Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан - 0,5-2,5; церий - 0,002-0,02; иттрий - 0,001-0,01; лантан - 0,002-0,02; рений - 1,0-2,0; тантал - 4,0-6,0; никель - остальное. Изделие, выполненное из заявленного сплава, может иметь поликристаллическую или монокристаллическую структуру. Технический результат - повышение характеристик фазовой стабильности, повышение длительной прочности и пластичности. 2 н. и 1 з.п. ф-лы., 2 табл., 1 пр.

 

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе и изделиям, получаемым из них, с поликристаллической равноосной или направленной (монокристаллической) структурами, например сопловых и рабочих лопаток газовых турбин.

Известно техническое решение (заявка на изобретение US №2010/0047110 A1, опубл. 25.02.2010), в котором литейный жаропрочный сплав на никелевой основе имеет следующий химический состав, мас.%:

Хром 9-12
Кобальт 9-11
Молибден менее 1
Вольфрам 6-9
Тантал менее 3
Алюминий 4-5
Рений менее 3
Гафний 0,5-2,5
Углерод 0,05-0,15
Бор 0,005-0,015
Цирконий менее 0,05
Титан 4-5
Ниобий менее 1
Никель остальное

Известный сплав обладает высокими характеристиками коррозионной стойкости. Сплав предназначен для изготовления лопаток промышленных газовых турбин с поликристаллической равноосной, столбчатой или монокристаллической структурами. Недостатком известного сплава являются низкие характеристики высокотемпературной удельной длительной прочности. Кроме того, сплав недостаточно технологичен при отливке монокристаллических лопаток.

Из патента US №6632299 B1, опубл. 14.10.2003, известен литейный жаропрочный сплав на никелевой основе следующего химического состава, мас.%:

Хром 5-6
Кобальт 9-9,5
Молибден 0,3-0,7
Вольфрам 8-9
Тантал 5,9-6,3
Алюминий 5,6-6,0
Рений 2,8-3,1
Гафний 1,1-1,8
Углерод 0,10-0,12
Бор 0,010-0,024
Цирконий 0,011-0,020
Никель остальное

Известный сплав предназначен для изготовления деталей газотурбинных двигателей методами равноосного литья и/или направленной кристаллизации. После термической обработки известный сплав с равноосной структурой имеет весьма высокий уровень механических свойств: при растяжении при комнатной температуре предел текучести - 889 МПа, предел прочности - 1122 МПа, относительное удлинение - 6,9%, поперечное сужение - 9,4%; при температуре 843°C и напряжении 552 МПа время до разрушения составляет 102,6-151,5 ч, при температуре 1038°C и напряжении 138 МПа время до разрушения составляет 115,2-119,5 ч. Однако дополнительные исследования показали, что недостатком этого сплава является повышенная плотность, равная 8,9 г/см3, и недостаточно высокая удельная длительная прочность при температуре 1000°C за 100 ч, равная 22,93 МПа/(г/см3). Другим недостатком сплава является склонность к образованию вредных топологически плотноупакованных (далее ТПУ) фаз, объемная доля которых в структуре материала турбинной лопатки из этого сплава после 1000 ч наработки может достигать 10%, что значительно уменьшает ее дальнейшую работоспособность.

Наиболее близким аналогом, взятым за прототип (патент РФ №2148100 C1, опубл. 27.04.2000), является литейный жаропрочный сплав на никелевой основе следующего химического состава, мас.%:

Хром 8-9,5
Кобальт 9-10,5
Молибден 1,2-2,4
Вольфрам 9,5-11
Алюминий 5,1-6,0
Углерод 0,13-0,20
Бор 0,005-0,035
Цирконий 0,01-0,05
Титан 2,0-2,9
Ниобий 0,8-1,2
Церий 0,002-0,02
Один элемент из группы,
включающей иттрий и
скандий 0,0008-0,008
Один элемент из группы,
включающей лантан и
празеодим 0,0008-0,008
Никель остальное

при условии, что отношение концентраций церия (Ce) и одного из элементов из группы, включающей иттрий и скандий, и одного из элементов из группы, включающей лантан и празеодим, равно 2,5/1/1.

Известный из прототипа сплав предназначен для изготовления газотурбинных рабочих и сопловых лопаток с равноосной или направленной структурой, обладает хорошими литейными свойствами, повышенными характеристиками жаростойкости. Сплав, известный из прототипа, предпочтительного химического состава имеет следующий уровень жаропрочных свойств: при температуре 975°C при испытании на длительную прочность при напряжении 20 кгс/мм2 время до разрушения составляет 160-200 ч для сплава с равноосной структурой, и 300-370 ч для сплава с направленной структурой; при температуре 1050°C при испытании на длительную прочность при напряжении 11 кгс/мм2 время до разрушения составляет 180-220 ч для сплава с равноосной структурой, и 300-330 ч для сплава с направленной структурой. Дополнительные исследования показали, что при рабочей температуре 1000°C известный сплав с равноосной структурой имеет предел длительной прочности за 100 ч эксплуатации, равный 170 МПа, а с направленной структурой - 190 МПа, что не удовлетворяет требованиям, предъявляемым к жаропрочным сплавам для деталей газотурбинных двигателей (ГТД) нового поколения, например сопловых и рабочих лопаток с равноосной, направленной столбчатой или монокристаллической структурами. Другим недостатком сплава является недостаточная фазовая стабильность, проявляющаяся при длительной эксплуатации в деградации карбидной фазы сплава и образовании пластинчатых карбидов типа M6C, что ограничивает ресурс лопаток из этого сплава.

Технической задачей настоящего изобретения является создание литейного жаропрочного сплава на никелевой основе с повышенными физико-химическими свойствами, необходимыми для повышения рабочих характеристик сопловых и рабочих лопаток газовых турбин.

Техническим результатом предлагаемого изобретения является повышение фазовой стабильности, длительной прочности и пластичности сплава.

Для достижения поставленного технического результата предлагается литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него, содержащий хром, кобальт, молибден, вольфрам, алюминий, углерод, бор, цирконий, титан, церий, иттрий, лантан, в который дополнительно введены рений и тантал при следующем соотношении компонентов, мас.%:

Хром 4,0-6,0
Кобальт 8,0-11,0
Молибден 2,5-3,5
Вольфрам 6,0-8,0
Алюминий 5,4-6,0
Углерод 0,06-0,16
Бор 0,008-0,04
Цирконий 0,01-0,05
Титан 0,5-1,5
Церий 0,002-0,02
Иттрий 0,001-0,01
Лантан 0,002-0,02
Рений 1,0-2,2
Тантал 4,0-5,2
Никель остальное

В настоящем изобретении суммарное содержание химических элементов хрома (Cr), молибдена (Mo), вольфрама (W), алюминия (Al), циркония (Zr), титана (Ti), кобальта (Co), рения (Re), тантала (Ta), никеля (Ni) при заявленном соотношении может удовлетворять условию 0,02≥ΔE≥-0,04, где Δ E = ( i = 1 n E i Z i 0,036 i = 1 n A i Z i 6,28 ) , где Zi, Ai, Ei - соответственно концентрация, атомная масса и количество валентных электронов i-го компонента; i - любой из указанных выше компонентов, n=10 - количество указанных выше компонентов.

При дополнительном легировании рением предлагаемого сплава при заявленном соотношении остальных легирующих элементов повышение длительной прочности достигается за счет увеличения параметра размерного несоответствия периодов кристаллических решеток никелевого γ-твердого раствора и равновесной с ним γ′-фазы (γ/γ′-мисфит).

В металлургии литейных жаропрочных сплавов на основе никеля известна положительная роль легирования рением, заключающаяся в повышении температуры солидуса сплава и снижении диффузионной подвижности атомов легирующих элементов. Однако в данном случае исследованиями методом рентгеноструктурного анализа было обнаружено, что легирование заявляемого сплава рением и увеличение содержания в заявляемом сплаве молибдена (которые в основном растворяются в никелевом γ-твердом растворе сплава с коэффициентами распределения между γ′-фазой и γ-твердым раствором, равными соответственно ~0,1 и ~0,3) в заявляемых соотношениях вызывают значительно большее увеличение периода кристаллической решетки γ-твердого раствора и тем самым повышение γ/γ′-мисфита по сравнению с их раздельным влиянием на этот основной фактор жаропрочности. В результате наблюдается значительное повышение длительной прочности сплава и изделия из него.

Кроме того, рений препятствует образованию на границах зерен и фаз сплава сегрегации примесей кислорода и азота, неизбежно присутствующих в литейных жаропрочных сплавах на никелевой основе, повышая их растворимость, что способствует увеличению высокотемпературных характеристик длительной прочности и пластичности.

Введение в состав предлагаемого сплава тантала при заявленном соотношении остальных легирующих элементов приводит к понижению темпа растворимости упрочняющих частиц γ′-фазы и увеличению температуры полного растворения этой фазы в матричном γ-твердом растворе, усиливая при высоких температурах сопротивление высокотемпературной ползучести. В результате повышается максимальная рабочая температура и длительная прочность сплава и изделия из него. Кроме того, легирование заявляемого сплава танталом затрудняет при высокотемпературной эксплуатации протекание дестабилизирующих твердофазных карбидных реакций типа MeC→Me6C+γ′, а также усиливает сопротивление сплава высокотемпературной коррозии, что способствует повышению фазовой стабильности, длительной прочности и пластичности. Пониженное содержание вольфрама в предлагаемом сплаве также способствует повышению высокотемпературной фазовой стабильности γ-твердого раствора и MeC-карбидов и, следовательно, достижению повышенных показателей высокотемпературной удельной длительной прочности.

Исключение из химического состава заявляемого сплава γ'-образующего элемента ниобия и уменьшение содержания γ'-образующего элемента титана, наряду с легированием γ-стабилизирующими элементами рением и молибденом, способствует снижению объемной доли выделений эвтектики (γ+γ′) в литой структуре сплава и тем самым улучшает технологические свойства заявляемого сплава, в частности режимы литья изделий из него с равноосной или направленной (монокристаллической) структурами и режимы последующей баротермической обработки для залечивания литейных микропор.

Изделия из предлагаемого сплава, например рабочие и сопловые лопатки с равноосной и направленной (монокристаллической) структурами, будут иметь повышенную долговечность и удельную длительную прочность, а следовательно, надежность и ресурс.

Пример осуществления

В вакуумной индукционной печи были выплавлены три сплава предлагаемого состава и один сплав, известный из прототипа. Химические составы (в масс.%) предлагаемого сплава и сплава, известного из прототипа, приведены в таблице 1. Затем выплавленные сплавы переплавляли в вакуумных установках для равноосной или направленной кристаллизации и получали изделия с равноосной структурой или направленной (монокристаллической) структурой в виде отливок диаметром ~16 мм и длиной 70-160 мм. Далее из этих отливок изготавливали образцы для дифференциального термического анализа и количественной металлографии, по результатам которых определяли температуру полного растворения γ′-фазы в γ-матрице, температуру плавления и объемную долю выделений эвтектики (γ+γ′). С учетом измеренных указанных температур полученные отливки из сплавов подвергали термической обработке, включающей гомогенизирующий отжиг и двухступенчатое старение. Из термически обработанных таким образом отливок изготавливали образцы для определения плотности, механических испытаний (длина образца 70 мм, рабочая база 25 мм, рабочий диаметр 5 мм) и рентгеноструктурного анализа, по результатам которых определяли предел прочности, предел текучести, относительное удлинение и сужение при растяжении, длительную прочность, периоды кристаллических решеток никелевого γ-твердого раствора (aγ), γ′-фазы (aγ,); γ/γ′-мисфит D рассчитывали по формуле D=(aγ-aγ,)/aγ.

Механические испытания на растяжение проводили при комнатной температуре. Испытания на длительную прочность проводили в атмосфере воздуха при температуре 1000°C и напряжении 200 МПа.

Полученные характеристики композиций сплава, известного из прототипа, заявляемого сплава и изделий, выполненных из него, приведены в таблице 2.

Как видно из таблицы 2, предлагаемый сплав имеет более высокие значения γ/γ′-мисфита (на 0,09-0,26% абсолютных) и температуры полного растворения γ′-фазы в матричном γ-твердом растворе (на 28-60°C), чем сплав, взятый за прототип. Кроме того, абсолютные значения параметра ΔE, характеризующего фазовую стабильность, у предлагаемого сплава меньше критических, что свидетельствует об отсутствии склонности сплава к дестабилизирующим твердофазным карбидным реакциям типа MeC→Me6C+γ′ и образованию вредных ТПУ фаз. Экспериментальным путем установлено, что суммарное содержание хрома (Cr), молибдена (Mo), вольфрама (W), алюминия (Al), циркония (Zr), титана (Ti), кобальта (Co), рения (Re), тантала (Ta), никеля (Ni) для предпочтительного значения параметра, характеризующего фазовую стабильность ΔE, лежат в пределах от 0,02 до -0,04. Параметр ΔE определяется по следующей формуле Δ E = ( i = 1 n E i Z i 0,036 i = 1 n A i Z i 6,28 ) , где Zi, Ai, Ei - соответственно концентрация, атомная масса и количество валентных электронов i-го компонента; i - любой из указанных выше компонентов (например, в порядке перечисления элементов i=1-Cr и т.д. для Mo, W, Al, Zr, Ti, Co, Re, Ta, Ni), n=10 (количество указанных выше компонентов). В результате повышения указанных структурно-фазовых параметров, стабилизации фазового состава и совместного действия легирующих элементов рения и тантала характеристики длительной прочности - время до разрушения предлагаемого сплава и изделия из него с равноосной структурой больше в 2,2 раза, а сплава и изделия из него с направленной (монокристаллической) структурой больше в 3,8 раза, чем из сплава, известного из прототипа. Плотность предлагаемого сплава составляет 8,59-8,63 г/см3. Рассчитанная удельная длительная прочность при температуре 1000°C за 100 ч предлагаемого сплава и изделия из него с равноосной структурой составляет 23,5 МПа/(г/см3), что на 17% больше, чем сплава, известного из прототипа, у которого она равна 20,12 МПа/(г/см3). Характеристика длительной пластичности - остаточное удлинение при разрушении предлагаемого сплава и изделия из него с равноосной структурой больше в 1,6 раза, а сплава и изделия из него с направленной (монокристаллической) структурой больше в 1,8 раза, чем такового сплава, известного из прототипа. Характеристики кратковременной прочности (предел прочности, предел текучести, относительное удлинение и сужение) при комнатной температуре предлагаемого сплава и изделия из него больше, чем сплава, взятого за прототип. Технологическое преимущество предлагаемого сплава заключается в меньшей объемной доле выделений эвтектики (γ+γ′)>образующейся при литье и, как следствие, возможности получать изделия из него сложной формы с равноосной или направленной (монокристаллической) структурами без «горячих» микротрещин, литейной рыхлоты и микропор.

Таким образом, предлагаемый литейный жаропрочный сплав на никелевой основе и изделие из него с равноосной или направленной (монокристаллической) структурами значительно превосходит сплав, известный из прототипа, и изделие из него по характеристикам фазовой стабильности, кратковременной прочности, длительной прочности и пластичности. Это позволяет его использовать для производства турбинных лопаток и других деталей ГТД длительного ресурса.

1. Литейный жаропрочный сплав на никелевой основе, содержащий хром, кобальт, молибден, вольфрам, алюминий, углерод, бор, цирконий, титан, церий, иттрий, лантан, отличающийся тем, что он дополнительно содержит рений и тантал при следующем соотношении компонентов, мас.%:

Хром 4,0-6,0
Кобальт 8,0-11,0
Молибден 2,5-3,5
Вольфрам 6,0-8,0
Алюминий 5,4-6,0
Углерод 0,06-0,16
Бор 0,008-0,04
Цирконий 0,01-0,05
Титан 0,5-1,5
Церий 0,002-0,02
Иттрий 0,001-0,01
Лантан 0,002-0,02
Рений 1,0-2,2
Тантал 4,0-5,2
Никель остальное

2. Сплав по п.1, отличающийся тем, что суммарное содержание химических элементов хрома, молибдена, вольфрама, алюминия, циркония, титана, кобальта, рения, тантала и никеля соответствует условию
0,02≥ΔE≥-0,04,
где , Zi, Ai, Ei - соответственно атомная концентрация, атомная масса и количество валентных электронов i-го компонента; i - любой из указанных выше компонентов, n=10.

3. Изделие из литейного жаропрочного сплава на никелевой основе, имеющее поликристаллическую или монокристаллическую структуру, отличающееся тем, что оно выполнено из сплава по п.1.



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к высокопрочным прецизионным сплавам на основе никеля для получения покрытий микроплазменным или холодным сверхзвуковым напылением.

Изобретение относится к жаропрочному сплаву на основе никеля. Сплав содержит, мас.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок.
Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 800-1000°C.

Изобретение относится к области металлургии, в частности к металлическому покрытию со связующим, и может быть использовано в качестве покрытия для детали газовой турбины.

Изобретение относится к области металлургии, в частности к металлическому покрытию с фазами γ- и γ'. Металлическое покрытие из сплава на основе никеля для деталей газовых турбин содержит γ- и γ'-фазы, при этом сплав содержит, мас.%: железо 0,5-5, кобальт по меньшей мере 1, хром по меньшей мере 1, алюминий по меньшей мере 1, и, при необходимости, тантал (Та) и/или иттрий (Y).

Изобретение относится к области металлургии, в частности к сплавам на основе никеля защитных покрытий деталей газовой турбины. Сплав на основе никеля для защитного покрытия деталей газовой турбины содержит, мас.%: 24-26 кобальта, 16-25 хрома, 9-12 алюминия, 0,1-0,7 иттрия и/или по меньшей мере одного металла из группы, содержащей скандий и редкоземельные элементы, необязательно, 0,1-0,7 фосфора, необязательно, 0,1-0,6 кремния, не содержит рений, никель - остальное.
Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al и изделиям, получаемым методом точного литья по выплавляемым моделям с дендритной столбчатой структурой, таким как, например, сопловые лопатки, блоки сопловых лопаток и другие детали газотурбинных двигателей авиационной и автомобильной промышленности.

Изобретение относится к области металлургии, в частности к никелевым сплавам, и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок (ГТУ), работающих в агрессивных средах природного газа при температурах 600-890°C. Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок содержит, мас.%: углерод 0,08-0,11; хром 14,6-15,1; кобальт 8,5-8,9; вольфрам 6,5-6,9; молибден 0,3-0,6; алюминий 3,9-4,1; титан 3,6-3,8; бор 0,010-0,013; кальций 0,01-0,20; кремний ≤0,1; марганец 0,15-0,30; сера ≤0,005; фосфор ≤0,005; магний 0,01-0,20; медь ≤0,05; азот 10-20 ppm; кислород 10-15 ppm, no меньшей мере, два элемента, выбранных из группы: железо ≤0,2; ванадий ≤0,10 и барий ≤0,01, никель - остальное. Сплав характеризуется повышенными значениями пластичности, коррозионной стойкости, обеспечивается высокая структурная стабильность. 2 табл., 3 пр.

Изобретение относится к металлургии, к коррозионно-стойким жаропрочным сплавам на основе никеля и может быть использовано для изготовления деталей горячего тракта газотурбинных установок, работающих в агрессивных средах. Жаропрочный сплав на основе никеля содержит, мас.%: углерод 0,05-0,09; хром 15,4-15,8; кобальт 10,0-10,4; вольфрам 5,0-5,3; молибден 1,6-1,8; титан 4,3-4,5; алюминий 3,0-3,2; бор 0,06-0,09; цирконий <0,015; гафний 0,2-0,3; кремний <0,1; железо <0,1; медь <0,05; сера <0,005; азот <20 ppm; кислород <15 ppm, церий <0,015; ниобий 0,1-0,2; иттрий <0,03; марганец <0,1; фосфор <0,005 и никель - остальное. Способ изготовления лопаток газотурбинных установок из жаропрочного сплава на основе никеля, характеризующийся тем, что проводят термическую обработку путем гомогенизирующего отжига и старения. Гомогенизирующий отжиг ведут в инертной атмосфере с нагревом со скоростью 5-10°C/мин до температуры 1060±10°C, выдержкой в течение 3-4 часов и охлаждением со скоростью 30-50°C/мин до температуры 600-700°С и далее до комнатной температуры. Старение проводят при температуре 850±10°C в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры. Повышаются прочность, пластичность и коррозионная стойкость сплава с равноосной структурой в сочетании с высокой структурной стабильностью на ресурс и пониженным уровнем газоусадочной пористости. 2 н.з.п. ф-лы, 2 табл.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-900°C. Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок содержит, мас.%: углерод 0,005-0,12; хром 11,5-12,4; кобальт 8,0-8,7; вольфрам 6,7-7,4; молибден 0,25-0,55; титан 4,0-4,2; алюминий 3,9-4,2; бор 0,001-0,012; марганец ≤0,12; кремний ≤0,10; ниобий 0,8-1,0; магний ≤0,12; кальций ≤0,12; медь ≤0,05; железо ≤0,1; сера ≤0,005; фосфор ≤0,005; азот ≤10,0 ppm, кислород ≤10,0 ppm, никель остальное, при этом отношение содержания титана к содержанию алюминия составляет 0,95-1,07. Сплав характеризуется повышенными значениями длительной прочности в сочетании с высоким сопротивлением коррозионным воздействиям, высокой структурной стабильностью на ресурс. Сплав может быть использован для литья рабочих лопаток газовых турбин с монокристаллической, направленной или равноосной структурами. 2 табл.

Изобретение относится к области металлургии, в частности, к дисперсионно-упрочненным жаропрочным сплавам на основе никеля и может быть использовано в качестве материала для трубчатой оболочки тепловыделяющего элемента реакторов на быстрых нейтронах. Дисперсионно-упрочненный жаропрочный сплав на основе Ni содержит, мас.%: 0,01 или менее C, 0,5 или менее Mn, 0,01 или менее P, 0,01 или менее S, 2,0-3,0 Si, 23-30 Cr, 7,0-14,0 W, 10-20 Fe и 40-60 Ni. Общее содержание C, N, О, P и S составляет 0,01 мас.% или менее. Диспергируется и выделяется силицид, а размер зерен матричного аустенита регулируется путем термомеханической обработки. Жаропрочный сплав обладает высокой стойкостью к облучению и коррозионной стойкостью. 2 н. и 7 з.п. ф-лы, 10 ил., 4 табл.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для элементов, используемых в атомной энергетике, нефтехимической и нефтеперерабатывающей промышленности, работающих при высоких температурах. Жаропрочный сплав на никелевой основе содержит, мас.%: углерод 0,02÷0,06, кремний 0,05÷0,30, марганец 1,3÷1,7, хром 18÷20, никель 53÷56, молибден 5,0÷7,0, вольфрам 2,0÷3,0, цирконий 0,05÷0,015, азот 0,01÷0,03, иттрий 0,01÷0,05, бор 0,001÷0,005, алюминий 0,05÷0,15, железо и примеси - остальное. Сплав характеризуется высокими показателями длительной прочности при температурах 650-800°C, повышенной технологичностью при изготовлении крупногабаритных поковок и при сварке. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, в частности к сплавам на основе никеля для изготовления механических компонентов турбомашин. Суперсплав на основе никеля для механических компонентов турбомашин содержит, мас.%: хром - от 3 до 7, вольфрам - от 3 до 15, тантал - от 4 до 6, алюминий - от 4 до 8, углерод менее 0,8, никель и примеси - остальное. Сплав характеризуется высокой механической, химической и термической стойкостью. Механические компоненты, изготовленные из заявленного сплава, могут эксплуатироваться при высоких температурах. 5 н. и 5 з.п. ф-лы, 8 ил.

Изобретение относится к области металлургии, в частности к сплавам для защитного покрытия конструктивного элемента газовой турбины от коррозии и/или окисления. Защитное покрытие для защиты конструктивного элемента газовой или паровой турбины от коррозии и/или окисления, в частности, при высоких температурах, выполненное в виде одиночного металлического слоя из сплава, содержащего, вес.%: 24-26 кобальта, 12-14 хрома, 10-12 алюминия, 0,2-0,5 по меньшей мере одного элемента из группы, включающей в себя скандий и редкоземельные элементы, никель - остальное. Покрытие не содержит тантала, рения, кремния. Покрытие характеризуется высокими показателями стойкости к высокотемпературной коррозии и окислению. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к области металлургии, в частности к стойким к окислению сплавам на основе никеля. Стойкий к окислению сплав никеля содержит, мас.%: 4-7 Cr, 4-5 Si, 0,1-0,2 Y, 0,1-0,2 Mg, 0,1-0,2 Hf, Ni и неизбежные примеси - остальное. Сплав может быть использован в качестве материала оболочки термопар N-типа, так как имеет улучшенные свойства ползучести при высоких температурах. 7 з.п. ф-лы, 3 ил., 1 табл.
Изобретение относится к металлургии жаропрочных сплавов для сварочной проволоки и может быть использовано для сварки деталей из высоконикелевых сплавов высокотемпературных установок с температурой эксплуатации до 950оC. Сварочная проволока содержит, мас.%: углерод 0,01-0,05, кремний 0,05-0,2, марганец 1,3-2,0, хром 14,0-16,0, молибден 6,0-7,0, вольфрам 2,5-3,5, железо 17,0-20,0, азот 0,01-0,04, иттрий 0,01-0,1, цирконий 0,05-0,15, кальций 0,001-0,1, сера менее 0,010, фосфор менее 0,015, никель - остальное. Сварочная проволока характеризуется повышенными технологической прочностью и высокими кратковременными механическими свойствами и длительной прочностью при температурах до 950оC. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, имеющим высокие значения горячей обрабатываемости, ударной вязкости и пластичности после долговременного использования. Жаропрочный сплав на Ni-основе состоит из, % по массе: С≤0,15, Si≤2, Mn≤3%, Р≤0,03, S≤0,01, Cr 15 или более и менее 28, Mo от 3 до 15, Со более 5 и не более 25, Al от 0,2 до 2, Ti от 0,2 до 3, Nd от f1 до 0,08 и О≤0,4Nd. При этом нижний предел содержания Nd определен следующим выражением f1=1,7×10-5d+0,05{(Al/26,98)+(Ti/47,88)}, где d - средний размер зерна, мкм, и каждый символ элемента означает содержание в % по массе. Сплав характеризуется повышенной пластичностью после долговременной эксплуатации при высоких температурах, при этом может быть предотвращено SR-растрескивание. 2 н. и 1 з.п. ф-лы, 3 табл.
Наверх