Стенд для испытаний на прочность

Изобретение относится к прочностным испытаниям конструкций летательных аппаратов (ЛА). Стенд содержит устройство нагружения объекта испытаний распределенными нагрузками в виде наружных ограничительных обечаек с продольными и поперечными ребрами, образующими ячейки, в которых размещены надувные эластичные мешки, соединенные с датчиками давления и с системой подачи переменного давления газа, по краям ячеек установлены эластичные кромки. Эластичные кромки имеют опорную часть, прикрепленную к ребрам, и лепестковую, прижимаемую к объекту испытаний надувными мешками. Ячейки имеют датчик перемещения на ребре, лючок в ограничительной обечайке и снабжены дополнительным датчиком для измерения давления газа в ячейке. Система подачи переменного давления обеспечивает сброс давления в мешке со скоростью падения давления в противоположной ячейке. Высота опорной части и ширина лепестковой части кромки и ее толщина определяются расчетно-опытным путем. Технический результат: повышение надежности проведения испытаний, обеспечение проведения испытаний с нагружением переменными распределенными нагрузками с более точным воспроизведением условий полета. 1 ил.

 

Известна установка для испытаний на прочность элементов конструкций летательных аппаратов [SU 944422 A2, G01M 5/00, 15.01.1981 (07.11.1991)], у которой устройство нагружения на распределенные нагрузки представляет собой отдельные рабочие камеры, размещенные на поверхности объекта испытаний (ОИ), связанные газовой магистралью с источником давления и через рычажную систему с гидроцилиндром. Для плотного контакта поверхности ОИ с рабочими камерами последние по контуру имеют торцевые эластичные камеры, соединенные с источником разряжения. Недостатком известной установки является ее чрезвычайная сложность.

Известен стенд для испытаний на прочность головного обтекателя [RU 2293956 C2, G01M 5/00, 07.09.2004 (20.02.2007)], содержащий ограничительные обечайки, имеющие продольные и поперечные ребра, образующие ячейки, в которых размещены эластичные силовые мешки, связанные с системой создания давления. Для исключения повреждения эластичных силовых мешков зазоры между ОИ и ребрами ячеек обклеены мягким материалом, например войлоком. Недостатком известной конструкции является выдавливание мешка в соседнюю ячейку при увеличении зазора между ребром ячейки и ОИ при деформации последнего. Выдавливание мешка, как правило, приводит к его разрушению. Это обстоятельство ограничивает область применения при несимметричном нагружении малыми деформациями и малыми давлениями.

Целью изобретения является максимальное приближение условий испытаний конструкций ЛА к натурным за счет возможности воспроизведения неравномерных давлений на поверхность ОИ при значительных деформациях объекта испытаний и надежности за счет уменьшения вероятности и минимизации последствий повреждения мешков.

Это достигается тем, что эластичные кромки ребер ячеек имеют опорную часть и лепестковую часть, прижимаемую мешками к поверхности ОИ, препятствующие выдавливанию мешков в соседние ячейки при деформации ОИ. Высота опорной части и ширина лепестковой части кромки и ее толщина определяются расчетно-опытным путем. Для контроля величины деформации и предотвращения опирания ОИ на ребра часть из них в зонах максимальной деформации снабжена датчиками перемещения. Каждая ячейка имеет лючок в ограничительной обечайке, позволяющий перед закладкой в нее мешка расправить лепестковые части кромок, и помимо датчика, измеряющего давление в мешке, снабжена дополнительным датчиком, измеряющим давление газа непосредственно в ячейке. Система подачи переменного давления газа при разрушении мешка обеспечивает сброс давления в мешке ячейки с противоположной стороны ОИ со скоростью падения давления в ячейке с поврежденным мешком.

На чертеже представлена схема стенда. Объектом испытаний 1 является носовой отсек фюзеляжа с консолью крыла. Объект испытаний через имитатор 2 смежного отсека закреплен к силовому порталу 3 стенда. Вокруг объекта испытаний расположены две половинки раздвижной ограничительной обечайки 4, закрепленные на подвижных основаниях 5. Обечайка разделена продольными 6 и поперечными 7 ребрами на ячейки 8, в которых размещены надувные эластичные мешки 9. По краям ячеек установлены эластичные кромки 10. Эластичные кромки имеют опорную часть 11, прикрепленную к ребрам, и лепестковую 12, прижимаемую к ОИ надувными мешками. Размеры эластичной кромки, обеспечивающие требования предотвращения выдавливания мешков при перемещении ОИ в процессе нагружения определяются предварительным расчетом.

Ширина лепестковой части кромки определяется из условия, что сила трения больше половины силы выдавливания:

F т р = к т р P max b > 0,5 F в ы д а в л . = ( P max P min ) h , где

Fтр - сила трения на 1 погонный метр лепестковой части кромки,

ктр - коэффициент трения материала кромки по металлу,

b - минимальная ширина лепестковой части,

Pmax и Pmin - давление в мешках соседних отсеков,

Fвыдавл. - сила выдавливания на один погонный метр кромки из ячейки с большим давлением Pmax в соседнюю ячейку с меньшим давлением Pmin,

h - максимально допустимое расстояние между краем ребра ячейки и ОИ (определяет высоту основной части кромки, зависит от деформации ОИ).

Толщина опорной части кромки определяется из условия, чтобы ее максимальный прогиб A не превышал толщины ребра d при максимальном расстоянии между краем ребра ячейки и ОИ.

Кромка рассчитывается как удлиненная прямоугольная мембрана, защемленная по периметру. Величина максимального прогиба составляет:

Δ = δ 0.37 Δ P E ( h δ ) 4 3 , Δ d ,  где

Δ - максимальный прогиб кромки, 5 - толщина опорной части кромки,

Δ P = P max P min

E - модуль упругости материала кромки,

d - толщина ребра.

По расчету для кромки из резины для максимального ожидаемого расстояния между краем ребра и ОИ h=25 мм и условий: Pmax=0,2 МПа, Pmin =0,1 МПа, ктр=0,25, E=10 МПа, толщина ребра d=4 мм, минимальная ширина лепестковой части составила 30 мм, а толщина кромки 3,5 мм. Высота Н опорной части кромки с учетом h=25 мм и необходимости крепления к ребру составляет 50 мм. Максимальный прогиб опорной части кромки равен 3,9 мм.

Ввиду того что не представляется возможным при расчете учесть все влияющие факторы (например, совместное нагружение мешка и кромки), отсутствие точных данных по деформации ОИ и характеристикам материалов, окончательно размеры эластичной кромки уточняются в процессе отработки.

Каждая ячейка имеет в ограничительной обечайке лючок 13 с крышкой.

Мешки соединены с системой подачи переменного давления газа 14, включающей источник давления, редуктор, коллектор, регулирующие клапаны и аппаратуру управления, и датчиками 15 для измерения давления в каждом мешке. Система подачи давления дополнительно снабжена датчиками 16 для измерения давления газа непосредственно в каждой ячейке при разгерметизации мешка. На ребрах ячеек установлены датчики перемещений 17 со штоками 18.

Предлагаемый стенд для прочностных испытаний работает следующим образом. Перед испытанием вокруг ОИ смыкаются половинки ограничительной обечайки и неподвижно соединяются с силовым порталом. Через лючки в обечайке контролируются и при необходимости расправляются лепестковые части кромок, закладываются и расправляются эластичные надувные мешки. Через крышки лючков выводятся штуцера подвода и дренажа газа и измерения давления в мешке. На крышках же лючков имеются штуцера для дополнительных датчиков измерения давления в ячейке. После завершения коммутации всех шлангов, клапанов, измерительных и управляющих кабелей проводится опрессовка стенда. Для этого в мешки подается давление газа не более 40% от того, которое будет в процессе испытания. При этом мешки окончательно расправляются и прижимают к ОИ лепестковые части кромок. В процессе испытания от системы подачи переменного давления в мешки подается давление газа в соответствии с программой испытания. Это давление соответствует распределению давления по поверхности ОИ в полете с учетом изменения по времени.

Разность давлений в соседних ячейках стремится выдавить мешок из ячейки с большим давлением в ячейку с меньшим давлением через зазор между ОИ и ребром. Этому препятствует эластичная кромка своими опорной и лепестковой частями.

При воспроизведении реальных неравномерных распределений нагрузок ОИ деформируется и смещается внутри ограничительной обечайки. Величина смещения измеряется датчиками перемещения. При отдалении ОИ от края ребра ячейки эластичная часть кромки частично вытягивается из под мешка, продолжая препятствовать выдавливанию мешка. При приближении ОИ к краю ребра эластичная часть кромки изгибается. Если возникнет угроза опирания ОИ на край ребра по показаниям датчиков перемещения система подачи давления среагирует сбросом давления газа в соответствующих мешках.

В случае если какой-нибудь мешок разрушится, то из-за наличия лепестковых частей кромок не происходит мгновенного падения давления газа в ячейке. Система подачи давления по показаниям датчиков давления в поврежденном мешке и датчика давления в той же ячейке начнет синхронно понижать давление в мешке ячейки с противоположной стороны ОИ, чтобы избежать случая нештатного нагружения.

Предлагаемая конструкция стенда для прочностных испытаний повышает надежность проведения испытаний, обеспечивает проведение испытаний с нагружением переменными распределенными нагрузками с более точным воспроизведением условий полета.

Стенд для испытаний на прочность, содержащий устройство нагружения объекта испытаний распределенными нагрузками в виде наружных ограничительных обечаек с продольными и поперечными ребрами, образующими ячейки, в которых размещены надувные эластичные мешки, соединенные с датчиками давления и с системой подачи переменного давления газа, по краям ячеек установлены эластичные кромки, отличающийся тем, что эластичные кромки имеют опорную часть, прикрепленную к ребрам, и лепестковую, прижимаемую к объекту испытаний надувными мешками, ячейки имеют датчик перемещения на ребре, лючок в ограничительной обечайке и снабжены дополнительным датчиком для измерения давления газа в ячейке, система подачи переменного давления обеспечивает сброс давления в мешке со скоростью падения давления в противоположной ячейке, а высота опорной части и ширина лепестковой части кромки и ее толщина определяются расчетно-опытным путем.



 

Похожие патенты:

Изобретение относится к области прочностных испытаний конструкций летательных аппаратов (ЛА) с тепловым и силовым нагружением. Cтенд теплопрочностных испытаний содержит радиационные нагреватели, дополнительные нагреватели в районе наиболее теплонапряженных и теплоемких мест объекта испытаний (ОИ), снабженные индивидуальными источниками регулируемого напряжения, и систему силового нагружения.

Изобретение относится к области испытательной техники, в частности к стендам для прочностных испытаний авиационных конструкций. Стенд содержит маслонасосную станцию, электрогидравлические усилители, гидравлические цилиндры.

Изобретение относится к измерительной технике и может использоваться для проведения испытаний на устойчивость электронных плат (ЭП) и их компонентов к механическим воздействиям, например, в космической промышленности.
Изобретение относится к способам неразрушающего контроля технического состояния конусов и устоев железнодорожных мостов и может быть использовано для контроля и диагностики конусов и устоев мостов.

Изобретение относится к области неразрушающего контроля, а именно к диагностике и мониторингу состояния конструкции зданий или других инженерно-строительных сооружений в процессе строительства и эксплуатации.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов. .

Изобретение относится к области красильно-отделочного производства текстильной промышленности, а также может быть использовано в целлюлозно-бумажной, полиграфической, химической и других отраслях, где применяется валковое оборудование.

Изобретение относится к области гидравлики, в частности к сливу жидкостей из емкостей. .

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний авиационных конструкций. .

Изобретение относится к моделированию и может быть использовано для создания модели поведения конструкций и изделий авиационной техники в условиях неопределенности входных параметров. Техническим результатом является повышение точности испытаний механических и эксплуатационных свойств разрабатываемых и восстановленных узлов и деталей. Способ содержит создание модели поведения конструкций и изделий авиационной техники в условиях неопределенности входных параметров на двух уровнях: макроскопическом - методом конечно-элементного моделирования и микроскопическом - методами квантовой механики и молекулярной динамики, сначала рассматриваются микроскопические образцы, представляющие модель, геометрически подобную стандартным образцам, используемым для механических испытаний, которые виртуально испытываются методами молекулярной динамики, а полученные механические параметры микроскопических образцов используют, как недостающие макроскопические параметры в моделях материалов для конечно-элементного моделирования, причем при переходе от микроскопического к макроскопическому уровню моделирования и обратно используют масштабную инвариантность механических параметров и законов. 4 ил.

Изобретение относится к технике испытаний протяженных объектов с переменной по длине жесткостью. Сущность: объект консольно закрепляют на силовой колонне и с помощью механического кривизномера измеряют кривизну отдельных его участков, средние сечения которых располагаются в заданных расчетных сечениях, при изгибе объекта под действием заданной нагрузки, приложенной к свободному его концу. Кривизну отдельных участков, расположенных в различных сечениях по длине объекта, измеряют путем последовательной перестановки кривизномера от сечения к сечению по реперным шайбам, сначала в исходном деформированном состоянии при изгибе под действием некоторой начальной нагрузки, а затем при изгибе после приложения заданной дополнительной нагрузки. Вычисляют кривизну каждого участка, соответствующую изгибающему моменту от заданной нагрузки, как разность значений кривизны, измеренной кривизномером в двух указанных деформированных состояниях объекта, и определяют изгибную жесткость в расчетном сечении как частное от деления изгибающего момента в среднем сечении участка на измеренную кривизну, умноженное на поправочный коэффициент, который предварительно находят расчетным способом по известным функциям распределения номинальных изгибных жесткостей объекта и изгибающих моментов, задаваемых при испытании, как отношение номинального значения средней кривизны участка к номинальному значению кривизны в среднем его сечении. Технический результат: повышение точности и снижение трудоемкости. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний фюзеляжей летательных аппаратов на выносливость циклическим приложением внутреннего избыточного давления, создаваемого сжатым воздухом. В процессе реализации предложенного способа увеличение давления воздуха в фюзеляже и его стабилизацию на горизонтальных участках программ обеспечивают одним и тем же входным регулирующим клапаном, имеющим равнопроцентную расходную характеристику. При этом на восходящем участке программы входной регулирующий клапан открывают на заранее заданную величину, обеспечивающую программный темп увеличения давления в фюзеляже, измеряют давление перед входным клапаном и по величине давления корректируют степень открытия клапана. На горизонтальном участке программы входной клапан прикрывают до заданной величины и управление им ведут по давлению в фюзеляже. Технический результат заключается в повышении точности отработки программ нагружения, сокращении технических средств, необходимых для создания установок такого типа, а также расширение области их применения. 3 ил.

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний фюзеляжа летательных аппаратов на выносливость циклическим нагружением внутренним давлением сжатого воздуха. Техническим результатом предлагаемого изобретения является повышение точности отработки программ нагружения, сокращение технических средств для ее создания, а также расширение области применения. Данный технический результат достигается тем, что в установке используется один входной регулирующий клапан с равнопроцентной характеристикой, который в зависимости от участка программы пневматического нагружения, восходящий или горизонтальный, открывают в большей или меньшей степени, для чего в установку введены два блока уставок открытия клапана, два блока сравнения, два блока задания уровня давления в фюзеляже, блок коррекции, сумматор, таймер, ключевые элементы и линии связи для организации взаимодействия перечисленных функциональных элементов. 3 ил.

Изобретение относится к области испытательной техники, в частности к установкам для ресурсных испытаний фюзеляжа циклическими нагрузками внутренним избыточным давлением сжатого воздуха. При реализации способа в ходе нагружения фюзеляжа давление сжатого воздуха, поступающего от внешнего источника питания, стабилизируют перед входным большерасходным клапаном. Открывают большерасходный клапан на заранее заданную величину, обеспечивающую программный темп увеличения давления в фюзеляже. На горизонтальном участке большерасходный клапан приоткрывают на заданную величину, обеспечивающую компенсацию части потерь газа из фюзеляжа за счет утечек. Точную компенсацию утечек получают за счет работы малорасходного регулирующего клапана управляемого по величине давления газа в фюзеляже. Технический результат заключается в повышении точности отработки программ нагружения, расширении области применения, упрощении конструкции. 2 ил.

Изобретение относится к области машиностроения и может быть использовано, в частности, при аттестации, сертификации и исследовании продукции заводов, выпускающих трехниточные шпалы и шпалы с разной шириной колеи. Стенд содержит три независимых следящих электрогидравлических привода, включающих три гидроцилиндра, три сервоклапана, три динамометра, три регулятора и три механических системы, одна из которых содержит рычажную систему, все приводы запитаны от маслонасосной станции и управляются от одной ЭВМ. Один из следящих электрогидравлических приводов закреплен неподвижно, а два других вместе с поперечными балками имеют свободу перемещения. Одна опора шпалы напротив неподвижного привода имеет фиксированное положение, а вторая опора шпалы может менять положение в зависимости от схемы нагружения. Технический результат: возможность проводить испытания любой шпалы с шириной колеи от 1067 до 1520 мм. 4 ил.

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний летательных аппаратов. Установка содержит трубопроводы подачи и сброса воздуха с расположенными на них клапанами, а также средства автоматического программного управления этими клапанами. В состав средств автоматического управления входят регулятор давления, датчик давления, блок задания программ, два блока сравнения, два блока задания уровней давления, логический элемент и связи для организации взаимодействия перечисленных функциональных элементов. Технический результат заключается в повышении точности отработки программ нагружения и сокращение технических средств, необходимых для создания установок такого типа. 2 ил.

Изобретение относится к области авиации, в частности к системам контроля состояния летательных аппаратов в процессе эксплуатации. Система контроля технического состояния конструкций летательного аппарата содержит датчики технического состояния лопастей винта вертолета или консолей крыла самолета и блок-регистратор, размещенный на их борту. На каждой лопасти винта вертолета и каждой консоли крыла самолета установлены не менее двух волоконно-оптических тензодатчиков на основе брэгговской решетки и не менее двух виброакустических датчиков. Система включает волоконно-оптические магистральные кабели, оптические разъемы, электрические шины управления, оптические свитчи, волоконно-оптические измерительные линии. В вертолетную систему контроля дополнительно входит оптический вращающийся соединитель. Блок-регистратор содержит блок опорного сигнала, блок волоконно-оптической коммутации, блок источника света, блок спектрального анализа, блок управления и анализа информации, блок хранения информации, имеет вход-выход электрического сигнала управления и вход электропитания, блок электропитания. Тензодатчики и виброакустические датчики вмонтированы в толщу композиционного материала в самые нагруженные части лонжеронов лопастей винта вертолета и консолей крыла самолета. Достигается возможность контроля технического состояния лонжеронов лопастей и консолей крыла, выполненных из композиционных материалов, при производстве и эксплуатации авиационной техники. 2 н. и 2 з.п. ф-лы, 5 ил.

Изделие относится к области испытательной техники, в частности к устройствам для прочностных испытаний фюзеляжей летательных аппаратов. Стенд содержит систему циклических нагрузок сжатым воздухом, состоящую из источника сжатого воздуха, основного трубопровода подачи сжатого воздуха в фюзеляж с расположенным на нем входным большерасходным регулирующим клапаном, байпасного трубопровода, трубопровода сброса воздуха из фюзеляжа с расположенным на нем клапаном сброса, средствами защиты фюзеляжа от перегрузки избыточным давлением сжатого воздуха и устройством шумоглушения, а также средств автоматического программного управления, включающих в свой состав регулятор давления в фюзеляже и первый датчик давления. Дополнительно в конструкцию стенда введены регулятор давления "после себя" на первом байпасном трубопроводе, второй байпасный трубопровод, параллельный входному регулирующему клапану с расположенными на нем ручным и соленоидным клапанами, блок коррекции степени открытия входного регулирующего клапана, таймер, командоаппарат, блоки сравнения уровней давления и ключевой элемент для управления работой регулирующего клапана и всей системой управления избыточным давлением в фюзеляжах испытуемых летательных аппаратов. Техническим результатом изобретения является повышение точности отработки программ нагружения фюзеляжей внутренним избыточным давлением при испытаниях на выносливость, а также расширение области применения стенда. 2 ил.

Область использования: стендовые испытания на прочность конструкций летательных аппаратов (ЛА), например обтекателей на внешнее давление при неравномерном нагреве. Сущность: нагреватель для стенда испытаний на прочность при неравномерном нагреве содержит гибкие поверхностные нагревательные элементы (НЭ) переменного сечения из токопроводящего материала и теплоизолирующую оболочку. Поверхностные нагревательные элементы натягиваются вдоль объекта испытаний (ОИ) устройствами натяжения. Между поверхностными НЭ и ОИ имеется зазор. Зазор обеспечивается установкой на поверхности НЭ точечных упоров. В зазоре установлен коллектор подачи газа для обеспечения охлаждения ОИ в определенные моменты времени. НЭ имеют участки разной ширины с выполненными на них вырезами. Величина зазора и площадь поперечного сечения НЭ подбираются для каждого участка ОИ в зависимости от условий теплообмена и определяются расчетно-опытным путем. НЭ соединены параллельно и объединены в группы, соответствующие верхней, нижней и боковым наружным поверхностям ОИ. Каждая группа подсоединена к своему источнику электропитания. Таким образом достигается большее приближение условий испытаний ЛА к натурным за счет возможности воспроизведения по времени и температуре неоднократных нагревов и охлаждений различных участков поверхности ОИ за одно испытание. 1 ил.
Наверх