Способ очистки магнетитовых концентратов от серы электролитическими растворами гипохлорита

Изобретение относится к обогащению полезных ископаемых и может быть использовано при доводке магнетитовых концентратов с высоким содержанием серы (более 0,08%). Способ очистки магнетитовых концентратов от серы включает обработку окислителем, в качестве которого используют электролитический раствор гипохлорита, полученный из исходных хлоридсодержащих водных систем, в качестве которых используют природные, технические и модельные хлоридсодержащие воды с концентрацией хлорид-ионов от 6 до 30 г/л, путем их электрохимической обработки в бездиафрагменном моно- или биполярном электролизере с нерастворимыми анодами при анодной плотности тока от 250 А/м2 до 1000 А/м2 в течение 5-15 минут. Полученный раствор гипохлорита с концентрацией активного хлора от 0,5 до 7,0 г/л смешивают с магнетитовым концентратом при соотношении Т:Ж от 1:5 до 1:100, выдерживают до 5-ти часов, снижая содержание серы в магнетитовом концентрате до 0,01%, обезвоживают и высушивают концентрат. Применение полученных растворов гипохлорита позволяет в динамических условиях за 5 часов удалить до 90% сульфидной серы и обеспечивает снижение ее содержания в магнетитовом концентрате до 0,01%. Потери магнетита при этом не превышают 1% . 1 з.п. ф-лы, 1 пр.

 

Изобретение относится к горному делу и, в частности, к обогащению полезных ископаемых и может быть использовано при доводке магнетитовых концентратов.

Известен способ окисления сульфидных минералов различными окислителями. Так, например, для окисления пирита (пример №1) и очистки магнетитового концентрата от пирротина (пример №2) используется озон. Способ окисления сульфидных минералов включает подачу пульпы (Т:Ж=1,5:2) с сульфидными минералами и окислителя (3000÷15000 мг·л/ч) в реактор с последующим их перемешиванием и выводом окисленных соединений из реактора. В камере реактора осуществляется перемешивание пульпы с окислителем посредством мешалок-диспергаторов, создавая турбулентное движение пульпы. В результате чего происходит механическая активация поверхности окисляемой твердой фазы пульпы, что повышает степень окисления сульфидных минералов, а также обеспечивает высокую скорость растворения продуктов реакции в пульпе с образованием гидратированных комплексов серной кислоты и элементарной серы. [Патент РФ №2365425. Кл. C22B 1/11 от 19.03.2008 г. на «Способ окисления сульфидных минералов» (прототип)].

Недостатками указанного способа являются:

Обработка пульпы окислителем при Т:Ж=1,5:2 и при концентрации пирита в твердой фазе пульпы более 0,1% приводит к резкому увеличению концентрации соединений серы в жидкой фазе, и как следствие:

- расширение области устойчивости в ней пирита по мере его растворения т.к. максимальная устойчивость сульфидов железа в водных растворителях с концентрацией соединений серы ≤10-6 моль/л находится в области значений их рН от 4 до 8 (Е от 0 до -450 мВ); при повышении их концентрации до 10-1 моль/л увеличивается поле устойчивости пирита: область значений рН составляет от 1 до 14 (Е от +150 до -700 мВ).

- резкое уменьшение в размерах поля устойчивости магнетита (область значений рН, при которых магнетит устойчив, изменится от 6÷14 до 11÷14) при попутном резком снижении рН жидкой фазы пульпы. Т.е. будут созданы условия для растворения самого магнетита (ценного компонента).

Технология, использующая озон (пример №2), требует тщательного контроля техники безопасности, тестирование константы концентрации озона газоанализаторами, а также аварийного управления чрезмерной концентрацией озона, так как озон относится к первому, самому опасному классу отравляющих веществ и является взрывоопасным газом.

Высокая стоимость процесса озонирования.

Кроме того, низкая растворимость озона в воде (в сравнении окисленными формами хлорсодержащих ионов) требует создания избыточного давления или тонкого диспергирования газа в реакторе для его эффективного использования.

Целью изобретения является снижение содержания серы в магнетитовых концентратах методом ее выщелачивания продуктами электролиза хлоридсодержащих водных систем с концентрацией активного хлора более 0,5 г/л.

Способ включает в себя электрохимическую обработку природных, технических и модельных хлоридсодержащих вод с исходной концентрацией хлорид-ионов от 6 до 30 г/л для получения гипохлоритных растворов, используемых в качестве реагента для удаления серы из магнетитового концентрата методом выщелачивания (окисление сульфидной серы до сульфат ионов).

Указанная цель достигается получением растворов гипохлорита с концентрацией активного хлора от 0,5 до 7,0 г/л из природных, технических и модельных хлоридсодержащих водных систем, которые впоследствии используются в качестве реагента для выщелачивания сульфидной серы из магнетитовых концентратов. Процесс выщелачивания серы с использованием активного хлора интенсифицируют добавлением в раствор гипохлорита одномолярного раствора азотной кислоты, перекиси водорода или других реагентов-окислителей в количестве от 1:100 до 1:10. При этом рациональный диапазон соотношения Т:Ж в процессе выщелачивания серы из магнетитовых концентратов электролитическими растворами активного хлора составляет от 1:5 до 1:100. Таким образом, использование смеси одномолярной азотной кислоты в количестве 1%, 2%, 4% и 10% с раствором активного хлора позволяет интенсифицировать процесс растворения пирита в сравнении с использованием раствора активного хлора без азотной кислоты примерно в 1,1, 1,3, 1,4 и 1,5 раза, соответственно.

Применение полученных растворов гипохлорита позволяет за 5 часов удалить до 90% сульфидной серы и обеспечивает снижение ее содержания в магнетитовом концентрате до 0,01%. Потери магнетита при этом не превышают 1%.

Способ реализуется следующим образом.

Исходные водные хлоридсодержащие системы (природные, технические и модельные хлоридсодержащие водные системы) с концентрацией хлорид-ионов от 6 до 30 г/л поступают в бездиафрагменный электролизер для электрохимической обработки. В процессе электролиза происходит насыщение минерализованной воды активным хлором и кислородом, являющимися сильными окислителями, т.е. водные хлоридсодержащие системы превращаются в растворы гипохлорита с концентрацией активного хлора от 0,5 до 7,0 г/л и кислорода до 30,0 мг/л.

Образование гипохлорита в электролизере осуществляется по следующим реакциям:

на аноде: 2Cl--2e=Cl2↑;

на катоде: 2H2O+2e=H2↑+2OH-.

в объеме Cl2+H2O=HCl+HClO=2H++ClO-+Cl-

В качестве электрохимического кондиционера воды используют бездиафрагменные электролизеры моно- или биполярного типа с нерастворимыми анодами. Рекомендуется использование анодов, выполненных из ОРТА-И1 (титановая основа с покрытием, состоящим из смеси оксидов иридия и рутения), что увеличивает срок службы электролизеров.

Процесс электрохимической обработки минерализованной воды проводят при плотностях тока на электродах от 250 до 1000 А/м2 и времени обработки от 5 до 15 мин. При выбранных режимах обработки расход электроэнергии на обработку 1 м3 воды составляет от 10 до 50 кВт*ч, на получение 1 кг активного хлора от 8 до 16 кВт*ч.

Полученные из хлоридсодержащих водных систем растворы гипохлорита подают в контактную емкость, обеспечивающую:

1. Смешение раствора гипохлорита с некондиционным магнетитовым концентратом в соотношениях от 5:1 до 100:1 в зависимости от концентрации гипохлорита в полученных растворах, а также концентрации серы в магнетитовом концентрате.

2. Продолжительность контакта до 5 часов позволяет удалить до 90% сульфидной серы из магнетитового концентрата.

В итоге получается кондиционный магнетитовый концентрат с содержанием серы от 0,01 до 0,07%, что соответствует требованиям мирового рынка.

Пример.

В качестве объектов исследования выбраны: магнетитовый концентрат Ковдорского ГОКа с содержанием серы - 0,1%, модельная водная система (раствор NaCl 30,0 г/л), продукты электрохимической обработки модельной водной системы.

Получение раствора гипохлорита из хлоридсодержащих вод методом электролиза является стабильным процессом, показатели которого зависят только от времени обработки и величины линейного тока на электролизере (плотности тока на электродах).

Для проведения исследований был выбран следующий режим электрохимической обработки вод: время обработки - 10 минут; плотность тока на электродах 500 А/м2. При использовании данного режима концентрация активного хлора составила до 3,0 г/л.

Эксперимент состоял в следующем:

Навески магнетитового концентрата крупностью -0,2 мм и массой по 10 грамм выщелачивались в 100 мл исследуемой жидкой фазы в течение 5 часов. Максимальная продолжительность взаимодействия концентрата с исследуемыми растворами, равная 5 часов, обусловлена переизмельчением минеральной навески при более длительном ее перемешивании. В качестве жидкой фазы использовали электрохимически обработанный раствор NaCl с концентрацией активного хлора до 3,0 г/л. После контакта минеральной навески с исследуемой водной системой ее обезвоживали, промывали дистиллированной водой, высушивали при комнатной температуре и далее взвешивали. Количественный анализ серы в магнетитовом концентрате проводили в испытательном центре ФГУП ЦНИИЧермет.

Результаты исследований процесса выщелачивания серы из магнетитового концентрата в растворе активного хлора, полученного методом электролиза показали, что контакт раствора активного хлора с навеской магнетитового концентрата в течении 5 часов обеспечивает снижение содержания в нем серы с 0,1 до 0,01%, т.е. 90% ее удаление.

Таким образом, в результате проведения исследований процесса выщелачивания серы из магнетитового концентрата раствором активного хлора установлена возможность удаления за пять часов 90% серы из магнетитового концентрата при снижении ее содержания до 0,01%. Потери магнетита в эксперименте составили 0,4%.

Следовательно, в результате проведенных теоретических и экспериментальных исследований обосновано использование электролитических растворов гипохлорита для снижения серы в магнетитовом концентрате и показана возможность получения кондиционных (экологически чистых) магнетитовых концентратов с содержанием серы 0,01%.

1. Способ очистки магнетитовых концентратов от серы удалением серы из магнетитовых концентратов с использованием окислителя, отличающийся тем, что в качестве окислителя серы используют электролитический раствор гипохлорита, полученный из исходных хлоридсодержащих водных систем, в качестве которых используют природные, технические и модельные хлоридсодержащие воды с концентрацией хлорид-ионов от 6 до 30 г/л, путем их электрохимической обработки в бездиафрагменном моно- или биполярном электролизере с нерастворимыми анодами при анодной плотности тока от 250 А/м2 до 1000 А/м2 в течение 5-15 минут, полученный раствор гипохлорита с концентрацией активного хлора от 0,5 до 7,0 г/л смешивают с магнетитовым концентратом при соотношении Т:Ж от 1:5 до 1:100, выдерживают до 5-ти часов, снижая содержание серы в магнетитовом концентрате до 0,01%, обезвоживают и высушивают концентрат.

2. Способ по п.1, отличающийся тем, что в электролитический раствор гипохлорита добавляют одномолярный раствор реагентов-окислителей в количестве от 1:100 до 1:10.



 

Похожие патенты:

Изобретение относится к области цветной металлургии, а также к области экологической безопасности промышленных производств и может применяться при утилизации кеков, шламов и пылей, образующихся в результате переработки руд цветных металлов, в частности медных руд, содержащих мышьяк и серу.
Изобретение относится к области подготовки железорудного сырья к металлургическому переделу посредством очистки последнего от вредных примесей, ухудшающих качество получаемых металлов и сплавов.

Изобретение относится к способу очистки железосодержащего материала от мышьяка и фосфора, и может быть использовано для повышения содержания железа в железосодержащем материале и удаления из него нежелательных примесей, прежде всего ванадия.

Изобретение относится к способу очистки железной руды от мышьяка и фосфора. .

Изобретение относится к области обогащения минерального сырья, экологии, в частности окисления сульфидных минералов, а также может быть использовано в металлургии и химической промышленности.
Изобретение относится к способам очистки природного и техногенного кремний-кальцийсодержащего концентрата от примесей серы, фосфора и углерода и может найти применение в производстве материалов, используемых в покрытиях сварочных электродов.
Изобретение относится к переработке сульфидных руд и концентратов. .

Изобретение относится к подготовке железорудных концентратов к металлургическому переделу путем улучшения их качества за счет удаления нежелательных примесей, содержащихся в концентратах, в первую очередь фосфора.

Изобретение относится к области получения кондиционных концентратов цветных металлов, лимитируемых по содержанию примесей, в частности мышьяка. .

Изобретение относится к области черной металлургии, конкретно к подготовке марганецсодержащего сьфья (не) для производства ферросплавов, Цель изобретения - повышение степени дефосфорации, производительности процесса и его экологичности.

Изобретение относится к области природоохранных технологий и химии кремнийорганических соединений и может быть использовано для очистки загрязненных грунтовых вод, донных отложений и почв путем установки реакционных барьеров.
Изобретение относится к способу консервации водного препарата соединений кальция, который включает следующие стадии: (a) получение водного препарата по меньшей мере одного соединения кальция; (b) добавление к водному препарату стадии a) одного или более источников ионов лития в таком количестве, чтобы общее количество ионов лития в водном препарате составляло от 750 до менее 3000 промилле, вычисленное по отношению к воде в препарате; (c) добавление к водному препарату стадии a) одного или более источников ионов натрия и/или калия в таком количестве, чтобы общее количество ионов натрия и/или калия в водном препарате составляло от 3000 до менее 7500 промилле, вычисленное по отношению к воде в препарате, где стадии (b) и (c) могут быть выполнены одновременно или по отдельности в любом порядке.

Изобретение относится к области биотехнологии. Предложен биосорбент для ликвидации нефти с поверхности водоемов.

Изобретение может быть использовано для очистки маломутных вод, при подготовке воды хозяйственно-питьевого назначения из природных поверхностных источников, при очистке промышленных сточных вод с высоким содержанием дисперсной фазы от взвесей, нефтепродуктов, жировых, белковых и других загрязнений минерального и органического происхождения.

Изобретение относится к химии полимеров, к твердофазной модификации исходного продукта, а именно к способу модификации флокулянта на основе полиакриламида, необходимого для ускорения осаждения твердой фазы и повышения степени очистки суспензий.

Изобретение относится к области сорбционной очистки растворов. Способ очистки водных растворов от эндотоксинов осуществляют путем пропускания раствора через цеолит, модифицированный хитозаном, который дополнительно обработан последовательно растворами сульфата меди и железистосинеродистого калия.

Изобретение может быть использовано в горнодобывающей промышленности и относится к обесшламливанию оборотных сапонитсодержащих вод. Обесшламливание осуществляют посредством воздействия электрическим током на пропускаемую между барабанами-катодами 1 и барабаном-анодом 2 оборотную воду с последующим разделением на сгущенный продукт и осветленную жидкость.
Изобретение относится к очистке воды и может быть использовано для селективного извлечения фтора и/или фосфатов из сточных или природных вод. Способ включает обработку воды при перемешивании кальцийсодержащим композиционным сорбентом с получением твердых продуктов обработки и очищенной воды.

Изобретение относится к устройству для очистки и поддержания безопасности питьевой воды. Устройство для очистки воды содержит по меньшей мере две фильтрующие среды, имеющие такие размеры относительно друг друга, чтобы обеспечить вначале насыщение фильтрующей среды, фильтрующей первое загрязняющее вещество в воде, и с задержкой по времени насыщение фильтрующей среды, фильтрующей второе загрязняющее вещество.
Изобретение относится к области биотехнологии. Предложен биоразлагаемый композиционный сорбент нефти и нефтепродуктов.
Изобретение может быть использовано при очистке промышленных стоков предприятий металлургической, пищевой, фармацевтической, кожевенной, текстильной, лакокрасочной отраслей промышленности, содержащих ионы цветных и тяжелых металлов, взвешенные вещества, масла и жиры. Способ включает усреднение сточных вод, коррекцию рН до величины не менее 10,5, смешивание их с раствором сернокислого алюминия и раствором флокулянта с концентрацией 0,1-0,2 мас.%. Проводят напорную флотацию при подаче в сточные воды 40-60 м3/ч очищенного оборотного стока под давлением 0,11-0,25 МПа с одновременной подачей в него сжатого воздуха и удаляют флотошлам. Перед подачей в сточные воды очищенный оборотный сток обрабатывают ультразвуковым полем с частотой 25-35 кГц. Коррекцию рН ведут добавлением в сточную воду суспензии гашеной извести или растворов гидроксида натрия или карбоната натрия. Расход флокулянта составляет 30-40 мг/л. В качестве флокулянта используют высокомолекулярные катионные флокулянты. Обработку ультразвуковым полем ведут с использованием водно-газового эжектора с газоструйным генератором ультразвука при подаче сжатого воздуха в эжектор под давлением 0,25-0,45 МПа. Способ обеспечивает упрощение процесса очистки, уменьшение времени очистки от ионов цветных и тяжелых металлов, взвешенных веществ, масел и жиров до 16-20 мин при сохранении заданной эффективности очистки. 5 з.п. ф-лы, 1 табл., 5 пр.
Наверх