Способ комбинированного упрочнения поверхности деталей

Изобретение относится к области упрочняюще-чистовой обработки деталей. Пропускают импульсы электрического тока плотностью энергии импульсов 700-3000 Дж/мм2 в месте контакта деформирующего инструмента с деталью и осуществляют давление деформирующего инструмента на поверхность детали, обеспечивающее пластическую деформацию и упрочнение поверхностного слоя. Пластическую деформацию осуществляют с воздействием на деформирующий инструмент ультразвуковых колебаний с частотой 20-25 кГц и амплитудой, обеспечивающей формирование остаточных сжимающих напряжений от -60 до -10 МПа на глубину упрочненного поверхностного слоя детали до 200 мкм. В результате повышается усталостная прочность деталей и износостойкостью их поверхностного слоя. 2 ил., 1 табл., 1 пр.

 

Изобретение относится к области упрочняюще-чистовой обработки деталей и может быть использовано в различных областях машиностроения для упрочнения поверхностей стальных изделий с целью повышения их износостойкости и усталостной прочности.

Современной проблемой машиностроения является увеличение износостойкости узлов трения. Перспективным направлением в решении данной задачи является поверхностное упрочнение с использованием концентрированных потоков энергии (КПЭ) (лазерная, плазменная, электромеханическая и др.). Основанные на комплексном высокоскоростном температурно-силовом воздействии на обрабатываемую поверхность они обеспечивают формирование высокопрочных, износоустойчивых наноразмерных структур поверхностного слоя стальных изделий, так называемого белого слоя или гарденита. При этом большинство деталей работают при циклических нагрузках, что обуславливает необходимость обеспечения их усталостной прочности и контактной выносливости. Существенное влияние на предел усталости оказывают формирующиеся в материале при поверхностном упрочнении остаточные напряжения. Основной проблемой при применении поверхностного упрочнения КПЭ является формирование в поверхностном слое остаточных растягивающих напряжений, снижающих усталостную прочность, что обусловлено доминирующим влиянием термической составляющей при обработке КПЭ над деформационной. Увеличение деформационной составляющей за счет повышения деформирующего усилия приводит к появлению волнистости на обрабатываемой поверхности и короблению детали, что нарушает ее работоспособность.

Известен способ упрочняюще-чистовой обработки, при котором поверхность изделия обрабатывают пластическим деформированием выглаживающим инструментом, в качестве которого используется неподвижная твердосплавная пластина или вращающийся твердосплавный ролик, с одновременным пропусканием через зону контакта инструмента с обрабатываемой поверхностью переменного электрического тока [Авт. Свид. №759299 B24B 39/00, БИ №32, 1980]. Причинами, препятствующими достижению требуемого технического результата, является невозможность получения остаточных сжимающих напряжений в поверхностном слое.

Известен способ электромеханической обработки поверхности деталей машин, при котором пропускают импульсы тока в месте контакта ролика инструмента с деталью с обеспечением нагрева выступающих гребешков поверхности детали [патент РФ №2349442 B24B 39/00, опубликовано 20.03.2009]. Причинами, препятствующими достижению требуемого технического результата, является формирование в поверхностном слое остаточных растягивающих напряжений и невозможность получения остаточных сжимающих напряжений.

Известен способ трехроликовой электромеханической обработки деталей машин, при котором вокруг детали равномерно располагают три ролика, каждый из которых подключен к одной из фаз трехфазного источника тока с образованием с деталью и другими инструментами общей электрической цепи [патент РФ №2422260 B24B 39/00, опубликовано 27.06.2011]. Причинами, препятствующими достижению требуемого технического результата, является невозможность получения остаточных сжимающих напряжений в поверхностном слое.

Наиболее близким по техническому решению является способ электромеханической обработки поверхности деталей машин, при котором пропускают импульсы тока в месте контакта ролика инструмента с деталью с обеспечением нагрева выступающих гребешков поверхности детали и давлением на выступающие гребешки поверхности детали с обеспечением их деформирования, сглаживания и упрочнения поверхностного слоя металла детали [патент РФ №2349442 B24B 39/00, опубликовано 20.03.2009].

Причинами, препятствующими достижению требуемого технического результата, является существенное преобладание термической составляющей над деформационной, что не позволяет сформировать в поверхностном слое остаточные сжимающие напряжения.

Таким образом, известные способы поверхностного упрочнения имеют низкий технический уровень, связанный с формированием в поверхностном слое остаточных растягивающих напряжений, снижающих усталостную прочность деталей, работающих при циклических нагрузках.

В этой связи важнейшей задачей является создание нового способа поверхностного упрочнения стальных изделий, работающих при циклических нагрузках, обеспечивающего формирование в поверхностном слое остаточных сжимающих напряжений.

Техническим результатом является повышение усталостной прочности деталей, работающих при циклических нагрузках в сочетании с высокой износостойкостью поверхностного слоя за счет формирования в поверхностном слое остаточных сжимающих напряжений.

Технический результат достигается тем, что способ комбинированного упрочнения поверхности деталей заключается в том, что в месте контакта деформирующего инструмента с деталью пропускают импульсы электрического тока плотностью энергии импульсов 700-3000 Дж/мм2, осуществляют давление деформирующего инструмента на поверхность детали, обеспечивающее пластическую деформацию и упрочнение поверхностного слоя, при этом осуществляют пластическую деформацию на глубину упрочненного поверхностного слоя путем воздействия на деформирующий инструмент ультразвуковых колебаний с частотой 20-25 кГц и амплитудой, обеспечивающей формирование остаточных сжимающих напряжений от -60 до -10 МПа на глубину упрочненного поверхностного слоя до 200 мкм.

На фиг.1 показан график распределения остаточных напряжений по толщине поверхностного слоя материала обрабатываемой детали без воздействия на деформирующий инструмент ультразвуковых колебаний.

На фиг.2 показан график распределения остаточных напряжений по глубине поверхностного слоя материала обрабатываемой детали при воздействии на деформирующий инструмент ультразвуковых колебаний.

Отличием предлагаемого способа комбинированного упрочнения поверхности деталей является то, что осуществляют пластическую деформацию на глубину формирования упрочненного поверхностного слоя путем воздействий на деформирующий инструмент ультразвуковых колебаний с частотой 20-25 кГц и амплитудой, обеспечивающей формирование остаточных сжимающих напряжений от -60 до -10 МПа на глубину упрочненного поверхностного слоя до 200 мкм.

При пропускании электрического тока плотностью энергии импульсов 700-3000 Дж/мм2 через зону контакта деформирующего инструмента с обрабатываемой поверхностью в результате выделения большого количества Джоулева тепла происходит нагрев локального объема до температур порядка 1200 К и последующий быстрый теплоотвод в основной объем материала. Проходящие структурные и фазовые превращения приводят к образованию на детали упрочненного поверхностного слоя с высокопрочной наноразмерной структурой высокодисперсного мартенсита - белого слоя, с высокой твердостью и износостойкостью. Величину деформирующего усилия определяют из условия F=p·Ak, где p - давление в зоне контакта деформирующего инструмента с обрабатываемой поверхностью, определяемое из условия протекания пластической деформации на глубину формирования упрочненного поверхностного слоя, Ak - площадь контакта деформирующего инструмента с обрабатываемой поверхностью. При этом в поверхностном слое формируются остаточные растягивающие напряжения, снижающие усталостную прочность детали (фиг.1). При прохождении ультразвуковых волн через материал обрабатываемой детали поверхностный слой пластически деформируется, что сопровождается искажением кристаллической решетки, дроблением зерен на блоки, измельчением структуры и, как следствие, формированием в поверхностном слое остаточных сжимающих напряжений (фиг.2), обеспечивающих повышение усталостной прочности. Выбор частоты ультразвуковых колебаний в интервале v=20-25 кГц обусловлен тем, что при частоте менее 20 кГц ультразвуковые колебания не возникают, а при частоте более 25 кГц не происходит существенного увеличения воздействия ультразвуковых колебаний на поверхность материала обрабатываемой детали. Выбор амплитуды ультразвуковых колебаний обусловлен созданием акустического давления на деформирующий инструмент, обеспечивающего формирование остаточных сжимающих напряжений от -60 до - 10 МПа на глубину упрочненного поверхностного слоя до 200 мкм.

Реализация предложенного способа осуществляется следующим образом.

Проводят обработку деформирующим инструментом с пропусканием через зону контакта электрического тока плотностью энергии импульсов 700-3000 Дж/мм2, с деформирующим усилием, определяемым из условия F=p·Ak, где - давление в зоне контакта деформирующего инструмента с обрабатываемой поверхностью, определяемое из условия протекания пластической деформации на глубину формирования упрочненного поверхностного слоя, где ω - скоростной коэффициент; K - коэффициент пропорциональности; σ в T - временное сопротивление материала при температуре 1200 К; Rz - высота микронеровностей поверхности материала обрабатываемой детали; а - упругое сближение;

Ak- площадь контакта деформирующего инструмента с обрабатываемой поверхностью: Ak=0,85(r·ρ·Rz/r+ρ)0,5, где r - радиус деформирующего инструмента; ρ - радиус кривизны обрабатываемой поверхности.

Определяют амплитуду колебаний деформирующего инструмента из условия создания акустического давления на деформирующий инструмент, обеспечивающего формирование остаточных сжимающих напряжений от -60 до -10 МПа на глубине упрочненного поверхностного слоя до 200 мкм. Проводят обработку путем воздействия на деформирующий инструмент ультразвуковых колебаний с частотой 20-25 кГц и амплитудой, обеспечивающей формирование остаточных сжимающих напряжений от -60 до -10 МПа на глубину упрочненного поверхностного слоя до 200 мкм.

Результаты расчета режимов обработки стали 45 представлены в таблице 1.

Пример. Осуществляли обработку по предложенному способу партии образцов (материал - сталь 45 ГОСТ 1050-74, НВ224-240, Rz20 D=40 мм, L=10 мм). Деформирующее усилие инструмента (ролик из сплава ВК-4М диаметром 40 мм с радиусом профиля 6 мм) определялось в соответствии с условием F=p·Ak и составляло 950 Н. Плотность тока на первом этапе обработки определялась в соответствии с условием i=17,8(δ·V0,65/C)0,5 и составляла 830 А/мм2. Затем осуществляли обработку путем воздействия на деформирующий инструмент ультразвуковых колебаний с частотой v=25 кГц и амплитудой 22 мкм. В результате обработки по предложенному способу в поверхностном слое формировались остаточные сжимающие напряжения от -60 до -10 МПа на глубине упрочненного поверхностного слоя до 200 мкм.

В предложенном техническом решении упрочнение поверхностного слоя осуществляется за счет высокоскоростного термодеформационного воздействия при прохождении электрического тока и протекающих при этом структурных и фазовых превращений с формированием высокопрочной наноразмерной структуры с воздействием ультразвуковых колебаний в процессе ее формирования. При этом обеспечивается увеличение микротвердости в 4-6 раз по сравнению с исходной микротвердостью обрабатываемого материала с одновременным формированием в поверхностном слое остаточных сжимающих напряжений на глубину формирования высокопрочной стуктуры (фиг.2), сочетание которых с высокой степенью упрочнения обеспечивает увеличение усталостной прочности.

Таким образом, в предложенном техническом решении достигается технический результат, который не может быть достигнут в известных технических решениях.

Способ комбинированного упрочнения поверхности деталей, включающий пропускание в месте контакта деформирующего инструмента с деталью импульсов электрического тока плотностью энергии импульсов 700-3000 Дж/мм2, при этом осуществляют давление деформирующего инструмента на поверхность детали с обеспечением пластической деформации и упрочнения поверхностного слоя, отличающийся тем, что на глубину упрочненного поверхностного слоя осуществляют пластическую деформацию путем воздействия на деформирующий инструмент ультразвуковых колебаний с частотой 20-25 кГц и амплитудой, обеспечивающей формирование остаточных сжимающих напряжений от -60 до -10 МПа на глубину упрочненного поверхностного слоя до 200 мкм.



 

Похожие патенты:

Изобретение относится к технологии машиностроения, а именно к раскатке дорожек качения колец подшипников качения. Используют раскатку в виде полой оправки с деформирующими элементами в виде шариков, установленными в отверстия, равномерно расположенные на торце полой оправки.

Изобретение относится к области машиностроения. Устройство для накатывания на станках содержит накатную головку с закрепленным посредством оси роликом, соединенную с державкой, выполненной в виде бруска, одна сторона которой имеет паз, а другая сторона выполнена с возможностью закрепления в резцедержателе станка.

Изобретение относится к машиностроению и может быть использовано при упрочнении деталей. Покрывают заготовку смесью глицерина со шламом от абразивной обработки.

Изобретение относится к области металлообработки. Осуществляют электромеханическую высадку поверхности детали с образованием на ней канавок и электромеханическое сглаживание высаженных участков.

Изобретение относится к области металлообработки, а именно к электромеханической упрочняющей обработке деталей на токарных станках. Фиксируют деталь в центрах токарного станка с помощью поворотной делительной планшайбы, состоящей из корпуса с цилиндрической шейкой, закрепленного на конце шпинделя токарного станка, и поворотного диска, установленного с возможностью углового поворота на цилиндрической шейке корпуса.

Изобретение относится к машиностроению и может быть использовано для поверхностного пластического деформирования заготовок. Осуществляют обработку торцовых поверхностей вращающейся заготовки токарным резцом и размещенным с отставанием относительно вершины резца в направлении движения поперечной подачи шаровидным деформирующим элементом.

Изобретение относится к технологии машиностроения, в частности к способам и устройствам для чистовой комбинированной обработки резанием и поверхностным пластическим деформированием с калиброванием и упрочнением металлических внутренних поверхностей отверстий деталей из сталей и сплавов со статико-импульсным нагружением деформирующе-режущего инструмента.

Изобретение относится к обработке поверхностным пластическим деформированием, а именно к устройствам для обработки выглаживанием изделий в виде поверхностей вращения с использованием в качестве смазки остатков смазочно-охлаждающей жидкости, сохранившихся на поверхности изделия после предыдущей обработки.

Изобретение относится к машиностроению и может быть использовано для финишной отделочно-упрочняющей обработки поверхностей с использованием энергии ультразвуковых колебаний.
Изобретение относится к области машиностроения и может быть использовано для формирования плосковершинного микрорельефа деталей трибосопряжений со смазочными микровпадинами. Осуществляют обработку опорной поверхности детали сферическим индентором и цилиндрическим индентором выглаживающего инструмента, ось которого параллельна вектору скорости выглаживания или составляет с ним некоторый угол. Осуществляют формирование деформирующим инструментом смазочных микровпадин на поверхности детали. Производят полирующее выглаживание поверхности детали. В результате уменьшается шероховатость поверхности, увеличивается ее микротвердость и маслоемкость.

Изобретение относится к ультразвуковым инструментам для деформационной обработки. Инструмент содержит корпус с ручкой и направляющими скольжения, в которых установлен с возможностью осевого возвратно-поступательного движения стакан с фланцем и насадкой. В стакане закреплен ультразвуковой преобразователь, соединенный с трансформатором колебательной скорости. На насадке закреплена своим цилиндрическим концом державка. В державке с возможностью возвратно-поступательного движения установлены бойки, торцы которых контактируют с торцом трансформатора скорости. Во фланец стакана упирается пружина. Между пружиной и торцевой поверхностью корпуса размещена подвижная втулка, оснащенная штифтами, которые входят в фигурные пазы, выполненные в корпусе с возможностью фиксации осевого перемещения втулки в трех положениях. Державка с бойками зафиксирована от осевого перемещения с помощью шарикового пружинного фиксатора, шарик которого входит в одну из лунок, выполненных на цилиндрическом конце державки. В результате расширяются функциональные возможности. 2 ил.

Изобретение относится к отделочно-упрочняющей обработке деталей методами поверхностного пластического деформирования. Осуществляют внедрение деформирующего элемента в обрабатываемую поверхность и его перемещение по обрабатываемой поверхности. Внедрение деформирующего элемента осуществляют с контактным давлением Рк, величину которого определяют по формуле: Рк=9σsD(hу+hп), где σs - предел текучести, D - диаметр шара, hу - упругая деформация, hп - пластическая деформация. В результате повышается качество поверхностного слоя детали. 1 ил.

Изобретение относится к машиностроению и может быть использовано при поверхностном пластическом деформировании цилиндрических и торцовых поверхностей. Осуществляют обработку вращающейся заготовки сферическим деформирующим элементом более высокой твердости по сравнению с твердостью материала обрабатываемой заготовки. Сферический деформирующий элемент установлен на опорных шариках в акустическом концентраторе, через осевой канал которого подводят смазочно-охлаждающую жидкость. При этом сообщают деформирующему элементу и смазочно-охлаждающей жидкости амплитудно- или частотно-модулированные колебания ультразвуковой частоты. В результате повышается производительность, снижается усилие деформирования, улучшается теплоотвод из зоны обработки и формируются остаточные напряжения. 1 ил.

Изобретение относится к упрочнению металлических деталей машин поверхностным пластическим деформированием. Осуществляют зажатие детали снизу и сверху по ее краям посредством установленных в раме вращающихся прижимных валов. Располагают деталь на вращающемся опорном валу. Осуществляют упругий изгиб детали. Упрочняют упруго изогнутую деталь со стороны ее выпуклой растянутой поверхности при помощи приспособления для поверхностного пластического деформирования. В результате повышается эффективность упрочнения металлических деталей машин. 2 ил.

Изобретение относится к машиностроению и может быть использовано при поверхностном пластическом деформировании маложестких заготовок с криволинейными поверхностями. Устанавливают на опорных шариках в акустических концентраторах напротив друг друга по обе стороны заготовки сферические деформирующие элементы. Подводят СОЖ через осевые каналы, выполненные в акустических концентраторах. При этом сферическим деформирующим элементам и СОЖ сообщают амплитудно- или частотно-модулированные колебания ультразвуковой частоты. В результате снижается усилие деформирования и сопротивление пластической деформации материала поверхностного слоя заготовки, уменьшается контактная температура в зоне обработки. 1 ил.

Изобретение относится к машиностроению и может быть использовано для ультразвукового упрочнения деталей типа тел вращения на станках с ЧПУ. Устройство содержит корпус, акустическую систему, состоящую из преобразователя, соединенного с волноводом, на торцевой части которого закреплен излучатель ультразвука. Акустическая система соосно закреплена во внутреннем гнезде полого поршень-штока, имеющего две опорные наружные цилиндрические поверхности, большего и меньшего диаметров. Опорная поверхность поршень-штока большего диаметра сопряжена с внутренней цилиндрической поверхностью корпуса, а опорная поверхность поршень-штока меньшего диаметра - с внутренней цилиндрической поверхностью направляющей втулки. Направляющая втулка установлена в корпусе и предназначена для настройки усилия обработки с помощью установленного в корпусе датчика давления путем регулировки длины замкнутой гидравлической полости, образованной рабочим торцом поршень-штока, торцом направляющей втулки, внутренней цилиндрической поверхностью корпуса и наружной поверхностью поршень-штока, имеющего меньший диаметр. На опорной поверхности поршень-штока меньшего диаметра установлена пружина сжатия, один торец которой соприкасается с рабочим торцом поршень-штока, а другой - с торцом направляющей втулки. Жесткость упомянутой пружины сжатия k выбирается из соотношения k < p S Δ , где p - давление в замкнутой гидравлической полости, S - площадь рабочего торца поршень-штока, Δ - смещение поршень-штока под действием усилия со стороны обрабатываемой поверхности детали. В результате обеспечивается стабильность обработки партии деталей на станке с ЧПУ. 1 ил.

Изобретение относится к устройствам для пластического деформирования кромок двутавров. Устройство содержит обминающие ролики, имеющие галтель для пластического деформирования каждой кромки двутавра и выполненные из материала с твердостью выше, чем материал заготовки двутавра. По меньшей мере один упомянутый обминающий ролик имеет коническую форму и его ось расположена под углом к плоскости полки двутавра так, что при пластическом деформировании кромок одной полки двутавра обминающие ролики не мешали движению второй полки двутавра. В результате кромки двутавра выполняются со скругленным гладким краем, а также обеспечивается их упрочнение. 2 ил.

Изобретение относится к машиностроению и может быть использовано при обработке щеточными машинами. Последняя содержит вращающийся от привода держатель щетки, кольцевую щетку, имеющую фланец с направленной наружу щетиной, и стопорное устройство, погруженное во вращающийся фланец со щетиной. Стопорное устройство выполнено в виде шлифовального круга с возможностью обеспечения дополнительно к функции останова щетины также функции шлифования щетины. Различие между этими функциями устанавливается в соответствии с направлением вращения кольцевой щетки и/или в соответствии с положением стопорного устройства по отношению к фланцу со щетиной. В результате упрощается конструкция щеточной машины. 3 н. и 15 з.п. ф-лы, 5 ил.

Изобретение относится к отделочно-упрочняющей обработке цилиндрических поверхностей деталей выглаживанием. Осуществляют вращательное движение детали и продольное перемещение алмазного выглаживающего инструмента. Выглаживающему инструменту сообщают одновременно возвратно-качательное движение в основной кинематической плоскости обработки и вращательное движение вокруг своей оси. В результате расширяются технологические возможности и повышается износостойкость выглаживающего инструмента. 2 ил.

Изобретение относится к области упрочняюще-чистовой обработки деталей. Пропускают импульсы электрического тока плотностью энергии импульсов 700-3000 Джмм2 в месте контакта деформирующего инструмента с деталью и осуществляют давление деформирующего инструмента на поверхность детали, обеспечивающее пластическую деформацию и упрочнение поверхностного слоя. Пластическую деформацию осуществляют с воздействием на деформирующий инструмент ультразвуковых колебаний с частотой 20-25 кГц и амплитудой, обеспечивающей формирование остаточных сжимающих напряжений от -60 до -10 МПа на глубину упрочненного поверхностного слоя детали до 200 мкм. В результате повышается усталостная прочность деталей и износостойкостью их поверхностного слоя. 2 ил., 1 табл., 1 пр.

Наверх