Жидкостно-жидкостный теплообменник для двигателей внутреннего сгорания

Изобретение относится к теплотехнике и может использоваться в жидкостных теплообменниках. В жидкостно-жидкостном теплообменнике, соединяющем секции труб, закрепленных в герметичном корпусе и подключенных к раздельным коллекторам по контурам охлаждающих теплоносителей, в контуре змеевикообразного теплоносителя каждая секция труб выполнена в виде спиралеобразного конусного змеевика сходящегося и расходящегося типа, установленных попарно большими основаниями, обращенными друг к другу, и попарно меньшими основаниями, обращенными друг к другу, причем секции разделены поперечными перегородками в местах больших оснований змеевиков отверстиями кольцеобразных прорезей, в местах меньших оснований - центральными отверстиями в контуре охлаждающего теплоносителя. Технический результат - упрощение конструкции при повышении уровня стабильности теплопередачи температуры хладона. 3 ил.

 

Предлагаемое устройство относится к теплообменникам, в которых теплопередача производится через неподвижные стенки аналогично типу змеевик сходящийся-расходящийся одной трубки в трубе.

В процессе теплопередачи через стенки змеевика сходящейся-расходящейся одной трубки температура хладона, имеющая температуру от минус 15°C до минус 20°C, нагревается за счет температуры охлаждающей жидкости, которая поступает в теплообменник из циркуляционной замкнутой системы трубопроводов, заглубленных в грунт земли на глубине от 0,8 до 1,5 метра, имеющей температуру теплообмена зимой на уровне плюс 6-8°C, и за счет этого создается перепад температур 21÷28°C для нагрева хладона до предела от 0°C до плюс 1÷2°C. Процесс теплопередачи может быть иным в части источника теплообмена для нагрева низкотемпературного хладона за счет тепла водоема, энергии солнечных лучей или какого либо горячего источника.

Известно устройство, такое как микротеплообменник змеевикового типа с дроссельным клапаном (смотри а.с. №542896, опубликованный 15.01.1977 г.), состоящий из цилиндрической формы змеевикового типа трубного пучка с встроенным дроссельным клапаном.

Недостатком данного устройства является сложность конструкции с примененным дроссельным устройством, кроме того, что дросселирование хладона в предлагаемом устройстве уже состоялось и необходимо произвести его прогрев каким-либо источником теплоты большого объема для достижения его температуры от минус 15÷20°C до плюс 1÷2°C.

Известно устройство, такое как кожухотрубчатый теплообменник, содержащий размещенные вокруг полого сердечника секции труб, закрепленные в трубных решетках, выполненных в виде боковых граней усеченной пирамиды, и подключенные к раздающему и собирающему коллекторам (смотри а.с. №542901, опубликованный 15.01.1977 г.).

Недостатком данного устройства является сложность и громоздкость конструкции пучков труб.

Технический результат - упрощение конструкции при повышении уровня стабильности теплопередачи температуры хладона.

Задача решается тем, что в жидкостно-жидкостном теплообменнике, соединяющем секции труб, закрепленных в герметичном корпусе и подключенных к раздельным коллекторам по контурам охлаждающих теплоносителей, в контуре змеевикообразного теплоносителя каждая секция труб выполнена в виде спиралеобразного конусного змеевика сходящегося и расходящегося типа, установленных попарно большими основаниями, обращенными друг к другу, и попарно меньшими основаниями, обращенными друг к другу, причем секции разделены поперечными перегородками в местах больших оснований змеевиков отверстиями кольцеобразных прорезей, в местах меньших оснований - центральными отверстиями в контуре охлаждающего теплоносителя.

На фигуре 1 изображен заявляемый жидкостно-жидкостный теплообменник, на фигуре 2 - поперечная перегородка с отверстиями-прорезями, на фигуре 3 - поперечная перегородка с центральными отверстиями.

Жидкостно-жидкостный теплообменник соединяет секции труб, закрепленные в герметичном корпусе 1 и подключенные к раздельным коллекторам 2 и 3 по контурам охлаждающих теплоносителей, т.е. 2 - входной коллектор водяного контура жидкостно-жидкостного теплообменника, а 3 - выходной коллектор, причем входной коллектор 2 снабжен входным патрубком 4, а выходной коллектор 3 - выходным патрубком 5. В контуре змеевикообразного теплоносителя 6 каждая секция труб выполнена в виде спиралеобразного конусного змеевика сходящегося 7 и расходящегося 8 типа, установленных попарно большими основаниями, обращенными друг к другу, и попарно меньшими основаниями, обращенными друг к другу. Секции труб разделены поперечными перегородками 9 в местах больших оснований змеевиков отверстиями кольцеобразных прорезей 10, ближе к внешнему диаметру, а в местах меньших оснований - поперечными перегородками 11 с центральными отверстиями 12 в контуре охлаждающего теплоносителя. Соединение концов спиралеобразных конусных змеевиков сходящегося 7 и расходящегося 8 типа осуществляется твердой пайкой меднофосфористым припоем или латунью и применением развальцовки одного конца и вставлением внутрь другого конца.

Жидкостно-жидкостный теплообменник работает следующим образом. После дросселирования хладона его давление снижается до атмосферного давления в 1,3 МПа, а его температура снижается от плюс 66÷70°C до минус 15÷20°C. Такой теплоноситель поступает через входной патрубок 4 для хладона во входной коллектор 2 контура змеевикообразного теплоносителя 6 и за счет теплообмена с жидким теплоносителем (вода - «рапа»), имеющим температуру плюс 6÷8°C и преобладающую производительность по расходу, повышает свою температуру до значений от минус 15÷20°C до минус 4°C или до 0°C, а температура жидкого теплоносителя (вода - «рапа») соответственно снижается от плюс 6÷8°C до 0°C на выходе из выходного коллектора 3, связанного с выходным патрубком 5, и отправляется в грунтовый змеевик, где восстанавливает свою первоначальную температуру. Хладоновый теплоноситель выходит из патрубка 5 змеевикового теплоносителя жидкостно-жидкостного теплообменника и поступает в компрессор теплового насоса, где сжимается до давления 1,3 МПа и нагревается до температуры плюс 95°C. Горячий хладоновый теплоноситель может быть использован для нагрева отопительной воды и воды для санитарно-водных процедур в нагревательном котле, в котором температура хладона снизится до плюс 65÷70°C. Далее цикл дросселирования хладона повторяется.

Выполнение в контуре змеевикообразного теплоносителя 6 каждой секции труб в виде спиралеобразного конусного змеевика сходящегося 7 и расходящегося 8 типа, установленных попарно большими основаниями, обращенными друг к другу, и попарно меньшими основаниями, обращенными друг к другу, позволяет повысить уровень стабильности теплопередачи температуры хладона за счет равномерного охвата объема нагревающей жидкости внутри корпуса 1 и конструкций поперечных перегородок 9, установленных в местах больших оснований змеевиков отверстиями кольцеобразных прорезей 10, а в местах меньших оснований - поперечных перегородок 11 с центральными отверстиями 12 в контуре охлаждающего теплоносителя, вода омывает последовательно пучки спиралей в противотоке по спиралеобразным конусным змеевикам сходящегося 7 и расходящегося 8 типа.

Таким образом, по сравнению с прототипом, предлагаемая конструкция жидкостно-жидкостного теплообменника проще за счет оригинальной навивки спиралеобразного змеевика правого и левого хода, при этом повышается уровень стабильности теплопередачи температуры хладона.

Жидкостно-жидкостный теплообменник, соединяющий секции труб, закрепленные в герметичном корпусе и подключенные к раздельным коллекторам по контурам охлаждающих теплоносителей, отличающийся тем, что в контуре змеевикообразного теплоносителя каждая секция труб выполнена в виде спиралеобразного конусного змеевика сходящегося и расходящегося типа, установленных попарно большими основаниями, обращенными друг к другу, и попарно меньшими основаниями, обращенными друг к другу, причем секции разделены поперечными перегородками в местах больших оснований змеевиков отверстиями кольцеобразных прорезей, в местах меньших оснований - центральными отверстиями в контуре охлаждающего теплоносителя.



 

Похожие патенты:

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности. Теплообменный элемент представляет собой спиралевидную гибкую трубу с периодически расположенными на ее внутренней поверхности турбулизаторами, предпочтительно, в виде кольцевых выступов.

Теплообменник для энергетических установок содержит винтообразные элементы из труб с двумя прямыми и двумя скругленными участками на каждом витке. При этом центры труб у прямых участков в поперечном сечении теплообменника располагаются на контуре многоугольника.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве подогревателя сетевой и горячей воды. .

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах энергетических установок. .

Изобретение относится к области теплотехники и может быть использовано в установках для сжижения природного газа и, в частности, для изготовления змеевиковых теплообменников.

Изобретение относится к области теплотехники, а именно к змеевиковым теплообменникам, и может быть использовано в установках для сжижения природного газа. .

Изобретение относится к криогенной системе газоснабжения космического скафандра космонавта, осуществляющего, в частности, внекорабельную деятельность. .

Изобретение относится к теплотехнике, а именно к теплообменникам для холодильных аппаратов. .

Изобретение относится к теплотехнике и может быть использовано в качестве теплообменника в системе водоподготовки ядерной энергетической установки. .

Изобретение относится к энергетике и может быть использовано в системах продувки первого и второго контуров атомной электростанции. .

Группа изобретений относится к холодильной технике. Испаритель для холодильного аппарата включает в себя трубу (11) для хладагента, по меньшей мере, одну несущую пластину (7), на которой закреплена труба (11), и расположенную между трубой (11) и несущей пластиной (7) теплораспределительную пластину (12), имеющую выступы (18), которыми зажимается труба (11).

Группа изобретений относится к холодильному аппарату и к испарителю, используемому в таком холодильном аппарате. Испаритель для холодильного аппарата содержит трубу, по которой проходит хладагент.

Изобретение предназначено для применения в теплотехнике и может быть использовано в теплообменных аппаратах с оребренными трубами. В теплообменном аппарате оребренная теплообменная труба диаметром d выполнена серпантинообразной с внешним диаметром оребрения D и толщиной ребер L1, расположенных на расстоянии L2 друг от друга, при этом амплитуда серпантина A по внешнему диаметру оребрения составляет не менее A = D × ( 2 + 1 L 1 + L 2 L 1 − 1 ) период волны серпантина P не менее P = 2 D × ( 1 + 1 L 1 + L 2 L 1 − 1 ) Технический результат: интенсификация теплообмена за счет турбулизации потока, проходящего внутри оребренных серпантинообразных труб, и увеличение площади теплообмена аппарата.

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменников, в частности, для бытового холодильного аппарата. Проволочно-трубный теплообменник, в частности, для бытового холодильного аппарата включает в себя два слоя проволоки и трубу хладагента, проходящую в промежуточном пространстве между слоями.

Изобретение относится к области теплотехники и может быть использовано в теплообменниках. .

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. .

Изобретение относится к компрессионным термическим устройствам. .

Изобретение относится к теплотехнике, а именно к теплообменникам, в частности к испарителю для холодильного аппарата, например домашнего холодильника или морозильника, а также к способу его изготовления.

Изобретение относится к теплоэнергетике и может быть использовано в холодильной технике. .

Изобретение относится к тяжелой промышленности. .

Теплообменное устройство содержит элементы в виде спирально навитых труб с чередующимися прямыми и кольцеобразными участками, расположенными напротив друг друга. Элементы внедрены друг в друга кольцеобразными участками. Прямые участки смежных элементов в теплообменном устройстве располагаются с одной стороны, а кольцеобразные - с другой, при этом элементы в поперечном сечении теплообменного устройства расположены вокруг его оси по окружности, с ориентацией кольцеобразных участков на указанную ось. Прямые участки в элементах могут располагаться в разных плоскостях, под углом друг к другу. В этом случае кольца у кольцеобразных участков имеют различные диаметры, наибольшие в середине элементов, и наименьшие на его концевых участках. При совпадении направления навивок у смежных элементов плоскости, прилегающие к внешней стороне кольцеобразных участков, пересекаются под острым углом с осью теплообменного устройства. При взаимно противоположном направлении навивок у смежных элементов упомянутые плоскости и ось параллельны. Достигается значительное уменьшение габаритов теплообменного устройства за счет плотной компоновки смежных элементов в нем, а также возможность размещать его в цилиндрических, кольцевых, торообразных и сферических полостях. 3 з.п. ф-лы, 14 ил.
Наверх