Способ получения термоэлектрического газочувствительного материала

Изобретение относится к электронике и предназначено для создания материала на основе полупроводниковых наночастиц, обладающего газочувствительным термоэлектрическим эффектом, т.е. величина термо-ЭДС наноматериала может быть чувствительной к различным газам во внешней атмосфере. Изобретение может использоваться в термоэлектрических устройствах, преобразующих тепловую энергию в электрическую, а также при разработки газочувствительных сенсоров. Технический результат: расширение функциональных возможностей материала за счет увеличение термо-ЭДС до 1,3 мВ/K при рабочей температуре 330 К и до 1,1 мВ/K при рабочей температуре 500 К. Сущность: способ заключается в изготовлении пленки толщиной не более 200 нм из полупроводниковых наночастиц SnO2 размером не более 50 нм. После изготовления пленку из наночастиц SnO2 отжигают при температуре 330 ± 20 К или 500±20 К в течение не менее 15 минут в кислородосодержащей атмосфере с последующим охлаждением до комнатной температуры со скоростью не менее 10 К/с. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к электронике и предназначено для создания материала на основе полупроводниковых наночастиц или иначе наноматериала, обладающего газочувствительным термоэлектрическим эффектом, т.е. величина термо-ЭДС наноматериала может быть чувствительной к различным газам во внешней атмосфере. Изобретение может использоваться в термоэлектрических устройствах, преобразующих тепловую энергию в электрическую. Также может быть использовано в различных областях науки и техники для разработки газочувствительных сенсоров.

За прототип выбран наноматериал на основе нанокристаллической полупроводниковой пленки SnO2, состоящий из частиц с типичным размером 10-100 нм [1]. Подобные материалы широко используются в качестве газочувствительных слоев сенсоров и могут быть получены различными методами напыления (например, термическое, магнетронное, ионно-лучевое) с последующим отжигом или золь-гель методом [1, 3]. Проводимость таких пленок сильно зависит от концентрации различных детектируемых газов. Известно, что важную роль в механизме чувствительности подобных сенсоров к различным детектируемым газам играет хемосорбция кислорода, т.к. детектируемые газы, как правило, активно взаимодействуют с хемосорбированным на поверхности полупроводниковых частиц кислородом [1-3]. При хемосорбции молекул кислорода, играющих роль акцептора, на поверхности полупроводниковой частицы с проводимостью n-типа образуются отрицательно заряженные ионы кислорода, а в приповерхностной области пространственного заряда образуется обедненный электронами заряженный слой и соответствующий изгиб энергетических зон вблизи поверхности [2]. Вследствие этого между отдельными частицами образуются потенциальные барьеры и проводимость такой системы можно приближенно описать следующим уравнением:

G = G v exp ( e V s / k T ) ( 1 )

где Gv - множитель, описывающий объемную проводимость полупроводника, Vs - высота потенциального барьера. Повышение высоты потенциальных барьеров Vs между наночастицами при хемосорбции кислорода будет приводить к уменьшению проводимости. Если хемосорбция кислорода происходит в некоторой области температур, то при этих температурах величина Vs будет максимальна, и на температурной зависимости проводимости будет появляться минимум [2, 3]. Для термо-ЭДС S и коэффициента Пелтье П в полупроводнике известно следующее выражение (с точностью до несущественного здесь постоянного слагаемого) [4]:

П = S T = ( 1 / e ) ( E c E ) ( 2 )

или с учетом высоты потенциального барьера Vs:

П = ( 1 / e ) ( E 0 + γ T + e V s ) ( 3 )

где S - термоэдс, Е0 - разница энергий между дном зоны проводимости и уровнем Ферми при нулевой температуре, γ - коэффициент для температурной зависимости положения уровня Ферми, Vs - поверхностный потенциальный барьер между наночастицами. Таким образом, увеличение высоты потенциального барьера между полупроводниковыми наночастицами, обусловленное увеличением изгиба энергетических зон вблизи их поверхности, может приводить к усилению термоэлектрических свойств полупроводниковых наноматериалов. Известно, что эффективность термоэлектрических материалов определяется коэффициентом качества, равным произведению ZT. Здесь

Z T = S 2 σ T / k ( 4 )

где k - теплопроводность [Вт/(мК)], σ - электрическая проводимость, S - термо-ЭДС [В/К]. В настоящее время наилучшая величина коэффициента качества достигает ZT≈2 для некоторых термоэлектрических материалов, например, Bi2Te3, PbSe, но эти материалы имеют определенные недостатки - высокие рабочие температуры, содержат ядовитые, редкие или дорогостоящие элементы [5-7]. В качестве альтернативных перспективных термоэлектрических материалов в последнее время предложены оксиды металлов, как стабильные при высоких температурах, более экологически безопасные и дешевые. Например, предлагаются материалы на основе легированного ZnO (ZT=0,47 при 1000 K) и слоистого оксида кобальта Ca3Co4O9 (ZT=0,22 при 1000 K) [5, 8, 9]. В [10] предложен материал на основе смеси оксида олова SnO2 с добавками ZnO и Ta2O5 или Nb2O5. Порошкообразная смесь оксидов прессуется в таблетки, которые спекаются при температуре от 1000 до 1400°C. Общую формулу полученного материала можно записать в виде Sn1-x-yZnxMyO2, где 0,76≤1-x-y≤0,99, с включениями фазы ZnSn2O4 от 1 до 25% вес. Размер частиц полученного поликристаллического пористого материала лежит в диапазоне от 100 нм до 100 мкм, причем предпочтительный размер составляет от 5 до 70 микрометров. Недостатком данного материала является недостаточно высокие значения термо-ЭДС и коэффициента качества, которые составляют 100-200 мкВ/К и 0,06-0,13, соответственно, при 1000 К.

Техническим результатом предлагаемого изобретения является

• расширение функциональных возможностей термоэлектрических материалов за счет возможности изменения термо-ЭДС наноматериала в зависимости от концентрации кислорода или других газов (Н2, NH3, СО, СН4, NO2, H2S) в воздухе;

• упрощение и удешевление термоэлектрического материала за счет его изготовления из наночастиц SnO2 без применения специальных ядовитых, редких или дорогостоящих материалов типа свинца, серебра, висмута, теллура или редкоземельных элементов;

• увеличение термо-ЭДС до 1,3 мВ/К при рабочей температуре 330 К и до 1,1 мВ/К при рабочей температуре 500 К;

• увеличение коэффициента качества ZT термоэлектрического материала до 1 при рабочей температуре 330 или 500 К.

Для достижения указанного результата предложен способ получения

термоэлектрического газочувствительного материала, заключающийся в изготовлении пленки толщиной не более 200 нм из полупроводниковых наночастиц SnO2 с размером не более 50 нм, при этом после изготовления пленку из наночастиц SnO2 отжигают при температуре 330±20 К или 500±20 К в течение не менее 15 минут в кислородосодержащей атмосфере, с последующим охлаждением до комнатной температуры со скоростью не менее 10 К/с.

При этом отжиг проводят в воздухе.

На фигуре 1 показана температурная зависимость термо-ЭДС предлагаемого материала.

На фигуре 2 приведена температурная зависимость коэффициента Пелтье, которая отражает температурную зависимость положения уровня Ферми согласно уравнению (2).

На фигуре 3 показана температурная зависимость проводимости предлагаемого материала.

На фигуре 4 приведена температурная зависимость коэффициента качества предлагаемого материала.

Измерения проводились на нанокристаллической пленке SnO2 толщиной 200 нм, полученной путем магнетронного напыления. Размеры отдельных наночастиц в полученной пленке, определенные на электронном микроскопе, составляли около 50 нм. Конструктивно экспериментальные образцы представляли собой поликоровую подложку с размерами 5×0,5×0,2 мм, с одной стороны которой находилась полупроводниковая пленка SnO2, а с другой - напыленная пленка платины, служащая нагревателем. Нагреватель являлся одновременно и термосопротивлением, по величине которого контролировалась температура образца. Температура образца могла изменяться и стабилизироваться на заданной величине с помощью специально разработанного электронного блока питания с точностью до 0,1°C. Для получения градиента температуры на образце платиновый нагреватель располагался только на одном конце образца. Разница температур измерялась с помощью двух термопар Au-Ni, размещенных на противоположных концах образца. Дифференциальная термо-ЭДС была измерена в диапазоне температур 300 - 550 К (Фиг.1). Соответствующий коэффициент Пелтье, который отражает температурную зависимость положения уровня Ферми согласно уравнению (2), приведен на Фиг.2. На Фиг.3 приведена температурная зависимость проводимости. На полученных зависимостях четко наблюдаются два экстремума при температурах около 330 и 500 К или, соответственно, 60 и 230°C. Эти экстремумы можно объяснить хемосорбцией заряженных форм кислорода O2- и O- при указанных температурах. Максимальная глубина залегания уровня Ферми в зависимости от температуры определяется изменением высоты потенциального барьера при хемосорбции кислорода и достигает значения около 0,55 эВ в области температуры 500 К (Фиг.2). Если после нагрева до такой температуры произвести быстрое охлаждение до комнатной температуры со скоростью не менее 10 К/с, повышенная величина потенциального барьера сохраняется, т.к. хемосорбированные молекулы кислорода остаются при этом на поверхности. Таким образом, термо-ЭДС металл оксидных полупроводниковых наноматериалов типа SnO2, ZnO, может быть существенно увеличена путем соответствующей температурной обработки материала. Оценка коэффициента качества ZT согласно уравнению (4) на основе измеренных термо-ЭДС (Фиг.1) и проводимости для предлагаемого наноматериала (Фиг.3) показывает, что его величина достигает значения 1 при двух оптимальных температурах 330 и 500 К (Фиг.4), что сравнимо с лучшими термоэлектрическими материалами. При этом величина коэффициента теплопроводности к для SnO2 полагалась равной 0,5 Вт/(м К) во всем диапазоне температур [11]. Из-за сильного рассеяния фононов на границах частиц, а также на различных дефектах и примесях теплопроводность поликристаллических пористых материалов может быть намного меньше, чем у монокристаллов, поэтому уменьшение размера наночастиц и толщины пленки может приводить к уменьшению теплопроводности [12]. Таким образом, существует возможность для дальнейшего уменьшения теплопроводности для предлагаемого наноматериала и увеличения коэффициента качества ZT. Также в предлагаемом наноматериале можно контролировать и настраивать величину потенциального барьера между наночастицами, чтобы оптимизировать транспортные свойства для получения максимального термоэлектрического эффекта.

Полученный наноматериал может быть использован в термоэлектрических генераторах, а также для изготовления различных газовых сенсоров с целью определения содержания кислорода или других газов (Н2, NH3, СО, СН4, NO2, H2S) в воздухе, причем на контактах газового сенсора генерируется ЭДС, которое зависит от концентрации детектируемого газа.

ЛИТЕРАТУРА

1. S. Song, J. Cho, W. Choi et al, Sensors and Actuators В 46 (1998) 42-19.

2. Моррисон С.Р. Химическая физика поверхности твердого тела. -М: Мир, 1980. С.296.

3. А.Е. Варфоломеев, А.В. Ерышкин, В.В. Малышев, А.С. Разумов, С.С. Якимов, -Журнал аналитической химии, том 52, №1 (1997) с.66-68.

4. В.Л. Бонч-Бруевич, С.Г. Калашников, Физика полупроводников, -М.: Наука, 1990.

5. MRS BULLETIN, vol.31, March 2006, p.193.

6. X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu, H.L. Ni, J. Alloys Compd. 387 (2005) 282.

7. J. Seo, C. Lee, K. Park, J. Mater. Sci. 35 (2000) 1549

8. M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79 (1996) 1816.

9. Y. Zhang and J. Zhang, J. Of Materials and Processing Technologie, 208 (2008) 70-74.

10. Патент ЕР 2447233 A1, Tin oxide-based thermoelectric materials, 2012.

11. P.R. Bueno, J.A. Varela et al, J. American Ceram. Soc., 88 (9) (2005) 2629-2631

12. C. Poulier, D. Smith, J. Absi, Journal of the European Ceramic Society 27 (2007) 475-478.

1. Способ получения термоэлектрического газочувствительного материала, заключающийся в изготовлении пленки толщиной не более 200 нм из полупроводниковых наночастиц SnO2 с размером не более 50 нм, отличающийся тем, что после изготовления пленку из наночастиц SnO2 отжигают при температуре 330±20 К или 500±20 К в течение не менее 15 минут в кислородосодержащей атмосфере, с последующим охлаждением до комнатной температуры со скоростью не менее 10 К/с.

2. Способ по п.1, отличающийся тем, что отжиг проводят в воздухе.



 

Похожие патенты:

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники.

Изобретение относится к термоэлектрическим генераторам. Сущность: термоэлектрический генератор (2) имеет несколько модулей (1), каждый из которых имеет первый конец (3) и второй конец (4) и которые состоят из внутренней трубки (5) и наружной трубки (6), а также расположенных между ними термоэлектрических элементов (7).

Изобретение относится к полупроводниковой технике, в частности к области создания термоэлектрических генераторов. Технический результат: повышение эффективности преобразования тепловой энергии в электрическую.

Изобретение относится к области термоэлектричества. Сущность: изолирующая подложка (12) оснащена первой (18) и второй (20) областями соединения.

Изобретение относится к полупроводниковой технике, в частности к области создания охлаждающих элементов. Технический результат: повышение к.п.д.

Изобретение относится к термоэлектрическим устройствам. Сущность: способ включает изготовление стержней из термоэлектрического материала методом горячей экструзии.

Изобретение относится к производству термоэлектрических материалов. Сущность: для получения стержней термоэлектрического материала на основе твердых растворов Bi2Te3-Bi2Se n-типа проводимости с эффективностью ZT>1,2 и механической прочностью не менее 150 МПа осуществляют механоактивационный синтез тройного твердого раствора Bi2Te2,85Se0,15 n-типа проводимости из исходных компонентов.

Изобретение относится к материаловедению и может быть использовано в физике конденсированного состояния, приборостроении, микроэлектронике, термоэлектричестве для получения тонкопленочных образцов твердого раствора висмут-сурьма с совершенной монокристаллической структурой.

Изобретение относится к способу изготовления термоэлектрического элемента, имеющего термопары, содержащие полупроводник n-типа и полупроводник р-типа. .

Изобретение относится к области наноструктурированных и нанокомпозитных материалов. .

Изобретение может быть использовано при изготовлении носителей катализаторов, сорбентов, электрохимических конденсаторов и литий-ионных аккумуляторов. Взаимодействуют при 700-900 °C соль кальция, например, тартрат кальция или тартрат кальция, допированный переходным металлом, являющаяся предшественником темплата, и жидкие или газообразные углеродсодержащие соединения или их смеси в качестве источника углерода.

Изобретение относится к нанотехнологии. Графеновые структуры в виде плоских углеродных частиц с поверхностью до 5 мм2 получают путем сжигания в атмосфере воздуха или инертного газа композитного пресс-материала, полученного из микро- и нанодисперсных порошков активных металлов, таких как алюминий, титан, цирконий, нанодисперсных порошков кремния или боридов алюминия, взятых в количестве 10-35 мас.

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-Al2O3. Способ синтеза полых наночастиц γ-Al2O3 реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала, включающий откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом и распыление композитного электрода, выполненого в виде графитового стержня с полостью, в которой установлена алюминиевая проволока при весовом соотношении C:Al 15:1, а на второй - отжиг синтезированного материала, в кислородсодержащей среде при атмосферном давлении и температуре 400-950°C в течение одного часа.

Изобретение относится к биотехнологии. Заявлен иммуноадъювант, представляющий собой наночастицы гидроксиапатита с адсорбированным синтетическим пептидом - лигандом CXCR 1 и 2 рецепторов.

Изобретение относится к области обработки давлением и может быть использовано для получения нанокристаллических заготовок металлов и сплавов с улучшенными физико-механическими свойствами.

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер.

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч.

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором.

Изобретение относится к способу получения насыщенных карбоновых кислот, в частности к новому способу гидрирования непредельных карбоновых кислот, и позволяет получать насыщенные карбоновые кислоты, которые находят применение в качестве полупродуктов в органическом синтезе.
Изобретение может быть использовано в химической промышленности для тонкой очистки водородсодержащих газовых смесей от оксидов углерода путем их гидрирования до метана.

Изобретение относится к области машиностроения, в частности к финишной обработке деталей. Осуществляют вращение детали и воздействие на ее поверхность устройством для ультразвуковой финишной обработки с деформирующим элементом. Устройство для ультразвуковой финишной обработки с деформирующим элементом передвигают вдоль детали, задают ему ультразвуковые колебания и осуществляют многократную ударную обработку деформирующим элементом с ультразвуковой частотой порядка 20 кГц и амплитудой 5-40 мкм. При этом осуществляют частичное погружение деформирующего элемента и детали в ванну с керосином для охлаждения обрабатываемой поверхности детали, обеспечивающего получение на ней градиентных субмикро- и нанокристаллических структур. В результате обеспечивается высокая прочность и твердость поверхности детали. 4 н.п. ф-лы, 6 ил., 1 пр.
Наверх