Способ измерения массы нефтепродуктов в траншейных резервуарах

Изобретение относится к измерительной технике и может быть использовано в системах измерения массы нефтепродуктов в траншейных резервуарах. Способ измерения массы нефтепродуктов в траншейных резервуарах позволяет выполнять измерения уровня, плотности, температуры и массы продукта в траншейных резервуарах с использованием магнитострикционных датчиков и контроля расстояния между дном и крышей резервуара. При этом контроль расстояния между дном и крышей резервуара осуществляется постоянно с помощью установки на магнитострикционные датчики дополнительного подвижного элемента с магнитами, прикрепленного к крыше резервуара, позволяющего отслеживать изменение формы резервуара в процессе хранения продукта, сигнализировать о превышении относительного изменения высоты траншейного резервуара выше заданной величины и осуществлять коррекцию измерений уровня, объема и массы продукта при изменении геометрических размеров траншейного резервуара. Технический результат - создание способа измерения массы продукта в траншейных резервуарах при изменении геометрических размеров резервуаров, связанных с изменениями погоды, наличием грунтовых вод и подвижек грунта, с погрешностью, не превышающей величины допустимой погрешности. 1 ил.

 

Изобретение относится к измерительной технике и позволяет повысить точность измерений количества нефтепродукта в траншейных резервуарах.

Траншейные резервуары - это котлованы, вырытые в грунте и закрытые перекрытием. В траншею укладывается стальная оболочка-вкладыш, которая наполняется продуктом. Все усилия оболочка-вкладыш передает на траншею.

Траншейные резервуары строят заглубленными, что значительно сокращает потери от малых дыханий за счет уменьшения амплитуды колебаний температуры в газовом пространстве. Кроме того, они безопаснее в пожарном отношении, что позволяет сократить расстояния между резервуарами, размещать их на территории нефтебазы более компактно и тем самым уменьшить площадь нефтебазы.

Резервуары траншейного типа предназначены для подземного длительного хранения нефтепродуктов при малой их оборачиваемости, в связи с чем обеспечивается значительное сокращение потерь.

Конструкции траншейных резервуаров просты в изготовлении, надежны в эксплуатации. Однако у резервуаров траншейного типа технико-экономические показатели в части учета нефтепродуктов ниже, чем у традиционных стальных цилиндрических резервуаров. Это связано с тем, что в результате климатических воздействий, действия грунтовых вод, подвижек грунта резервуары меняют свои геометрические размеры. При этом сильно усложняется учет нефтепродуктов, хранящихся в резервуарах.

Для контроля параметров хранящихся в резервуарах нефтепродуктов весьма часто используются различные, в том числе и магнитострикционные, датчики, измеряющие уровень, плотность, температуру и массу нефтепродуктов, например система измерительная «СТРУПА». Однако известные измерительные системы не контролируют изменение геометрических размеров резервуара.

Известен способ измерения массы жидкого продукта в резервуаре по патенту RU 2380658, G01A 22/00, позволяющий производить товарные операции приема, отпуска и хранения продукта с нормированной погрешностью, заключающийся в том, что рассчитывают рекомендуемую минимальную величину массы приема или отпуска продукта, а при хранении - минимально допустимую массу и уровень продукта в резервуаре, уменьшение которого приведет к недопустимой величине погрешности, с последующим проведением товарной операции приема/отпуска продукта и контролем полученного результата во время проведения товарной операции и после ее выполнения. Однако этот способ не учитывает изменения геометрических размеров резервуара.

Наиболее близким к заявляемому способу измерения массы нефтепродуктов в траншейных резервуарах является способ контроля высоты траншейных резервуаров в процессе эксплуатации, изложенный в рекомендации «Резервуары траншейные заглубленные вместимостью от 5000 до 10000 м3. Методика поверки объемным методом МИ 2992-2006». В указанном способе контроль высоты траншейного резервуара осуществляется путем измерения высоты резервуара с помощью рулетки с грузом. Однако эти измерения проводятся редко, как правило раз в год. А высота резервуара изменяется более часто в зависимости от изменений погоды, наличия грунтовых вод и подвижек грунта. Как показывает опыт эксплуатации траншейных резервуаров, величина расстояния между дном и крышей может колебаться в пределах нескольких десятков сантиметров.

В то же время указанная выше рекомендация накладывает ограничение на допустимое относительное изменение высоты траншейного резервуара - не более 0,1%. Превышение этой величины без коррекции уровня приводит к нарушению градуировочной характеристики резервуара и большим ошибкам при учете массы нефтепродукта, хранящегося в резервуаре.

Сущность изобретения заключается в том, что предлагается способ измерения массы нефтепродуктов в траншейных резервуарах, позволяющий выполнять измерения уровня, плотности, температуры и массы продукта в траншейных резервуарах с использованием магнитострикционных датчиков, дополненный возможностью контроля расстояния между дном и крышей резервуара, которое осуществляется постоянно с помощью установки на магнитострикционные датчики дополнительного подвижного элемента с магнитами, прикрепленного к крыше резервуара, позволяющего отслеживать изменение формы резервуара в процессе хранения продукта, сигнализировать о превышении относительного изменения высоты траншейного резервуара выше заданной величины и осуществлять коррекцию измерений уровня, объема и массы продукта при изменении геометрических размеров траншейного резервуара.

Задачей, на решение которой направлено изобретение, является создание способа, который позволяет в процессе работы при выполнении товарных операций хранения, приема и отпуска нефтепродуктов в траншейных резервуарах осуществлять оперативный контроль изменения геометрических размеров резервуара, сигнализировать о превышении относительного изменения высоты траншейного резервуара выше заданной величины и осуществлять коррекцию измерений уровня, объема и массы продукта при изменении геометрических размеров траншейного резервуара.

Предметом изобретения является способ измерения массы нефтепродуктов в траншейных резервуарах, позволяющий выполнять измерения уровня, плотности, температуры и массы продукта в траншейных резервуарах с использованием магнитострикционных датчиков и контроля расстояния между дном и крышей резервуара, при этом контроль расстояния между дном и крышей резервуара осуществляется постоянно с помощью установки на магнитострикционные датчики дополнительного подвижного элемента с магнитами, прикрепленного к крыше резервуара, позволяющего сигнализировать о превышении относительного изменения высоты траншейного резервуара выше заданной величины и осуществлять коррекцию измерений уровня, объема и массы продукта при изменении геометрических размеров траншейного резервуара.

Техническим результатом является создание способа измерения массы продукта в траншейных резервуарах при изменении геометрических размеров резервуаров, связанных с изменениями погоды, наличием грунтовых вод и подвижек грунта, с погрешностью, не превышающей величины допустимой погрешности.

Этот технический результат получен благодаря тому, что в процессе эксплуатации выполняются измерения уровня, плотности, температуры и массы нефтепродуктов в траншейных резервуарах с использованием магнитострикционных датчиков и контроля расстояния между дном и крышей резервуара, при этом контроль расстояния между дном и крышей резервуара осуществляется постоянно с помощью установки на магнитострикционные датчики дополнительного подвижного элемента с магнитами, прикрепленного к крыше резервуара, позволяющего сигнализировать о превышении относительного изменения высоты траншейного резервуара выше заданной величины и осуществлять коррекцию измерений уровня, объема и массы продукта при изменении геометрических размеров траншейного резервуара.

На фиг.1 представлен пример реализации предлагаемого способа измерения массы нефтепродуктов в траншейных резервуарах (поперечное сечение резервуара).

Цифрами на фиг.1 обозначены:

1 - траншейный резервуар;

2 - магнитострикционный датчик высоты траншейного резервуара;

3 - магнитострикционный датчик уровня;

4 - магнитострикционный датчик плотности;

5 - дополнительный подвижной элемент с магнитами (прикреплен к крыше резервуара);

6 - крыша резервуара.

В траншейном резервуаре 1 для контроля нефтепродукта, хранящегося в резервуаре, установлены магнитострикционный датчик высоты траншейного резервуара 2, магнитострикционный датчик уровня 3 и магнитострикционный датчик плотности 4, на которые устанавливаются дополнительные подвижные элементы с магнитами 5, прикрепленные к крыше резервуара 6.

Дополнительный подвижной элемент с магнитами 5 конструктивно представляет собой пластину из немагнитного материала с отверстием, сквозь которое проходит труба магнитострикционного датчика с возможностью свободного перемещения вдоль магнитострикционного датчика. Рядом с отверстием симметрично располагаются магниты, как правило, три-четыре штуки.

Измерения положения дополнительного подвижного элемента с магнитами 5 основаны на измерениях времени распространения ультразвуковой волны в магнитострикционном проводнике. Скорость распространения ультразвуковой волны в проводнике практически не зависит от давления и влажности. Влияние температуры автоматически компенсируется с помощью специального алгоритма обработки временных интервалов распространения ультразвука.

Генерация ультразвукового импульса происходит по принципу магнитострикции непосредственно в проводнике (волноводе).

При взаимодействии переменного магнитного поля, создаваемого импульсом тока в проводнике, и полем постоянных магнитов происходит деформация кристаллической структуры волновода, что создает механическую волну, распространяющуюся с ультразвуковой скоростью.

Ультразвуковые импульсы, возникшие в местах расположения маркера и магнитов, распространяются по волноводу в обоих направлениях от места возникновения.

В верхней части волновода ультразвуковые импульсы вследствие обратного магнитострикционного эффекта преобразуются катушкой считывания в электрические импульсы и затем гасятся демпфером.

Промежуток времени между моментом генерации ультразвукового импульса и его приемом пропорционален измеряемому расстоянию, и тем самым происходит определение положения дополнительного подвижного элемента с магнитами 5 относительно трубы магнитострикционного датчика, при этом определяется высота траншейного резервуара, так как дополнительный подвижной элемент с магнитами 5 прикреплен к крыше резервуара 6, а труба датчика упирается в дно траншейного резервуара 1.

Для контроля температуры нефтепродукта магнитострикционные датчики высоты траншейного резервуара 2, уровня 3 и плотности 4 оснащены датчиками температуры (на рисунке не показаны).

В процессе хранения нефтепродукта, если хотя бы один из дополнительных подвижных элементов с магнитами 5, прикрепленных к крыше резервуара 6, изменил свое положение, то программа измерительной системы начинает вычислять корректирующую поправку уровня, учитывающую показания датчиков высоты резервуара, их количество и расположение в резервуаре, градуировочные параметры резервуара, уровень, плотность и температуру нефтепродукта. При этом учитывается градуировочная характеристика траншейного резервуара (при нахождении зеркала нефтепродукта в более широкой части резервуара величина коррекции уровня будет меньше, а в более узкой части - больше). Коррекция уровня не производится во время налива и слива нефтепродукта.

Относительное изменение базовой высоты траншейного резервуара δН автоматически вычисляется по формуле:

δ H = Н б п Н б и з м Н б п × 100, ( 1 )

где Нбп - базовая высота резервуара, определяемая при поверке и градуировке резервуара;

Нбизм - базовая высота резервуара, определенная измерительной системой.

Если величина относительного изменения высоты траншейного резервуара превышает заданную величину, производится сигнализация о превышении допустимого значения.

Параметры откорректированного значения уровня, а также плотности и температуры от датчиков СИ, расположенных в траншейном резервуаре, поступают из измерительной системы в устройство расчета массы, где производят их обработку в следующей последовательности:

1. Объем НП рассчитывают по формуле:

V i = V 20 i [ 1 + 2 × α с т × ( T с т 20 ) ] , ( 2 )

где V20i - объем НП в резервуаре на измеряемом (откорректированном) уровне Hi, определяемый по градуировочной таблице резервуара, составленной при температуре 20°C, м3;

αст - температурный коэффициент линейного расширения материала стенки резервуара (из паспорта на резервуар), для стали αст =12,5×10-6 1/°C;

T - температура стенки резервуара, принимаемая равной температуре НП в резервуаре tcp.i, °C.

2. Массу НП рассчитывают по формуле:

m i = ρ c p . i × V i , ( 3 )

где ρcp.i - средняя плотность НП, измеренная ИС;

Vi - объем НП, определенный по формуле (2).

Как показали исследования при испытаниях способа контроля изменения геометрических размеров траншейного резервуара с использованием опытного образца системы измерительной «СТРУНА», при изменении геометрических размеров резервуара происходит коррекция величины уровня нефтепродукта в резервуаре и исключается ошибка при расчете массы нефтепродукта выше допустимой величины погрешности, при этом лучшие результаты получаются при установке дополнительного подвижного магнита, прикрепленного к крыше резервуара, на нескольких датчиках, например на датчике уровня и датчике плотности. Чем больше датчиков будет использовано для контроля высоты траншейного резервуара, тем выше будет точность измерения массы нефтепродукта. Погрешность измерения перемещения дополнительного подвижного элемента, прикрепленного к крыше траншейного резервуара и являющегося аналогом поплавку уровня по физической сущности магнитострикционного датчика, одинакова с погрешностью измерения уровня.

Следует отметить, что при рассмотрении примера реализации способа измерения массы нефтепродуктов в траншейных резервуарах рассмотрен случай использования магнитострикционных датчиков как наиболее точных и надежных в эксплуатации, однако указанный способ может быть реализован и при использовании датчиков уровня других типов, например емкостных, радиоволновых.

Способ измерения массы нефтепродуктов в траншейных резервуарах, позволяющий выполнять измерения уровня, плотности, температуры и массы продукта в траншейных резервуарах с использованием магнитострикционных датчиков и контроля расстояния между дном и крышей резервуара, отличающийся тем, что контроль расстояния между дном и крышей резервуара осуществляется постоянно с помощью установки на магнитострикционные датчики дополнительного подвижного элемента с магнитами, прикрепленного к крыше резервуара, позволяющего отслеживать изменение формы резервуара в процессе хранения продукта, сигнализировать о превышении относительного изменения высоты траншейного резервуара выше заданной величины и осуществлять коррекцию измерений уровня, объема и массы продукта при изменении геометрических размеров траншейного резервуара.



 

Похожие патенты:

Изобретение относится к области нефтедобычи и может быть использовано для работы в составе измерительных установок и передачи данных о параметрах нефтегазоводяного потока в вычислительный блок измерительной установки для корректировки данных, участвующих в вычислении дебита продукции нефтяных скважин.

Изобретение относится к области измерительной техники, а именно к способам контроля состояния систем терморегулирования. .

Изобретение относится к бесконтактным средствам измерения объема различных сред, включая агрессивные и сыпучие (грунт). .

Изобретение относится к измерительной технике и может быть использовано в системах измерения массы нефтепродуктов и других жидкостей, в том числе взрывоопасных, при их отпуске, приеме и хранении.

Изобретение относится к области измерительной техники и может быть использовано в системах измерения массы нефтепродуктов и других жидкостей. .

Изобретение относится к способам и устройствам для заправки жидким теплоносителем системы терморегулирования космического аппарата. .

Изобретение относится к контрольно-измерительной технике и может быть использовано в системах контроля объема и уровня жидкости. .

Изобретение относится к измерительной и вычислительной технике, может быть использовано для измерения частоты и периода сигналов от датчиков измерений неэлектрических величин, например, расхода газовой среды.

Изобретение относится к измерительной технике и позволяет повысить надежность и точность устройств. .

Изобретение относится к технике измерения количества (объема, массы) вещества в условиях его произвольного распределения в полости сосуда, например, при наличии ускорений, и других условиях, когда задачу измерения количества жидких и сыпучик веществ невозможно свести к задаче измерения уровня среды в сосуде, Способ состоит в излучении электромагнитных колебаний в пространство, ограниченное металлической оболочкой, и выводе части мощности с регистрацией в измерительной схеме.

Изобретение относится к измерительной технике и может быть использовано в системах измерения массы нефтепродуктов в траншейных резервуарах. Отличительной особенностью устройства для измерения массы нефтепродуктов в траншейном резервуаре, содержащего измерительную систему, измеряющую уровень, плотность, температуру и массу продукта в резервуаре, является то, что в измерительную систему введены магнитострикционные датчики контроля высоты резервуара с подвижными элементы с магнитами. Подвижные элементы с магнитами прикреплены к крыше траншейного резервуара, с выхода измерительной системы на третий дополнительный вход устройства динамического контроля погрешности измерений поступают параметры высоты траншейного резервуара, которые обрабатываются с учетом градуировочной характеристики траншейного резервуара и уровня нефтепродукта в нем. При изменении высоты траншейного резервуара осуществляется коррекция измерений уровня и массы нефтепродукта, хранящегося в траншейном резервуаре. Технический результат - возможность осуществления коррекции измерений уровня и массы продукта при изменении геометрических размеров траншейного резервуара. 2 з.п. ф-лы, 2 ил.

Изобретение относится к технике контроля, измерения плотности, уровня и определения массы жидкостей преимущественно в резервуарах. Техническим результатом являются уменьшение погрешностей измерения интегральной плотности и уровня жидкости в резервуаре. В способе измерения параметров жидкости измеряют разность силы тяжести и выталкивающей силы частично погруженного буйка, формируют угловое перемещение посредством воздействия сил на плечи углового шарнира, имеющего ортогональный груз, производят преобразование углового перемещения в электрический сигнал, по величине которого определяют интегральную плотность, измеряют отдельно сигнал, пропорциональный уровню жидкости от дна резервуара, определяют объем жидкости в резервуаре, умножая который на интегральную плотность вычисляют массу жидкости в резервуаре. В устройство измерения параметров жидкости в резервуаре, содержащее буек и микроконтроллер, введены угловой шарнир, снабженный сенсором угла поворота шарнира и ортогональным грузом, а также уровнемер, причем буек закреплен на угловом шарнире, а выходы сенсора угла поворота и уровнемера подключены к микроконтроллеру. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области хранения и транспортировки нефти и нефтепродуктов. Способ оценки количественных потерь нефти и нефтепродуктов от испарения при малых дыханиях резервуара, оборудованного дыхательным клапаном, заключается в контроле над изменением избыточного давления в резервуаре и предусматривает регистрацию значения избыточного давления, атмосферного давления, средних значений температуры газового пространства в резервуаре, определение изменений массовой концентрации углеводородов в газовом пространстве резервуара, определение массовых потерь от испарения при вытеснении обогащенной парами углеводородов по определенным формулам. Обеспечивается повышение точности определения массовых потерь. 1 табл., 1 пр.

Изобретение относится к системам нефтепродуктообеспечения. Изобретение касается способа замера объема нефтепродукта в резервуаре, в котором мерной линейкой замеряют высоту нефтепродукта в резервуаре, имеющем форму цилиндра круглого горизонтально расположенного, и при известных величинах радиуса и длины резервуара объем нефтепродукта определяют по безразмерной диаграмме, единой для всех горизонтально расположенных резервуаров и которая представляет функцию V/(R2*L)=f(h/R), где V - объем нефтепродукта в резервуаре, R - радиус резервуара, L - длина резервуара, h - высота нефтепродукта в резервуаре. Технический результат- доступность и относительная простота замера объема нефтепродукта. 3 ил.

Предложены способы и система для измерения расхода входного воздушного потока газовой турбины с использованием инертного газа. Способ измерения массового расхода воздушного потока включает: ввод инертного газа в воздушный поток, при этом ввод инертного газа осуществляют перед фильтром на входе турбины; смешивание газа с воздухом; измерение концентрации упомянутого газа, смешанного с воздухом, в местоположении перед компрессором газовой турбины; запись количества упомянутого газа, введенного в упомянутый воздушный поток, и вычисление массового расхода воздушного потока на основе упомянутой измеренной концентрации газа и записанного количества введенного газа. Система для измерения массового расхода воздушного потока включает: газовую турбину, имеющую вход газовой турбины, фильтр на входе газовой турбины и компрессор, расположенный ниже по потоку относительно фильтра, источник инертного газа для ввода газа перед фильтром на входе турбины, при этом инертный газ вводится в воздушный поток и смешивается с воздухом, прибор для определения концентрации газа, смешанного с воздухом, выполненный с возможностью всасывания смеси инертного газа и воздуха и измерения уровня концентрации инертного газа; и процессор, который принимает результат измерения концентрации газа от упомянутого прибора для определения концентрации газа в местоположении перед компрессором газовой турбины и вычисляет массовый расход воздушного потока на основе упомянутой измеренной концентрации. Технический результат – повышение точности измерения расхода входного воздушного потока газовой турбины. 2 н. и 6 з.п. ф-лы, 3 ил.
Наверх