Способ комплексного контроля напряженно-деформированного состояния бетона плотин

Изобретение относится к области измерительной техники и может быть использовано для контроля напряженно-деформированного состояния (НДС) гидротехнических сооружений, например плотин гидроэлектростанций, а также контроля прочности бетона эксплуатируемых предварительно напряженных железобетонных конструкций. Способ контроля параметров бетона плотин путем измерения параметров сигналов, пропускаемых через бетон галереи плотины от двух генераторов (генератор высокочастотных сигналов и генератор сейсмических волн). Сигналы генераторов, проходящие через бетон, регистрируют датчиками сейсмических волн и датчиками электромагнитного поля, в виде двух ортогонально расположенных индукционных приемных катушек. По результатам измерения наведенных в индукционных приемных катушках ЭДС на участках контролируемой зоны конструкции вычисляют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне. По величине фазового сдвига определяют коэффициент влажности бетона в зоне расположения пар датчиков (электромагнитных и сейсмических). Прочность бетона рассчитывают с учетом коэффициента влажности бетона по результатам измерений времени и скорости распространения сейсмических волн на участках между парами датчиков контролируемой зоны галереи. Технический результат заключается в повышении точности определения прочности бетона в конструкциях сооружений в процессе эксплуатации. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано для контроля напряженно-деформированного состояния (НДС) гидротехнических сооружений, например плотин гидроэлектростанций, а также контроля прочности бетона эксплуатируемых предварительно напряженных железобетонных конструкций пролетных строений мостов, путепроводов и других протяженных конструкций с напряжением арматуры в одном направлении и постоянно сжатых зонах.

Известно техническое решение «Способ извлечения информации о напряженно-деформированном состоянии (НДС) гидротехнических сооружений» (Пат. РФ №2280846. Опубл. В Б.И. №21 от 27.07.2006, аналог), заключающийся в возбуждении струнных датчиков, установленных в теле плотины, последовательностью коротких видеоимпульсных сигналов и измерении частоты собственных колебаний струны, путем спектрального анализа. По результатам спектрального анализа выбирают наиболее характерную моду собственных колебаний струнных датчиков, которые снова возбуждают последовательностью радиоимпульсов длительностью, не менее чем в 10 раз большей длительности видеоимпульса и несущей на характерной моде, перестраивают по этим модам приемник и далее измеряют частоту собственных колебаний, возбужденных последовательностью радиоимпульсов, по которой судят о силе давления НДС.

Основной недостаток струнных датчиков, вмонтированных в тело плотины, обусловлен их старением, появлением на струне ржавчины, усталости металла, нарушением герметичности, электрических утечек в цепи возбуждения, измеряемая собственная частота колебаний уже не дает однозначного результата об измеряемой силе НДС. Полезный сигнал в десятки раз ослабевает по амплитуде, а в ее спектре появляются дополнительные моды колебаний, отличные от основной частоты.

Известно также техническое решение «Способ ультразвукового контроля прочности бетона в конструкциях и сооружениях в процессе эксплуатации» (Пат. РФ №2262692. Опубл. 20.10.2005, прототип), по которому ультразвуковой контроль прочности бетона в конструкциях и сооружениях в процессе эксплуатации включает измерение времени и скорости распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисление средней и максимальной скоростей ультразвука в контролируемой зоне, выбуривание в конструкции и испытание кернов с последующим определением значений прочностей в участках, имеющих соответственно среднее и максимальное значение скорости ультразвука, а также расчетное определение прочности бетона на сжатие в участках контролируемой зоны конструкции, при этом определяют влажность бетона в намеченных участках конструкции и устанавливают среднюю и максимальную влажности бетона в контролируемой зоне, а прочность бетона по классу прочности на сжатие до В25 рассчитывают в соответствии с математической формулой.

Наиболее существенным недостатком этого способа является недостаточная точность контроля прочности бетона, обусловленная отсутствием средств, позволяющих с высокой точностью контролировать влажность бетона, что обуславливает погрешность измерения времени распространения в нем ультразвука или сейсмической волны.

Задачей предлагаемого технического решения является устранение отмеченных недостатков, а именно повышение эффективности извлечения информации о НДС гидротехнических сооружений.

Поставленная задача решается тем, что в Способ комплексного контроля напряженно-деформированного состояния бетона плотин, включающий измерение времени и скорости распространения ультразвука на участках контролируемой зоны конструкции, дополнительно подключают к контролируемому участку галереи генератор высокочастотных электрических сигналов, устанавливают парами датчики сейсмических волн Релея и датчики электромагнитного поля, содержащие две ортогонально расположенные индукционные приемные катушки, причем датчики, входящие в пары, устанавливают в непосредственной близости друг от друга, а пары датчиков размещают с заданным интервалом по контролируемому участку галереи, измеряют наведенные в индукционных приемных катушках ЭДС, из отношений которых вычисляют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне из равенства

ϕ = arccos E x E z , г д е ( 1 )

Ex - ЭДС в катушке, параллельной стене галереи;

Ez - ЭДС в катушке, перпендикулярной к стене галереи.

Через фазовый сдвиг определяют коэффициент влажности бетона в зоне расположения пар датчиков (электромагнитных и сейсмических). По результатам измерений времени и скорости распространения сейсмических волн на участках между парами датчиков контролируемой зоны галереи рассчитывают прочность бетона, вводя поправки на коэффициент влажности. Зависимость угла фазового сдвига ЭДС в индукционных датчиков от влажности бетона получают экспериментально в лаборатории на смачиваемых образцах бетона соответствующей марки.

Существенным отличием и новизной предлагаемого технического решения является то, что дополнительно подключают к контролируемому участку галереи генератор высокочастотных электрических сигналов и устанавливают парами - датчики сейсмических волн Релея и датчики электромагнитного поля, содержащие две ортогонально расположенные индукционные приемные катушки, причем датчики, входящие в пары, устанавливают в непосредственной близости друг от друга, а пары датчиков размещают с заданным интервалом по контролируемому участку галереи, измеряют наведенные в индукционных приемных катушках ЭДС, из отношений которых вычисляют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне. Данное техническое решение позволяет осуществить автоматическую коррекцию результатов контроля прочности бетона по времени и скорости распространения сейсмических волн в бетоне с учетом его влажности. Коэффициент поправки на влажность определяется по углу сдвига фаз высокочастотного сигнала в бетоне в точках расположения датчиков приема сейсмических сигналов. Фазовый метод измерения времени запаздывания распространения сигнала в бетоне плотины позволяет получить высокую точность физических характеристик бетона и динамику их изменения в режиме реального времени.

На фигуре 1 представлена функциональная схема устройства, реализующего способ комплексного контроля напряженно-деформированного состояния бетона плотин, где приняты следующие обозначения: излучатель сейсмических сигналов -1; приемные датчики сейсмических сигналов -21-2n и 2'1-2'n; электромагнитные датчики 31-3n и 3'1 и 3'n; нормализаторы сейсмических сигналов - 41-4n и 4'1-4'n; нормализаторы электромагнитных сигналов - 51-5n 5'1-5'n; адресный коммутатор входных сигналов - 6; аналого-цифровой преобразователь (АЦП) - 7; микропроцессор - 8; генератор высокочастотных электрических сигналов (ВЭС) - 9; генератор сейсмических сигналов (ГСС) - 10; силовой коммутатор высокочастотных электрических сигналов - 11; правая и левая сторона заземления в бетоне галереи - 12, 12'; заземление в центре бетонной галереи - 13; бетонная галерея плотины - 14; точка подключения (А) генератора сейсмических сигналов (10) к излучателю (11) сейсмических сигналов.

Устройство работает следующим образом: при включении устройства устанавливают очередность контроля левой и правой части галереи плотины. При установке первой контролируют правую часть галереи плотины, с микропроцессора (8) сигнал управления подается на генератор высокочастотных электрических сигналов (ВЭС) (9), выход которого через силовой коммутатор ВЭС (11), управляемый сигналом с микропроцессора (8), подключают к правой (12) стороне заземления в бетоне галереи. В датчиках электромагнитного поля (31-3n), установленных на теле галереи, содержащих две ортогонально расположенные индукционные приемные катушки, наводится ЭДС, содержащая информацию о физических характеристиках (влажности) бетона. Выходы датчиков электромагнитного поля (31-3n) соединены через нормализаторы электромагнитных сигналов - (51-5n), адресный коммутатор входных сигналов (6) и АЦП (7) с микропроцессором (8). В микропроцессоре (8) через вычисление отношений наведенных в катушках ЭДС измеряют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне и через него определяют влажность бетона в зоне расположения электромагнитных датчиков.

Влажность бетона определяется через отношение ЭДС в ортогональных измерительных катушках и по сдвигу их фаз

ϕ = arccos E x E z ; ( 1 )

где Ex - ЭДС в катушке, параллельной стене галереи;

Ez - ЭДС в катушке, перпендикулярной к стене галереи.

При работе генератора (9) выходной сигнал на частотах порядка единиц МГц подводится через коммутатор (11) и оплетку кабеля (X) к точкам заземления (0) и (12 или 12*) на галерее. Наведенные токи проводимости, проходящие через бетон, сильно зависят от влажности бетона и существенно превышают токи смещения. В этом случае величина контролируемой зоны влажности бетона определяется глубиной слоя скип-эффекта (δ для рабочей частоты ω тока генератора (9).

δ = 2 ω μ 0 G ; ( 2 )

где ω=2πf; f - рабочая частота генератора, Гц;

µ0=4π·10-7 - магнитная проницаемость бетона, Гн/м,

G - электропроводность бетона, См/м.

Из равенства (2) определяется необходимая рабочая частота генератора (9) для заданного значения глубины зоны контроля.

f = 1 π μ 0 G δ 2 .

Например, при G=0,01 См/м; δ=5 м; f=1 МГц.

Зависимость электропроводности бетона от влажности можно получить экспериментально в лаборатории на смачиваемых образцах бетона соответствующей марки.

Затем по сигналу с микропроцессора (8) включают генератор сейсмических сигналов (10), выход которого (точка А) подключен к излучателю сейсмических сигналов (1). Распространяющийся по бетону галереи сейсмический сигнал регистрируют приемные датчики сейсмических сигналов (21-2n), выходы которых соединены через нормализаторы сейсмических сигналов (41-4n), адресный коммутатор входных сигналов (6) и АЦП (7) с микропроцессором (8). В микропроцессоре (8) через вычисление времени запаздывания сейсмического сигнала между двумя соседними сейсмоприемниками (21-2n) определяют величину НДС, с учетом измеренных ранее электрических параметров бетона с помощью высокочастотного сигнала.

Аналогичен режим работы устройства при определении физических характеристик бетона левой части галереи плотины.

Особенностью предложенного устройства контроля напряженно-деформированного состояния бетона плотин является применение высокочастотного метода контроля влажности бетона, что существенно повышает точность определения прочности бетона в конструкциях сооружений в процессе эксплуатации.

Предлагаемое устройство может быть реализовано промышленным способом.

1. Способ комплексного контроля напряженно-деформированного состояния бетона плотин, включающий измерение времени и скорости распространения сейсмических волн на участках контролируемой зоны конструкции, отличающийся тем, что к контролируемому участку галереи подключают генератор высокочастотных электрических и генератор сейсмических сигналов и вдоль галереи устанавливают парами датчики сейсмических волн Релея и датчики электромагнитного поля, содержащие две ортогонально расположенные индукционные приемные катушки, причем датчики, входящие в пары, устанавливают в непосредственной близости друг от друга, а пары датчиков размещают с заданным интервалом по контролируемому участку галереи, измеряют наведенные в индукционных приемных катушках ЭДС, из отношений которых вычисляют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне из равенства
ϕ = arccos E x E z ;
где Еx - ЭДС в катушке, параллельной стене галереи;
Ez - ЭДС в катушке, перпендикулярной к стене галереи;
через фазовый сдвиг определяют коэффициент влажности бетона в зоне расположения пар датчиков (электромагнитных и сейсмических), затем измеряют время и скорость распространения сейсмических волн на участках между парами датчиков контролируемой зоны галереи и определяют прочность бетона, вводя поправки на коэффициент влажности.

2. Способ по п.1, отличающийся тем, что зависимость угла фазового сдвига ЭДС в индукционных датчиках от влажности бетона получают экспериментально в лаборатории на смачиваемых образцах бетона соответствующей марки.



 

Похожие патенты:

Изобретение относится к высокочувствительным способу и устройству измерения силы/массы с использованием системы фазовой автоподстройки частоты. .

Изобретение относится к области измерений механической силы и производных от нее величин, момента силы, давления, массы, деформаций, линейных и угловых ускорений. .

Изобретение относится к измерительной технике и может быть использовано для контроля напряженно-деформированного состояния (НДС) гидротехнических сооружений, например плотин гидроэлектростанций, а также контроля напряженно-деформированного состояния других сооружений, зданий и конструкций.

Изобретение относится к техническим средствам автоматизации систем управления и предназначено для контроля физических величин. .

Изобретение относится к области испытания машиностроительных и строительных конструкций. .

Изобретение относится к области неразрушающего контроля технологических процессов в строительной индустрии и может быть использовано для получения данных о параметрах предварительно напряженных арматурных элементов (стержней, канатов и т.д.) при изготовлении железобетонных конструкций, в частности, для определения требуемого удлинения арматурного элемента, измерения напряжений в арматурном элементе и корректировки его длины.

Изобретение относится к силоизмерительной технике и может быть использовано в устройствах измерения, контроля и регулирования больших усилий сжатия около 1000 кг и более.

Изобретение относится к измерительной технике и может быть использовано для измерения усилий деформации. .

Изобретение относится к области измерений механических параметров. Датчик резонаторный содержит основание в виде пластины из монокристалла, в котором выполнены сквозные прорези с образованием стержневого резонатора, поверхности которого металлизированы для образования электродной системы, и маятникового подвеса в виде двух стержней, одни концы которых присоединены к чувствительному элементу, а другие концы соединены с основанием. Части поверхностей стержней маятникового подвеса металлизированы материалом, плотность которого близка к плотности материала электродной системы стержневого резонатора. Достигаемым техническим результатом является уменьшение погрешности в условиях воздействия импульсного разогрева. 1 ил.

Изобретение относится к метрологии, в частности к способам неразрушающего контроля мостовых сооружений. Способ предполагает возбуждение свободных колебаний вантового элемента путем приложения импульсного воздействия в месте его прикрепления к анкерному устройству. Осуществляют измерение колебаний датчиком-акселерометром, передачу измерительной информации в измерительный блок и далее в программный модуль, где происходит их обработка. При этом усилие определяется на основе первых трех кратных зафиксированных частот собственных колебаний вантового элемента. При расчетах продольного усилия в вантовом элементе учитываются такие параметры, как погонная масса вантового элемента, масса антивандальной оболочки, собственная частота колебаний вантового элемента, длина вантового элемента, длина анкерного устройства. По усредненному значению вычисленных усилий оценивают усилие натяжения ванта моста. Технический результат – повышение точности измерений. 2 ил., 1 табл.
Наверх