

Из данных таблицы следует, что прототип и электродная масса ОАО «СЗФ» без добавки отходов кремнистых и хромистых ферросплавов 1) имеют низкие показатели по удельному электросопротивлению (УЭС) и механической прочности. Добавка пылевидных отходов кремнистых и хромистых ферросплавов повышает эти показатели. Наиболее низкое УЭС, высокая прочность были отмечены у составов 4 и 5 при 4,5-6,0% отходов ферросплавов в шихте, в связи с чем нами рекомендуется иметь их в шихте электродной массы 4-6%. Более высокое содержание отходов 6) и более низкое (составы 2 и 3 таблицы) не приводит к более высоким показателям, чем составы 4 и 5.

К положительному воздействию ввода в электродную массу отходов ферросплавов следует также отнести:

- экономию кокса на 5% и каменноугольного пека за счет применения дешевых мелкодисперсных металлических отходов;

- полезное использование отходов производства ферросплавов.

Таким образом, из приведенных в таблице результатов следует, что предлагаемый состав электродной массы отличается от прототипа более высокими эксплуатационными характеристиками и возможностью расходов на кокс и каменноугольный пек. Кроме того, полезно отходы собственного производства (пылевидные фракции кремнистых и хромистых ферросплавов).

Электродная масса для самообжигающихся электродов ферросплавных печей, включающая антрацит, литейный кокс и каменноугольный пек, отличающаяся тем, что она дополнительно содержит отходы кремнистых и хромистых ферросплавов при следующем соотношении компонентов, масс.%:

антрацит 35-45
литейный кокс 32-40
отходы кремнистых и хромистых ферросплавов 3-6
каменноугольный пек остальное



 

Похожие патенты:

Изобретение относится к способу, включающему в себя следующие стадии: a) электрохимическое окисление 1 моля исходного ICl в кислотном водном растворе с образованием промежуточного производного со степенью окисления йода, равной (III); b) реагирование упомянутого промежуточного производного с йодом и c) получение 3 молей ICl.
Изобретение относится к способу получения жидкого средства для очистки воды. Способ включает электролиз водного раствора хлорида натрия в электролизере с неразделенными катодным и анодным пространствами и характеризуется тем, что электролиз осуществляют с использованием анода, изготовленного из алюминия или из сплавов алюминия.

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол.

Изобретение относится к оборудованию космических аппаратов (КА) и, в частности, к их энергодвигательным системам. Электролизная установка КА включает в себя твердополимерный электролизер, подключенный к системе электропитания КА, и систему водоснабжения.
Изобретение может быть использовано в химической промышленности. Способ получения магнетита включает окисление железа при проведении электролиза.
Изобретение относится к области технологии изготовления металлооксидных анодов на основе титана с электрокаталитическим покрытием и может быть использовано в различных областях прикладной электрохимии при электролизе растворов широкого диапазона минерализации.

Изобретение относится к электродной промышленности и предназначено для использования при изготовлении графитированных изделий, в частности касается процесса пропитки различными веществами для устранения пористости.

Заявленное изобретение относится к способу электролиза водных растворов хлористого водорода или хлорида щелочного металла. В процессе электролиза хлорида щелочного металла предложено использование катода, потребляющего кислород, для чего процесс протекает при высоком избытке кислорода.

Изобретение относится к водородной энергетике. Технический результат состоит в получении водорода разложением воды с увеличением частоты периодического воздействия напряженностей электрических полей на воду.

Изобретение относится к области химии. Реактор 1 для получения водорода содержит корпус 2, патрубок 10 для подачи воды, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления.
Изобретение может быть использовано для получения модифицированных углеродных нанотрубок. Способ модифицирования углеродных нанотрубок включает обработку углеродных нанотрубок водным раствором окислителя, в качестве которого применяют раствор персульфата или гипохлорита при рН более 10, проводимую одновременно с механической обработкой.

Изобретение относится к технике переработки углеводородного сырья, в частности природного газа, и может быть использовано при получении углеродных нанотрубок и водорода.

Изобретение относится к пористому углеродному композиционному материалу. Пористый углеродный композиционный материал образуется из (А) пористого углеродного материала, получаемого из материала растительного происхождения, имеющего содержание кремния (Si), составляющее 5 мас.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния, составляющее 1 мас.% или меньше, и (В) функционального материала, закрепленного на пористом углеродном материале, и имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР.
Изобретение относится к области полимерного материаловедения и может быть использовано в авиационной, аэрокосмической, автотранспортной и электронной промышленности.

Изобретение относится к химической промышленности. Углерод-металлический материал в виде смеси углеродных волокон и капсулированных в неструктурированном углероде частиц никеля диаметром от 10 до 150 нанометров получают каталитическим пиролизом этанола при атмосферном давлении.

Изобретение может быть использовано при получении композиционных материалов. Исходные углеродные наноматериалы, например нанотрубки, нанонити или нановолокна, обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°С не менее 20 мин, промывают водой и сушат.

Изобретение относится к области физической и коллоидной химии и может быть использовано при получении полимерных композиций. Тонкодисперсную органическую суспензию углеродных металлсодержащих наноструктур получают взаимодействием наноструктур и полиэтиленполиамина.

Изобретение относится к нефтехимической промышленности и плазмохимии и может быть использовано для плазменной обработки и утилизации отходов нефтепереработки. Жидкое углеводородное сырьёе 5 разлагают электрическим разрядом в разрядном устройстве, расположенном в вакуумной камере 6.
Изобретение относится к области нанотехнологий, а точнее к способам заполнения внутренних полостей нанотрубок химическими веществами, и может быть использовано для заполнения внутренних полостей нанотрубок необходимым веществом при использовании их в виде наноконтейнеров и для изготовления наноматериалов с новыми полезными свойствами.
Изобретение относится к электронному графеновому устройству. Гибкое и поддающееся растяжению, пропускающее свет электронное устройство содержит первый графеновый электрод, второй графеновый электрод, графеновый полупроводник и управляющий графеновый электрод, расположенный между первым и вторым графеновыми электродами и находящийся в контакте с графеновым полупроводником.

Изобретение относится к нанотехнологии. Графеновые структуры в виде плоских углеродных частиц с поверхностью до 5 мм2 получают путем сжигания в атмосфере воздуха или инертного газа композитного пресс-материала, полученного из микро- и нанодисперсных порошков активных металлов, таких как алюминий, титан, цирконий, нанодисперсных порошков кремния или боридов алюминия, взятых в количестве 10-35 мас. %, и фторполимеров, таких как политетрафторэтилен или сополимер тетрафторэтилена и винилиденфторида, взятых в количестве 90-65 мас. %. Повышается выход графена. 3 табл., 4 ил., 5 пр.
Наверх