Способ определения статических и нестационарных аэродинамических производных моделей летательных аппаратов и устройство для его осуществления

Изобретения относятся к области экспериментальной аэродинамики летательных аппаратов и могут быть использованы для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов в аэродинамической трубе. Способ заключается в следующем. Испытания проводят как в потоке, так и без потока в аэродинамической трубе, модель посредством тензовесов и державки устанавливают в подвижное поддерживающее устройство, модель колеблют с фиксированной частотой и малой амплитудой поочередно относительно осей Ox, Oy и Oz. Затем измеряют во времени действующие на модель нагрузки и ее угловое положение, производят вычитание инерционных и весовых нагрузок, в процессе испытаний модель вместе с державкой и тензовесами поворачивают на фиксированные углы крена, результаты эксперимента при колебаниях относительно осей Oy и Oz обрабатывают совместно. Устройство содержит поворотный круг в рабочей части аэродинамической трубы, стойку на поворотном круге, подвижную Г-образную раму, державку модели с тензовесами, смонтированную в подшипниковом узле рамы, привод, связанный тягами с рамой и державкой, датчики угла поворота рамы и державки. Державка выполнена с возможностью дистанционно управляемой установки под заданным углом крена при помощи механизма, состоящего из корпуса, установленного на подшипниковом узле рамы соосно державке посредством подшипников, электрического мотор-редуктора, выходного вала с упругим диском-шестерней, соединенного со свободным концом державки, пневмотормоза диска, дополнительного датчика угла установки державки по крену, который вынесен от оси державки и связан с диском-шестерней, снаружи корпус снабжен рычагом-зажимом для фиксации механизма относительно рамы и для соединения тягой с приводом. Технический результат заключается в расширении возможностей определения статических и нестационарных аэродинамических производных моделей летательных аппаратов в аэродинамической трубе при наличии угла скольжения во всем диапазоне углов атаки. 2 н.п. ф-лы, 7 ил.

 

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов.

Важность определения статических и нестационарных аэродинамических производных летательных аппаратов в широком диапазоне углов атаки и скольжения обусловлена, прежде всего, необходимостью обеспечения безопасности эксплуатации самолета, в частности предотвращением возникновения сваливания самолета и попадания его в штопор. По мировой статистике, более половины аварий и катастроф происходит именно по этой причине (Авиация общего назначения. Рекомендации для конструкторов. Под ред. д.т.н. проф. В.Г. Микеладзе, М., ЦАГИ, 2001, с.213).

Из существующего уровня техники известен способ определения статических и нестационарных аэродинамических производных моделей летательных аппаратов в аэродинамической трубе методом вынужденных колебаний, при котором модель посредством тензовесов и державки устанавливают в подвижное поддерживающее устройство, модель колеблют с фиксированной частотой и малой амплитудой поочередно относительно связанных осей Ox, Oy и Oz, измеряют во времени действующие на модель аэродинамические нагрузки и ее угловое положение (Г.С. Бюшгенс, Р.В. Студнев, Аэродинамика самолета. Динамика продольного и бокового движения. М., Машиностроение, 1979, с.32-34). Недостатком данного способа является невозможность определения продольных статических и нестационарных аэродинамических производных моделей летательных аппаратов и характеристик рыскания при углах скольжения, не равных нулю, в случае, если угол атаки модели не равен нулю, а также характеристик крена при углах скольжения, не равных нулю, во всем диапазоне углов атаки модели.

Наиболее близким к заявленному техническому решению является способ определения статических и нестационарных аэродинамических производных моделей летательных аппаратов, при котором испытания проводят как в потоке, так и без потока в аэродинамической трубе, модель посредством тензовесов и державки устанавливают в подвижное поддерживающее устройство, модель колеблют с фиксированной частотой и малой амплитудой поочередно относительно осей Ox, Oy и Oz, измеряют во времени действующие на модель нагрузки и ее угловое положение, производят вычитание инерционных и весовых нагрузок, а затем производят вычисления статических и комплексов нестационарных и вращательных аэродинамических производных (Экспериментальные исследования и математическое моделирование нестационарных аэродинамических характеристик моделей самолетов. Труды ЦАГИ - сборник статей. М., 2010 г., выпуск 2689, с.5-6). Недостатком указанного способа является то, что он также не позволяет определить статические и нестационарные аэродинамические производные моделей летательных аппаратов при углах скольжения, отличных от нуля.

Из существующего уровня техники также известно устройство для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов, содержащее поворотный круг в рабочей части аэродинамической трубы, стойку на поворотном круге, державку модели с тензовесами, смонтированную в подшипниковом узле стойки, привод, связанный тягой с державкой, датчик угла поворота державки (Г.С. Бюшгенс, Р.В. Студнев, Аэродинамика самолета. Динамика продольного и бокового движения. М., Машиностроение, 1979, с.32-34). Недостатком описанного устройства является невозможность проведения испытаний при колебаниях модели в продольном канале и по рысканию при углах скольжения, не равных нулю, в случае, если угол атаки модели не равен нулю, а также отсутствие возможности проведения испытаний при углах скольжения, не равных нулю, во всем диапазоне углов атаки модели при ее колебаниях по крену.

Наиболее близким к заявленному техническому решению является устройство для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов, содержащее поворотный круг в рабочей части аэродинамической трубы, стойку на поворотном круге, подвижную Г-образную раму, державку модели с тензовесами, смонтированную в подшипниковом узле рамы, привод, связанный тягами с рамой и державкой, датчики угла поворота рамы и державки (Экспериментальные исследования и математическое моделирование нестационарных аэродинамических характеристик моделей самолетов. Труды ЦАГИ - сборник статей. М., 2010 г., выпуск 2689, с.5-6). Недостатком этого устройства является то, что оно также не позволяет проводить испытания по определению статических и нестационарных аэродинамических производных моделей летательных аппаратов при углах скольжения, отличных от нуля.

Задачей и техническим результатом изобретения является создание способа и устройства для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов при наличии угла скольжения во всем диапазоне углов атаки, что увеличивает безопасность эксплуатации самолета, в частности, позволяет предотвратить возникновение сваливания самолета и попадание его в штопор.

Решение поставленной задачи и технический результат достигаются тем, что в способе определения статических и нестационарных аэродинамических производных моделей летательных аппаратов, заключающемся в том, что испытания проводят как в потоке, так и без потока в аэродинамической трубе, модель посредством тензовесов и державки устанавливают в подвижное поддерживающее устройство, модель колеблют с фиксированной частотой и малой амплитудой поочередно относительно осей Ox, Oy и Oz, измеряют во времени действующие на модель нагрузки и ее угловое положение, производят вычитание инерционных и весовых нагрузок, в процессе испытаний модель вместе с державкой и тензовесами поворачивают на фиксированные углы крена, результаты эксперимента при колебаниях относительно осей Oy и Oz обрабатывают совместно, при этом значения статических и нестационарных аэродинамических производных определяют по формулам

C α = C 1 ω z cos γ C 1 ω y sin γ ,

C β = C 1 ω z sin s γ C 1 ω y cos γ ,

C ω ¯ y + C α ˙ ¯ = C 2 ω z cos γ l 2 b a C 2 ω y sin γ ,

C ω ¯ y + C β ˙ ¯ cos α + C α ˙ ¯ 2 b a l sin α t g β = 2 b a l C 2 ω z sin γ + C 2 ω y cos γ ,

где C=Cy, Cx, mx, my или mz, Cα - статическая производная аэродинамического коэффициента от угла атаки, Cβ - статическая производная аэродинамического коэффициента от угла скольжения, C ω ¯ y + C α ˙ ¯ - комплекс продольных вращательной и нестационарной аэродинамических производных; C ω ¯ y + C β ˙ ¯ cos α + C α ˙ ¯ 2 b a l sin α t g β - комплекс боковых вращательной и нестационарных аэродинамических производных, γ - угол поворота державки по крену, C 1 ω z - составляющая сигнала в фазе с углом колебаний модели при колебаниях относительно оси Oz, C 1 ω y - составляющая сигнала в фазе с углом колебаний модели при колебаниях относительно оси Oy, C 2 ω z - составляющая сигнала в фазе с угловой скоростью колебаний модели при колебаниях относительно оси Oz, C 2 ω y - составляющая сигнала в фазе с угловой скоростью колебаний модели при колебаниях относительно оси Oy, l - размах крыла модели, ba - САХ модели.

Решение поставленной задачи и технический результат достигаются также тем, что в устройство для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов, содержащее поворотный круг в рабочей части аэродинамической трубы, стойку на поворотном круге, подвижную Г-образную раму, державку модели с тензовесами, смонтированную в подшипниковом узле рамы, привод, связанный тягами с рамой и державкой, датчики угла поворота рамы и державки, введен механизм дистанционной установки державки, состоящий из корпуса, установленного на подшипниковом узле рамы посредством подшипников, электрического мотор-редуктора и выходного вала с упругим диском-шестерней, установленных соосно державке и соединенных с ее свободным концом, пневмотормоза диска, установленного в корпусе и охватывающего упругий диск-шестерню, дополнительного датчика угла установки державки по крену, который вынесен от оси державки и связан с диском-шестерней, рычага-зажима, установленного на наружной поверхности корпуса механизма с возможностью фиксации корпуса относительно рамы и соединения тягой с приводом.

Сущность предложенных способа и устройства для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов поясняется на фиг.1-6, на которых представлены:

на фиг.1 - схема проведения испытаний для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов при колебаниях относительно различных связанных осей;

на фиг.2 - схема заявляемого устройства для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов;

на фиг.3 - схема механизма для дистанционной установки державки под заданным углом крена;

на фиг.4 - график зависимостей углов атаки α и скольжения β от угла поворота круга в рабочей части аэродинамической трубы θ и угла крена державки γ;

на фиг.5, 6, 7 - графики зависимостей статических и нестационарных аэродинамических производных модели треугольного крыла от угла атаки для различных значений угла скольжения.

Перечень используемых позиций в описании изобретения.

1. Поворотный круг в рабочей части аэродинамической трубы.

2. Подвижная Г-образная рама.

3. Стойка.

4. Тяга.

5. Привод.

6. Державка.

7. Тензовесы.

8. Механизм дистанционной установки державки.

9. Модель летательного аппарата.

10. Датчик угла поворота рамы.

11. Подшипниковый узел рамы.

12. Выходной вал.

13. Электрический мотор-редуктор.

14. Упругий диск-шестерня.

15. Датчик угла установки державки по крену.

16. Корпус.

17. Пневмотормоз диска.

18. Подшипник.

19. Рычаг-зажим.

20. Датчик угла поворота державки.

Способ определения статических и нестационарных аэродинамических производных моделей летательных аппаратов заключается в том, что испытания проводят как в потоке, так и без потока в аэродинамической трубе, модель посредством тензовесов и державки устанавливают в подвижное поддерживающее устройство, модель колеблют с фиксированной частотой и малой амплитудой поочередно относительно осей Ox, Oy и Oz, измеряют во времени действующие на модель нагрузки и ее угловое положение, производят вычитание инерционных и весовых нагрузок. Для этого устройство последовательно собирают в конфигурации для проведения исследований производных модели при ее колебаниях относительно одной из связанных осей (фиг.1). Модель летательного аппарата 9 устанавливают в подвижное поддерживающее устройство - державку 8 с тензовесами 7 (фиг.2). При помощи механизма дистанционной установки державки 8 модель поворачивают на фиксированный угол крена γi, при помощи поворотного круга в рабочей части аэродинамической трубы 1 модель 9 устанавливают под углом θi к оси потока аэродинамической трубы (фиг.2). Привод 5 настраивают на нужные величины амплитуды А и круговой частоты ω и колеблют подвижную Г-образную раму 2 по гармоническому закону

Δ θ ( t ) = A sin ω t . ( 1 )

Величина амплитуды колебаний является малой и равна 2÷3°. Без потока в аэродинамической трубе в течение шестнадцати периодов колебаний производят измерение тензовесами 7 и запись пяти компонент нагрузок, действующих на модель Y, Z, Mx, My, Mz, а также показаний датчиков угла поворота державки 20 и рамы 10. Исследования проводят для нескольких значений углов θi. Определяют значение инерционных и весовых нагрузок. Затем включают поток в аэродинамической трубе и указанные операции повторяют. Из нагрузок, полученных в потоке, вычитают инерционные и весовые нагрузки. Затем получают зависимости статических и нестационарных аэродинамических производных модели с использованием алгоритма, описанного ниже.

Для проведения испытаний при заданных средних значениях угла атаки αi и скольжения βi модель необходимо устанавливать под соответствующими углами γi и θi. Связь между величинами указанных углов описывается системой уравнений

t g α = t g θ cos γ sin β = sin θ sin γ ( 2 )

При решении этой системы уравнений получают требуемые значения углов поворота круга θi и державки γi для заданных значений углов атаки и скольжения по следующим формулам

cos 2 θ = cos 2 α + cos 2 β ( 3 ) sin 2 γ = 1 cos 2 β 1 cos 2 α cos 2 β

Графически приведенные зависимости представлены на фиг.4. При проведении исследований необходимые значения углов θ и γ по заданным углам α и β рассчитывают в реальном времени на компьютере.

При повороте модели с тензовесами по крену при колебаниях по тангажу и рысканию угловая скорость вращения модели имеет проекцию одновременно на две оси связанной системы координат модели - ωz и ωy (фиг.2). В связи с этим, результаты эксперимента при колебаниях относительно осей Oy и Oz обрабатывают совместно - только одновременная обработка результатов колебаний по тангажу и рысканию с последующим решением соответствующей линейной системы уравнений позволяет получить требуемые зависимости статических и нестационарных аэродинамических производных модели.

Рассмотрим малые колебания модели по тангажу. Пусть угол поворота рамы установки изменяется по закону

Δ θ = sin ω t , ( 4 )

Где ∈0<<1 - амплитуда колебаний, ω=2πf - частота. Тогда малые изменения углов атаки и скольжения модели относительно средних значений можно представить формулами

Δ α ( t ) = Δ θ ( t ) cos γ , Δ β ( t ) = Δ θ ( t ) sin γ . ( 5 )

Компоненты угловой скорости движения модели можно выразить следующим образом:

ω y = Ω ( t ) sin γ ω z = Ω ( t ) cos γ , ( 6 )

где Ω = Δ θ = 0 ω cos ω t .

Следовательно, при наличии поворота модели по углу крена при колебаниях по тангажу в связанной системе координат возникают угловые скорости вращения модели ωy и ωz, в отличие от случая γ=0, когда ωy=0.

Выражения для производных по времени углов атаки и скольжения можно найти с помощью кинематических соотношений:

α ˙ = ω z ( ω x cos α ω y sin α ) t g β , β ˙ = ω x sin α + ω y cos α . ( 7 )

С учетом (6), можно получить

α ˙ = Ω ( t ) ( cos γ + sin γ sin α t g β ) , β ˙ = Ω ( t ) sin γ cos α . ( 8 )

Следовательно, в линейном приближении, с учетом (5), (6) и (8), при колебаниях по тангажу аэродинамические коэффициенты можно представить в следующем виде

C = C 0 + C α Δ θ cos γ + C β Δ θ sin γ + C α ˙ ¯ b a V Ω ( sin α t g β sin γ + cos γ ) + + C β ˙ ¯ l 2 V Ω sin γ cos α + C ω ¯ y l 2 V Ω sin γ + C ω ¯ z b a V Ω cos γ = = C 0 ( C α cos γ + C β sin γ ) Δ θ + [ ( C ω ¯ z + C α ˙ ¯ ) ] b a V cos γ + ( C ω ¯ y + C β ˙ ¯ cos α + C α ˙ ¯ 2 b a l sin α t g β ) l 2 V sin γ ] Ω ,

где C=Cy, Cz, mx, my или mz.

Таким образом, каждый канал тензовесов при малых колебаниях по тангажу воспринимает некоторое среднее значение C0 и сигналы в фазе с опорным сигналом Δθ(t) и в фазе с сигналом Ω(t)=Δθ(t). Составляющая сигнала в фазе с опорным сигналом пропорциональна

C 1 ω z = C α cos γ + C β sin γ . ( 9 )

Составляющая сигнала в фазе с угловой скоростью (опережение по фазе на π/2 выражается следующим образом

C 2 ω z = ( C ω ¯ z + C α ˙ ¯ ) b a V cos γ + ( C ω ¯ y + C β ˙ ¯ cos α + C α ˙ ¯ 2 b a l sin α t g β ) l 2 V sin γ . ( 10 )

Таким образом, при γ 0 в результате эксперимента при вынужденных колебаниях по тангажу могут быть выделены сложные комплексы производных, описываемые выражениями (9) и (10).

Проанализируем теперь кинематику модели при колебаниях по рысканию. В этом случае рама установки повернута так, что бы ее колебания изменяли угол рыскания модели. При этом ее малые колебания (4) приводят к следующим изменениям мгновенных значений углов атаки и скольжения относительно средних значений, определяемых выражением (2)

Δ α ( t ) = Δ θ ( t ) sin γ , Δ β ( t ) = Δ θ ( t ) cos γ . ( 11 )

Компоненты угловой скорости имеют следующий вид

ω y = Ω ( t ) cos γ ω z = Ω ( t ) sin γ ( 12 )

Выражения для производных от углов атаки и скольжения в случае колебаний по рысканию определяются из вышеприведенных формул (12) с учетом кинематических соотношений (7):

α ˙ = Ω ( t ) ( sin γ + cos γ sin α t g β ) , β ˙ = Ω ( t ) cos γ cos α . ( 13 )

В линейном приближении коэффициенты сил и моментов, действующих на модель при колебаниях по рысканию, с учетом (11), (12) и (13) можно представить в виде:

C = C 0 ( C α sin γ + C β cos γ ) Δ θ + [ ( C ω ¯ z + C α ˙ ¯ ) ] b a V sin γ + ( C ω ¯ y + C β ˙ ¯ cos α + C α ˙ ¯ 2 b a l sin α t g β ) l 2 V cos γ ] Ω .

Таким образом, по аналогии со случаем колебаний по тангажу, при малых колебаниях по рысканию каждый канал тензовесов также воспринимает некоторое среднее значение C0 и сигналы в фазе с опорным сигналом Δθ(t) и в фазе с сигналом Ω(t)=Δθ(t):

C 1 ω y = C α sin γ + C β cos γ . ( 14 )

С учетом выражений (9) и (14,) решая систему уравнений для нахождения производных Cα и Cβ, получим

C 2 ω y = ( C ω ¯ z + C α ˙ ¯ ) b a V sin γ + ( C ω ¯ y + C β ˙ ¯ cos α + C α ˙ ¯ 2 b a l sin α t g β ) l 2 V sin γ , ( 15 )

где Cα - статическая производная аэродинамического коэффициента от угла атаки, Cβ - статическая производная аэродинамического коэффициента от угла скольжения, C 1 ω z - составляющая сигнала в фазе с углом колебаний модели при колебаниях относительно оси Oz, C 1 ω y - составляющая сигнала в фазе с углом колебаний модели при колебаниях относительно оси Oy. Коэффициент C 1 ω z получен методом линейной регрессии при колебаниях модели по тангажу для заданных средних значений углов атаки и скольжения, а коэффициент C 1 ω y - при колебаниях по рысканию.

Аналогично, с учетом выражений (10) и (15), можно найти комплексы производных

C ω ¯ y + C α ˙ ¯ = C 2 ω z cos γ l 2 b a C 2 ω y sin γ ,

C ω ¯ y + C β ˙ ¯ cos α + C α ˙ ¯ 2 b a l sin α t g β = 2 b a l C 2 ω z sin γ + C 2 ω y cos γ .

В этом выражении C ω ¯ z + C α ˙ ¯ - комплекс продольных вращательной и нестационарной аэродинамических производных; C ω ¯ y + C β ˙ ¯ cos α + C α ˙ ¯ 2 b a l sin α t g β - комплекс боковых вращательной и нестационарных аэродинамических производных, C 2 ω z - составляющая сигнала в фазе с угловой скоростью колебаний модели при колебаниях относительно оси Oz, C 2 ω y - составляющая сигнала в фазе с угловой скоростью колебаний модели при колебаниях относительно оси Oy, l - размах крыла модели, ba - САХ модели.

Обрабатывая совместно результаты эксперимента при колебаниях по тангажу и рысканию, можно найти все необходимые комплексы стационарных и нестационарных производных при заданных средних значениях углов атаки и скольжения.

При колебаниях по крену для установочного угла γ≠0 отлична от нуля только одна компонента угловой скорости движения модели так же, как и в случае γ=0

ω x = Ω = Δ θ = 0 ω cos ω t .

Т.е. для таких колебаний начальный поворот на некоторый постоянный угол крена не приводит к дополнительным взаимосвязям между комплексами аэродинамических производных.

Выражения для производных углов атаки и скольжения имеют вид

α ˙ = Ω ( t ) cos α t g β ,

β ˙ = Ω ( t ) sin α .

Следовательно, в случае малых колебаний модели по крену коэффициент пропорциональности C 2 ω x составляющей сигнала тензовесов, опережающий по фазе на π/2 опорный сигнал, может быть выражен следующим образом

C 2 ω x = C ω ¯ x + C β ˙ ¯ sin α C α ˙ ¯ 2 b a l cos α t g β .

Поэтому исследовать зависимость демпфирования крена от угла скольжения можно, не решая дополнительных систем линейных уравнений.

Предлагаемый способ реализуется при помощи устройства для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов, собираемого в одном из трех вариантов для колебаний модели относительно одной из связанных осей (фиг.1). Устройство содержит поворотный круг 1 в рабочей части аэродинамической трубы (фиг.2), стойку 3 на поворотном круге, подвижную Г-образную раму 2, державку 6 модели с тензовесами 7, смонтированную в подшипниковом узле рамы 11, привод 5, связанный тягами 4 с рамой или державкой (в зависимости от конфигурации устройства), датчики угла поворота рамы 10 и державки 6. При колебаниях модели по тангажу Г-образная рама 2 устанавливается в вертикальной плоскости (фиг.1), при колебаниях по рысканию подвижная Г-образная рама 2 переводится в горизонтальное положение, при этом используется стойка 3 большей высоты. При колебаниях модели по крену тяга от привода крепится не к Г-образной раме 2, а к рычагу-зажиму 19 механизма 8. Для дистанционно управляемого поворота державки на заданный угол крена в устройстве использован механизм дистанционной установки державки 8, состоящий из корпуса 16, установленного на подшипниковом узле рамы 11 посредством подшипников 18 (фиг.3), электрического мотор-редуктора 13 и выходного вала 12 с упругим диском-шестерней 14, установленных соосно державке 6 и соединенных с ее свободным концом, пневмотормоза диска 17, установленного в корпусе и охватывающего упругий диск-шестерню, дополнительного датчика угла установки державки по крену 15, который вынесен от оси державки и связан с диском-шестерней, рычага-зажима 19, установленного на наружной поверхности корпуса механизма с возможностью фиксации корпуса относительно рамы и соединения тягой с приводом. Дополнительный датчик угла установки державки по крену 15 служит для измерения угла поворота державки 6 относительно корпуса 16.

Работает устройство следующим образом. Устройство собирают в нужной конфигурации для проведения исследований аэродинамических производных модели при ее колебаниях относительно одной из связанных осей (фиг.1). При проведении испытаний по тангажу и рысканию привод 5 посредством тяги 4 заставляет подвижную Г-образную раму 2 совершать гармонические периодические колебания с заданной малой амплитудой и частотой относительно оси стойки 3. Корпус механизма 8 зафиксирован относительно подшипникового узла рамы 11 рычагом-зажимом 19. При этом модель летательного аппарата 9, закрепленная на державке 6 и тензовесах 7, также совершает колебания относительно оси стойки. При проведении испытаний по крену подвижная Г-образная рама 2 фиксируется относительно стойки 3. Корпус механизма 8 освобождается и соединяется при помощи тяги 4 и рычага-зажима 19 с приводом 5. В этом случае модель 9 с тензовесами 7 и державкой 6 колеблется относительно оси державки. Для поворота модели на угол θi используется поворотный круг 1, для поворота державки на угол γi служит механизм дистанционной установки державки 8. Силы и моменты, действующие на модель, измеряются при помощи тензовесов 7. Поворот рамы устройства измеряется датчиком угла 10, угол поворота державки - датчиком 20. Поворот державки 6 с моделью 9 на необходимый угол крена осуществляется механизмом 8. При этом сначала пневмотормоз 17 отключается и разблокирует диск-шестерню 14 относительно корпуса 16. Включается электрический мотор-редуктор 13 и вращает державку 6 через выходной вал 12. При этом угол установки державки по крену измеряется датчиком 15. При достижении державкой нужного угла установки мотор-редуктор 13 выключается, на пневмотормоз 17 подается сжатый воздух, он блокирует диск-шестерню 14, фиксируя державку 6 от проворачивания относительно корпуса механизма 16. Рычаг-зажим 19 в случае колебаний модели по тангажу и рысканию смещается так, что он при затяжке одновременно обжимает наружные поверхности корпуса механизма 16 и подшипникового узла рамы 11, жестко фиксируя их между собой. При колебаниях модели по крену рычаг-зажим 19 сдвигается полностью на корпус 16 и зажимается на нем. К рычагу присоединяется тяга 4 от привода 5. При этом механизм 8, поворачиваясь на подшипниках 18 относительно рамы 2, передает малые угловые колебания державке 6.

Таким образом, достигается ожидаемый технический результат, а именно становится возможным проводить испытания по определению статических и нестационарных аэродинамических производных моделей летательных аппаратов при углах скольжения, отличных от нуля во всем диапазоне углов атаки.

Предлагаемые способ и устройство для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов были использованы при испытании модели треугольного крыла удлинением λ=1.5 со стреловидностью χ≈70° и корневой хордой ba=1,2 м при скорости потока V=25 м/с, что соответствует числу Рейнольдса Re=2.0·106 по корневой хорде. Центр колебаний модели располагался в точке χT - 0.5 ba. Эксперименты проводились в диапазоне углов атаки α=0÷60° для углов скольжения β=0, 5, 10 и 15°. Амплитуда колебаний составляла Δθ=3°, частота f=1.5 Гц, что соответствует безразмерной круговой частоте ω ¯ = 2 π f b a V = 0.18 при колебаниях по тангажу. На фиг.5-7 показаны зависимости статических и нестационарных аэродинамических производных модели треугольного крыла от угла атаки Cy(α), mz(α), ( m z ϖ z + m z α ˙ ¯ ) ( α ) , ( m x ϖ x + m x β ˙ ¯ sin α ) ( α ) , полученные при различных значениях угла скольжения. Можно отметить существенное влияние величины угла скольжения на аэродинамические производные треугольного крыла.

Таким образом, показано, что данное техническое решение позволяет определять статические и нестационарные аэродинамические производные моделей летательных аппаратов при наличии угла скольжения во всем диапазоне углов атаки. Это увеличивает безопасность эксплуатации самолета, в частности позволяет предотвратить возникновение сваливания самолета и попадание его в штопор.

1. Способ определения статических и нестационарных аэродинамических производных моделей летательных аппаратов, заключающийся в том, что испытания проводят как в потоке, так и без потока в аэродинамической трубе, модель посредством тензовесов и державки устанавливают в подвижное поддерживающее устройство, модель колеблют с фиксированной частотой и малой амплитудой поочередно относительно осей Ox, Oy и Oz, измеряют во времени действующие на модель нагрузки и ее угловое положение, производят вычитание инерционных и весовых нагрузок, отличающийся тем, что в процессе испытаний модель вместе с державкой и тензовесами поворачивают на фиксированные углы крена, результаты эксперимента при колебаниях относительно осей Oy и Oz обрабатывают совместно, при этом значения статических и нестационарных аэродинамических производных определяют по формулам
,
,
,
,
где C=Cy, Cx, mx, my или mz, Cα - статическая производная аэродинамического коэффициента от угла атаки, Cβ - статическая производная аэродинамического коэффициента от угла скольжения, - комплекс продольных вращательной и нестационарной аэродинамических производных; - комплекс боковых вращательной и нестационарных аэродинамических производных, γ - угол поворота державки по крену, - составляющая сигнала в фазе с углом колебаний модели при колебаниях относительно оси Oz, - составляющая сигнала в фазе с углом колебаний модели при колебаниях относительно оси Oy, - составляющая сигнала в фазе с угловой скоростью колебаний модели при колебаниях относительно оси Oz, - составляющая сигнала в фазе с угловой скоростью колебаний модели при колебаниях относительно оси Oy, l - размах крыла модели, ba - средняя аэродинамическая хорда (САХ) модели.

2. Устройство для определения статических и нестационарных аэродинамических производных моделей летельных аппаратов, содержащее поворотный круг в рабочей части аэродинамической трубы, стойку на поворотном круге, подвижную Г-образную раму, державку модели с тензовесами, смонтированную в подшипниковом узле рамы, привод, связанный тягами с рамой и державкой, датчики угла поворота рамы и державки, отличающееся тем, что в него введен механизм дистанционной установки державки, состоящий из корпуса, установленного на подшипниковом узле рамы посредством подшипников, электрического мотор-редуктора и выходного вала с упругим диском-шестерней, установленных соосно державке и соединенных с ее свободным концом, пневмотормоза диска, установленного в корпусе и охватывающего упругий диск-шестерню, дополнительного датчика угла установки державки по крену, который вынесен от оси державки и связан с диском-шестерней, рычага-зажима, установленного на наружной поверхности корпуса механизма с возможностью фиксации корпуса относительно рамы и соединения тягой с приводом.



 

Похожие патенты:

Изобретение относится к экспериментальному оборудованию для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, в том числе вблизи экрана.

Изобретение относится к экспериментальному оборудованию для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, в том числе вблизи экрана.

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов, преимущественно к разработке методов воспроизведения в аэродинамических трубах условий обтекания летательных аппаратов и разработке методов повышения аэродинамического качества летательных аппаратов.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. .

Изобретение относится к области испытаний на прочность, в частности к изготовлению и конструкции образцов лопасти модели воздушного винта, предназначенных для таких испытаний.

Изобретение относится к области приборостроения и может быть использовано, в частности, в устройствах нагрева газа для импульсных установок. .

Изобретение относится к области экспериментальной аэродинамики, а именно к способам определения аэродинамических характеристик воздушных судов. .

Изобретение относится к области машиностроения и предназначено для использования преимущественно в авиационной промышленности при проведении наземных испытаний объектов авиационной техники, подвергающихся обледенению в естественных условиях.

Изобретение относится к экспериментальной аэродинамике летательных аппаратов и может быть использовано при динамических испытаниях моделей различных летательных аппаратов в аэродинамической трубе.

Изобретение относится к судостроению и касается проектирования экранопланов. При определении аэродинамических характеристик горизонтального оперения экраноплана с установленными на нем работающими маршевыми двигателями изготавливают геометрически подобную модель горизонтального оперения и двигателей силовой установки. Модель испытывается в опытовом бассейне в прямом движении. Модель крепится на пилоне буксировочной тележки через динамометр, используемый для гидродинамических исследований, в зоне отсутствия вихреобразования от движения тележки. Моделирование струи силовой установки производится моделированием диаметра сопла и тяги. При движении тележки на фиксированной скорости и обдувки горизонтального оперения струями двигателей маршевой силовой установки определяются аэродинамические характеристики при различных сочетаниях углов атаки горизонтального оперения, тяги двигателей, отклонения рулей высоты, что позволяет экспериментально-расчетным способом оперативно определять параметры, являющиеся одним из основных элементов инструкции в обеспечении расчета управляемости на всех эксплуатационных режимах движения экраноплана и в чрезвычайных нестандартных ситуациях. Достигается осуществление полного аэродинамического расчета экраноплана в целом. 3 ил.

Изобретение относится к области швейного материаловедения, в частности к способу исследования процессов деформации защитных конструкций одежды под действием аэродинамической нагрузки. Способ определения аэродинамической деформации защитных конструкций одежды заключается в том, что объемно-упругие защитные конструкции одежды представляются моделью цилиндра и помещаются в дозвуковую аэродинамическую трубу с низкотурбулентным потоком воздуха и рабочей зоной, выполненной из прозрачного материала. Деформация объемно-упругих защитных конструкций одежды, происходящая под воздействием воздушного потока, фиксируется в рабочей зоне аэродинамической трубы с помощью цифровой фотосъемки, с последующей обработкой результатов с использованием программных продуктов. Заявленное изобретение позволит обеспечить исследование аэродинамической деформации защитной конструкции одежды в лабораторных условиях и прогнозирование теплового состояния человека в реальных условиях на основе полученных экспериментальных сведений, снизить стоимость при испытаниях, сократить время проведения испытаний, повысить точность экспериментальных результатов. 1 з.п. ф-лы, 2 ил.

Заявленное изобретение относится к экспериментальной аэродинамике, в частности к устройствам для испытания моделей летательных аппаратов в аэродинамических трубах, и может быть использовано для определения их аэродинамических статических и динамических характеристик. Устройство содержит адаптер для крепления испытываемой модели, установленный с помощью шарнира с возможностью свободного поворота в заданных пределах на донной державке, размещаемой в рабочей части аэродинамической трубы, датчик углового положения адаптера, силоизмерительный элемент и механизм установки и пуска адаптера с заданного начального угла относительно державки в виде размещенного по оси в теле державки пневмоцилиндра, шток которого связан с фиксатором и ловителем, выполненным с наклонными и продольными относительно оси державки контактными поверхностями, взаимодействующими при движении штока с кулачком, закрепляемым на адаптере под заданным начальным углом. Кулачок выполнен в виде плоской вставки с тремя разнесенными по высоте контактными элементами, при этом контактные поверхности ловителя образованы на передней части штока на уровнях, соответствующих расположению контактных элементов кулачка. Фиксатор выполнен в виде установленной на поверхности державки с возможностью продольного перемещения втулки, взаимодействующей с наружными боковыми поверхностями кулачка и со штоком пневмоцилиндра посредством водила, размещенного в продольной прорези штока. Шарнир установлен в кольцевых корпусах, выполненных на консольной части державки, разнесенных относительно ее продольной оси и соединенных с ней посредством упругих продольных балок с тензопреобразователями, соответственно соединенными в мостовые измерительные схемы. При этом соединение указанных балок с телом державки осуществлено посредством образованных на теле державки двух жестких консольных продольных балок и четырех поперечно расположенных дугообразных перемычек, концы которых соединены с боковыми гранями продольных упругих и жестких консольных балок, а поперечные дугообразные перемычки выполнены в виде параллелограммов с упругими дугообразными балками, на поверхности которых размещены тензопреобразователи, соответственно соединенные в мостовые измерительные схемы. Технический результат заключается в расширении номенклатуры определяемых аэродинамических характеристик моделей летательных аппаратов, повышении надежности работы устройства, а также повышении точности испытаний. 2 з.п. ф-лы, 11 ил.

Заявленное изобретение относится к области экспериментальной аэродинамики, в частности к способу определения аэродинамических характеристик (АДХ) моделей летательных аппаратов (ЛА), и может быть использовано в аэродинамических трубах (АДТ) при определении параметров потока на выходе из протоков модели, имитирующих каналы силовой установки. При реализации способа модель с протоками, имитирующими каналы силовой установки, устанавливают в аэродинамической трубе с гребенкой приемников полных и статических давлений. Затем передают измеряемые давления к преобразователям давления, электрические выходы которых присоединяют к измерительной аппаратуре, причем приемники давлений подсоединяют встык к преобразователям давления, которые монтируют в одном корпусе с электронным коммутатором в хвостовой части модели. Электрические выходы преобразователей подключают к электронному коммутатору, электрический сигнал от которого передают на измерительную аппаратуру по кабелю, расположенному внутри державки модели (не снимая обтекателя державки) и проводят измерения давлений в одном эксперименте с весовыми измерениями аэродинамических сил и моментов, действующих на модель. Технический результат заключается в повышении точности измерений, возможности сокращении объема испытаний и расширении области применения. 2 ил.

Изобретение относится к области авиации, в частности к экспериментальной аэродинамике, и может быть использовано для испытания моделей сечений лопастей несущего винта вертолета. Способ включает обдув модели сечения лопасти регулярно пульсирующим потоком, периодическое варьирование угла атаки модели, при этом управление задатчиками частоты пульсаций скорости потока и частоты пульсаций угла атаки модели осуществляют с помощью фазовращателя, управляющий сигнал для которого вырабатывают в процессе эксперимента в аэродинамической трубе на основе измерений скорости потока и угла атаки модели. Технический результат заключается в улучшении качества моделирования при испытаниях. 1 ил.

Изобретение относится к областям авиакосмической и авиационной техники, а именно к способам идентификации аэродинамических характеристик летательного аппарата при проведении летных исследований. Предлагаемый способ заключается в том, что идентификация производится на относительно простом тестовом сигнале и без каких-либо априорных предположений относительно характера нелинейности идентифицируемых однозначных аэродинамических характеристик. Исключение ошибок априорных предположений о характере нелинейностей идентифицируемых зависимостей обеспечивает повышение достоверности определения при летных испытаниях нелинейных аэродинамических характеристик. Технический результат заключается в повышении достоверности и технологичности определения по результатам летных испытаний нелинейных аэродинамических характеристик. 5 ил.

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах, где требуется определение угла атаки начала отрыва потока и выявление зон отрыва потока с гладких поверхностей испытуемых моделей. В способе по одному из вариантов определения угла атаки начала отрыва потока и выявления зоны отрыва потока по характеру изменения безразмерного коэффициента давления Ср по длине рассматриваемого сечения (хорде крыла) с целью повышения точности оценок помимо самого коэффициента давления Ср определяют вначале среднеквадратичное отклонение безразмерного коэффициента давления (СКО Ср), угол атаки начала отрыва уточняют по факту ускоренного роста СКО Ср, а место отрыва уточняют по месту ускоренного роста СКО Ср. В другом варианте пульсации давления и угол атаки начала отрыва уточняют по факту ускоренного роста пульсаций давления. В еще одном варианте определение угла атаки вначале определяют спектры пульсаций коэффициента давления, а угол атаки начала отрыва уточняют по факту ускоренного роста амплитуд спектра пульсаций коэффициента давления и место отрыва уточняют по месту ускоренного роста амплитуд спектра коэффициента давления. Технический результат заключается в повышении точности определения угла атаки начала отрыва потока и выявлении зоны отрыва потока в реальных условиях эксперимента в аэродинамической трубе. 3 н.п. ф-лы, 5 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано преимущественно при исследованиях аэродинамического обтекания моделей в аэродинамических трубах. Пограничный слой на обтекаемых аэродинамических поверхностях может иметь ламинарное или турбулентное состояние. Способ включает освещение исследуемого течения над обтекаемой поверхностью поперек направления потока параллельным пучком света и его регистрацию после прохождения через исследуемую область, например, с помощью теневого прибора, при этом ширину поперечного сечения освещающего параллельного светового пучка над обтекаемой поверхностью ограничивают до значения, не превышающего 1,5 толщины пограничного слоя. Технический результат заключается в повышении точности определения состояния пограничного слоя и положения области перехода пограничного слоя из ламинарного в турбулентное. 4 ил.
Изобретение относится к экспериментальной аэродинамике, в частности к проведению исследований в аэродинамической трубе аэродинамических характеристик экранопланов, и может быть использовано для совершенствования аэрогидродинамических компоновок экранопланов. Способ заключается в моделировании различных режимов движения экраноплана в аэродинамической трубе при использовании модели экраноплана, оснащенной встроенным движительным комплексом и деформируемыми элементами конструкции, находящимися ниже ватерлинии. Использование деформируемых элементов в конструкции модели экраноплана позволяет варьировать величину осадки модели при моделировании границы раздела сред жестким экраном. Испытания модели экраноплана с деформируемыми элементами в аэродинамической трубе проводят на шестикомпонентных аэродинамических весах с жестким закреплением модели, при этом методику проведения испытаний изменяют в части последовательности съема данных при заданных параметрах движения, выполняют варьирование угла атаки при фиксированных высотах центра тяжести (точки поворота модели). По результатам испытаний выявляют геометрические параметры движительного комплекса и режимы его работы, а также положение органов механизации крыла, обеспечивающих наилучшее аэродинамическое качество (отношение подъемной силы к аэродинамической силе сопротивления). Технический результат заключается в сокращении времени проведения исследований, исключении масштабного эффекта и необходимости учета поправок при сопоставлении результатов испытаний нескольких разномасштабных моделей на различных экспериментальных установках.

Изобретение относится к экспериментальной аэродинамике, в частности к установкам для определения аэродинамических характеристик модели в аэродинамической трубе в присутствии неподвижного экрана. Стенд содержит аэродинамическую трубу с установленными на поворотной платформе аэродинамическими весами с проволочной подвеской модели. Поворот платформы обеспечивает изменение угла тангажа (атаки) модели, изменение угла установки модели в вертикальной плоскости обеспечивает изменение угла скольжения модели. Экран, установленный между вертикальными тягами проволочной подвески и выполненный с возможностью поступательного перемещения и наклона, обеспечивает изменение высоты и угла крена модели над экраном. Таким образом, обеспечивается одновременная установка модели с заданными углами крена, тангажа (атаки), скольжения (рыскания) и расстояния до экрана, что повышает точность исследований и позволяет определять комплексы перекрестных связей аэродинамических сил и моментов, действующие на модель 4 в потоке воздуха в присутствии экрана. Технический результат заключается в обеспечении одновременного изменения углов тангажа (атаки), крена и скольжения (рыскания) на разных удалениях модели от экрана и повышении точности испытаний. 3 з.п. ф-лы, 3 ил.
Наверх