Способ получения нитрида алюминия в режиме горения

Изобретение может быть использовано в электронике, металлургии и пр. для производства функциональных и конструкционных материалов, например высокотеплопроводной диэлектрической керамики, как основной компонент теплопроводящих диэлектрических клеев, отвердитель высокотемпературных неорганических клеев, азотирующий компонент при производстве высокопрочных титановых сплавов. Способ получения нитрида алюминия включает приготовление смеси порошков алюминия и нитрида алюминия в соотношении 1÷5-1÷2 и одной или нескольких добавок, выбранных из ряда АlF3, Nа3АlF6, NH4Cl, NH4F, (NН4)3АlF6, или смеси порошка алюминия и добавки гексафторалюмината аммония или смеси гексафторалюмината аммония и хлористого или фтористого аммония, помещение полученной смеси в замкнутый реактор, локальное воспламенение смеси и синтез в режиме горения под давлением азота 0,2-5 МПа. Изобретение позволяет получить порошок нитрида алюминия с равноосной или сферической формой частиц высокой чистоты и широким диапазоном значений по размеру частиц и удельной поверхности. 2 н.п. ф-лы 1 табл., 6 пр.

 

Изобретение относится к неорганической химии, в частности к получению порошков нитрида алюминия высокой чистоты с удельной поверхностью 0,5-20 м2/г в режиме самораспространяющегося высокотемпературного синтеза (СВС), которые в зависимости от характеристик могут быть использованы в электронике, металлургии и пр. для производства функциональных и конструкционных материалов, например высокотеплопроводной диэлектрической керамики, как основной компонент теплопроводящих диэлектрических клеев, отвердитель высокотемпературных неорганических клеев, азотирующий компонент при производстве высокопрочных титановых сплавов.

Известен способ получения нитрида алюминия в режиме факельного горения. В этом процессе распыленный алюминий и азот нагревают и он быстро взаимодействует с образованием нитрида алюминия при прохождении через проточный реактор. Реактор представляет собой графитовую трубу, которая разделена на зону синтеза и зону охлаждения. Синтезированный и охлажденный AlN направляют на измельчение, затем подвергают дополнительной тепловой обработке в атмосфере азота. Последней стадией производства является воздушная классификация, для того чтобы удалить крупные частицы AlN и получить хорошо спекаемый порошок нитрида алюминия (Alan W.Weiner, Gene A. Cochran, Glenn A. Eisman, John P. Henley, Bruce D. Hook, and Lynne K. Mills.Rapid Process for Manufacturing Aluminum Nitride Powder. J. Am. Ceram. Soc. V.77. №1. P.3-18. 1994).

Способ позволяет получить хорошо спекаемый порошок нитрида алюминия. Недостатком этого способа является сложность технологического процесса, в частности этапы промежуточного измельчения и дополнительного азотирования существенно усложняют и удорожают технологический процесс по сравнению с методом СВС.

Известен другой способ получения нитрида алюминия, включающий приготовление порошка алюминия, его помещение в проточный реактор с газообразным азотом, нагрев и последующее извлечение целевого продукта, в качестве азотируемого порошка используют нанопорошок алюминия, а процесс азотирования проводят в одну стадию при температуре 530-620°C (RU 2428376, С1, С01В 21/072, 10.09.2011).

Способ позволяет получать порошок нитрида алюминия в нанодисперсном состоянии. Недостатком этого способа является его низкая производительность и необходимость использования в качестве исходного сырья очень дорогого нанопорошка алюминия.

Наиболее близким к изобретению является способ получения нитрида алюминия, включающий приготовление смеси из порошков алюминия, нитрида алюминия и добавок в количестве (5-15% масс.) из ряда AlCl3, (NH4)2CO, NH4Cl, NH4F, помещение полученной смеси в реактор СВС, воспламенение смеси и синтез в режиме горения под давлением азота 2,0-6,0 МПа с последующим извлечением целевого продукта (RU 2091300, С1, С01В 21/072, 27.09.1997).

Способ позволяет получить нитрид алюминия с игольчатой формой частиц с чистотой до 99,3% и удельной поверхностью 1,5-3,0 м2/г.

Недостатком этого способа является то, что он не позволяет синтезировать нитрид алюминия с высокой удельной поверхностью и равноосной или сферической формой частиц, кроме того, в состав смеси входит хлористый алюминий, который является очень гигроскопичным веществом, что требует организации специальных условий для работы с ним.

Технический результат изобретения заключается в получении порошков нитрида алюминия с равноосной или сферической формой частиц высокой чистоты и широким диапазоном значений по размеру частиц и удельной поверхности.

Технический результат достигается тем, что способ получения нитрида алюминия включает приготовление смеси порошков алюминия, нитрида алюминия и одной или нескольких добавок, помещение полученной смеси в замкнутый реактор, локальное воспламенение смеси и синтез в режиме горения под давлением азота с последующим извлечением целевого продукта, при этом соотношение алюминия и нитрида алюминия в смеси составляет (1÷5-1÷1), содержание добавок, выбранных из ряда AlF3, Na3AlF6, NH4Cl, NH4F, (NH4)3AlF6, составляет до 10% масс., а синтез в режиме горения проводят под давлением 0,2-5 МПа, кроме того, в качестве добавки также используют преимущественно смесь хлористого и фтористого аммония при соотношении (1÷2-4÷1).

Также технический результат достигается тем, что способ получения нитрида алюминия включает приготовление смеси порошка алюминия и одной или нескольких добавок, помещение полученной смеси в замкнутый реактор, локальное воспламенение смеси и синтез в режиме горения под давлением азота с последующим извлечением целевого продукта, при этом в качестве добавки используют гексафторалюминат аммония и/или хлористый, и/или фтористый аммоний в количестве до 40% масс., а синтез в режиме горения проводят под давлением 0,2-2 МПа. Сущность изобретения заключается в следующем.

Введение в состав шихты солевых добавок обеспечивает химическую активацию остальных компонентов шихты в процессе смешивания и синтеза, что в свою очередь обеспечивает благоприятный режим азотирования. Также солевые добавки и продукты их разложения активно участвуют в механизме структурообразования и влияют на формирование размера и формы частиц нитрида алюминия при синтезе.

В качестве исходных компонентов для приготовления исходной смеси используют порошки алюминия разных марок с размером частиц не более 140 мкм, солевые добавки AlF3, Na3AlF6, NH4Cl, NH4F, (NH4)3AlF6 с содержанием основного вещества не менее 98% масс. Нитрид алюминия - целевой продукт синтеза, используют как добавку для организации оптимального температурного режима синтеза.

В зависимости от начальных условий синтеза способ обеспечивает получение в режиме горения частиц нитрида алюминия равноосной или сферической формы размером 0,05-10 мкм и удельной поверхностью 0,5-20 м2/г.

Для получения нитрида алюминия с удельной поверхностью 0,5-3,5 м2/г и сферической формой частиц, синтез осуществляется с использованием смеси алюминия, нитрида алюминия йодной или нескольких добавок, AlF3, NH4Cl, NH4F, (NH4)3AlF6. Содержание алюминия в смеси составляет 20-50% масс. Содержание нитрида алюминия определяет температуру горения реакционной смеси, что в свою очередь влияет на размер частиц продукта синтеза. Для обеспечения высокой степени азотирования в смеси, помещенной на лодочку, формируют фильтрационные каналы.

Для синтеза нитрида алюминия со сферической формой частиц и удельной поверхностью 1,5-7 м2/г используют смесь порошка алюминия и одной или нескольких добавок, NH4Cl, NH4F, (NH4)3AlF6. В волне горения продукты разложения солевых добавок (HF, HCl, AlF3, NH3) активно взаимодействуют с частицами алюминия, влияя на размер и форму частиц синтезированного нитрида алюминия. Необходимая удельная поверхность достигается за счет изменения количества и соотношения солевых добавок и порошка алюминия.

Для получения нитрида алюминия с удельной поверхностью 7-20 м2/г используются добавки AlF3, Na3AlF6, благодаря которым в зоне синтеза создаются условия для организации горения алюминия в тонких пленках. Удельная поверхность синтезированного нитрида алюминия определяется путем сочетания оптимальных параметров по плотности смеси, дисперсности разбавителя и использования добавок.

Во всех случаях продукт синтеза представляет собой мягкий или хрупкий спек, состоящий из агломерированных частиц нитрида алюминия. Для получения порошка спек подвергают дезагломерации и, при необходимости, классификации.

Пример 1. Готовят смесь из порошка алюминия и порошка нитрида алюминия в соотношении (1:1,5) и фторида алюминия (2% масс.) путем перемешивания в шаровой мельнице в течение 10-15 мин. Полученную смесь загружают на графитовую лодочку. Лодочку с реакционной смесью помещают в реактор СВС. Реактор герметизируют, продувают азотом для удаления кислорода воздуха из объема реактора, заполняют азотом до давления 3 МПа и инициируют горение путем подачи электрического импульса тока на смесь через вольфрамовую спираль с последующим синтезом в режиме горения. После окончания синтеза и охлаждения опека из реактора сбрасывают остаточное давление, открывают его и извлекают спек нитрида алюминия. Спек представляет собой легко разрушаемые, хрупкие конгломераты белого цвета, состоящие из микрокристаллов нитрида алюминия равноосной формы размером 1-5 мкм с удельной поверхностью 0,5 м2/г и содержанием основного вещества 99,4% масс. Содержание примеси кислорода 0,3% масс., железа 0,04% масс. Полученный порошок нитрида алюминия используется для получения радиоактивного изотопа углерода С14.

Пример 2. Готовят смесь из порошка алюминия и порошка нитрида алюминия в соотношении (1:3,5), гексафторалюмината аммония ((NH4)3AlF6) (5% масс.) и хлористого аммония (5% масс.) путем перемешивания в шаровой мельнице в течение 10-15 мин. Полученную смесь загружают на графитовую лодочку. Лодочку с реакционной смесью помещают в реактор СВС. Реактор герметизируют, продувают азотом для удаления кислорода воздуха из объема реактора, заполняют азотом до давления 5 МПа и инициируют горение путем подачи электрического импульса тока на смесь через вольфрамовую спираль с последующим синтезом в режиме горения. После окончания синтеза и охлаждения спека из реактора сбрасывают остаточное давление, открывают его и извлекают спек нитрида алюминия. Спек представляет собой легко разрушаемые конгломераты белого цвета, состоящие из микрокристаллов нитрида алюминия сферической формы размером 0,4-5 мкм с удельной поверхностью 3,5 м2/г и содержанием основного вещества 98,0% масс. Содержание примеси кислорода 1,1% масс., железа 0,06% масс. Полученный порошок нитрида алюминия используется для получения теплопроводящих диэлектрических подложек.

Пример 3. Готовят смесь из порошка алюминия (65% масс.), гексафторалюмината аммония ((NH4)3AlF6) (25% масс.), хлористого аммония (5% масс.) и фтористого аммония(5% масс.) путем перемешивания в шаровой мельнице в течение 10-15 мин. Полученную смесь загружают на графитовую лодочку. Лодочку с реакционной смесью помещают в реактор СВС. Реактор герметизируют, продувают азотом для удаления кислорода воздуха из объема реактора, заполняют азотом до давления 2,0 МПа и инициируют горение путем подачи электрического импульса тока на смесь через вольфрамовую спираль с последующим синтезом в режиме горения. После окончания синтеза и охлаждения спека из реактора сбрасывают остаточное давление, открывают его и извлекают спек нитрида алюминия. Спек представляет собой легко разрушаемые конгломераты белого цвета, состоящие из микрокристаллов нитрида алюминия сферической формы диаметром 0,2-2 мкм с удельной поверхностью 6 м2/г и содержанием основного вещества 98,1% масс. Содержание примеси кислорода 1,0% масс., железа 0,06% масс. Полученный порошок нитрида алюминия используется для получения теплопроводящих диэлектрических подложек.

Пример 4. Готовят смесь из порошка алюминия и порошка нитрида алюминия в соотношении (1÷3) и хлористого аммония 3% масс. путем перемешивания в шаровой мельнице в течение 10-15 мин. Полученную смесь загружают на графитовую лодочку. Для обеспечения равномерного доступа азота к фронту горения в шихте формируются фильтрационные каналы. Лодочку с реакционной смесью помещают в реактор СВС. Реактор герметизируют, продувают азотом для удаления кислорода воздуха из объема реактора, заполняют азотом до давления 0,2 МПа и инициируют горение путем подачи электрического импульса тока на смесь через вольфрамовую спираль с последующим синтезом в режиме горения. После окончания синтеза и охлаждения спека из реактора сбрасывают остаточное давление, открывают его и извлекают спек нитрида алюминия. Спек представляет собой легко разрушаемые конгломераты белого цвета, состоящие из микрокристаллов нитрида алюминия равноосной формы размером 2-6 мкм с удельной поверхностью 0,8 м2/г и содержанием основного вещества 99,3% масс. Содержание примеси кислорода 0,5% масс., железа 0,06% масс. Полученный порошок нитрида алюминия используется как азотирующий реагент при получении азотсодержащих лигатур.

Пример 5. Готовят смесь из порошка алюминия и порошка нитрида алюминия в соотношении (1÷4) и смесь хлористого аммония и фтористого аммония в количестве 5% масс. в соотношении (4÷1) путем перемешивания в шаровой мельнице в течение 10-15 мин. Полученную смесь загружают на графитовую лодочку. Для обеспечения равномерного доступа азота к фронту горения в шихте формируются фильтрационные каналы. Лодочку с реакционной смесью помещают в реактор СВС. Реактор герметизируют, продувают азотом для удаления кислорода воздуха из объема реактора, заполняют азотом до давления 2,5 МПа и инициируют горение путем подачи электрического импульса тока на смесь через вольфрамовую спираль с последующим синтезом в режиме горения. После окончания синтеза и охлаждения спека из реактора сбрасывают остаточное давление, открывают его и извлекают спек нитрида алюминия. Спек представляет собой легко разрушаемые конгломераты белого цвета, состоящие из микрокристаллов нитрида алюминия равноосной формы размером 0,5-5 мкм с удельной поверхностью 2,6 м2/г и содержанием основного вещества 99,0% масс. Содержание примеси кислорода 0,7% масс., железа 0,06% масс. Полученный порошок нитрида алюминия используется для получения теплопроводящих диэлектрических подложек.

Пример 6. Готовят смесь из порошка алюминия и порошка нитрида алюминия в соотношении (1:3,5) и фторида алюминия (2% масс.) путем перемешивания в шаровой мельнице в течение 10-15 мин. Полученную смесь загружают на графитовую лодочку. Лодочку с реакционной смесью помещают в реактор СВС. Реактор герметизируют, продувают азотом для удаления кислорода воздуха из объема реактора, заполняют азотом до давления 3 МПа и инициируют горение путем подачи электрического импульса тока на смесь через вольфрамовую спираль с последующим синтезом в режиме горения. После окончания синтеза и охлаждения спека из реактора сбрасывают остаточное давление, открывают его и извлекают спек нитрида алюминия. Спек представляет собой легко разрушаемые, хрупкие конгломераты белого цвета, состоящие из микрокристаллов нитрида алюминия равноосной формы размером 0,2-3 мкм с удельной поверхностью 10,0 м2/г и содержанием основного вещества 97,4% масс. Содержание примеси кислорода 1,4% масс., железа 0,06% масс. Полученный порошок нитрида алюминия используется для приготовления неорганического высокотемпературного клея.

Другие примеры осуществления способа получения нитрида алюминия, согласно изобретению, представлены в таблице.

Таким образом, заявленный способ позволяет получить в режиме горения нитрид алюминия с равноосной или сферической формой частиц размером 0,05-10 мкм и удельной поверхностью 0,5-20 м2/г, содержащий до 95% частиц сферической или равноосной формы, при этом целевой продукт содержит до 99,4% масс. основного вещества с низким содержанием примесей кислорода (до 0,3% масс.) и железа (не более 0,08% масс.).

Таблица
Исходные компоненты и начальные условия синтеза Количественный состав смеси исходных компонентов, % масс. по примерам
Номер примера 1 2 3 4 5 6 7 8
Алюминий 65 60 70
Хлорид аммония 20 10
Фторид аммония 15 5
Хлорид и фторид аммония (соотношение) (1:1) (1:2)
Фторид алюминия 1
Гексафторалюминат аммония 3 35 20
Гексафторалюминат натрия 2
Алюминий и нитрид алюминия (соотношение) 90 (1:2) 94 (1:1) 99 (1:5) 98 (1:4) 97 (1:3)
Давление азота, МПа 1 3 5 4 0,2 1 0,5 0,2
Характеристика продуктов синтеза
Содержание, % масс. 1 2 3 4 5 6 7 8
Азот 33,5 33,6 33,6 32,7 33,1 33,5 33,5 33,6
Кислород 0,8 0,8 0,9 2,3 1,6 1,0 1,0 0,9
Железо 0,06 0,06 0,06 0,8 0,07 0,04 0,02 0,03
Удельная поверхность, м2 2,8 3,5 1,5 20,0 15,5 3,0 7,0 5,5
Основная форма частиц. сфера сфера сфера равноосная равноосная сфера сфера сфера
Основной размер частиц, мкм 0,5-3 0,5-5 1-5 0,05-3 0,1-3,5 0,5-5 0,2-2 0,3-2,5
Содержание частиц, % масс. 90 80 85 75 80 90 95 95
Содержание основного вещества, % масс. 98,0 98,3 98,2 95,6 96,8 98,0 98,0 98,2

1. Способ получения нитрида алюминия, включающий приготовление смеси порошков алюминия, нитрида алюминия и одной или нескольких добавок, помещение полученной смеси в замкнутый реактор, локальное воспламенение смеси и синтез в режиме горения под давлением азота с последующим извлечением целевого продукта, отличающийся тем, что соотношение алюминия и нитрида алюминия в смеси составляет (1÷5-1÷2), содержание одной или нескольких добавок, выбранных из ряда AlF3, Na3AlF6, NH4Cl, NH4F, (NH4)3AlF6, составляет до 5 мас.%, а синтез в режиме горения проводят под давлением 0,2-5 МПа.

2. Способ получения нитрида алюминия, включающий приготовление смеси порошка алюминия и одной или нескольких добавок, помещение полученной смеси в замкнутый реактор, локальное воспламенение смеси и синтез в режиме горения под давлением азота с последующим извлечением целевого продукта, отличающийся тем, что в качестве добавки используют гексафторалюминат аммония или смесь гексафторалюмината аммония и хлористого или фтористого аммония, а синтез в режиме горения проводят под давлением 0,2-2 МПа.



 

Похожие патенты:
Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия.
Изобретение относится к области порошковых технологий, цветной металлургии. Способ получения наноразмерных порошков нитрида алюминия с размерами частиц 10-150 нм и удельной поверхностью 30-170 м2/г, включающий подачу порошка глинозема потоком плазмообразующего газа азота в реактор газоразрядной плазмы при температуре в реакторе 4000-7000°C, охлаждение продуктов термического разложения охлаждающим инертным газом и конденсацию полученного порошка нитрида алюминия в водоохлаждаемой приемной камере, в котором порошок глинозема - пыль, уловленная в электрофильтрах печей кальцинации гидроксида алюминия при производстве глинозема.
Изобретение относится к области порошковых технологий, в частности к получению порошка нитрида алюминия в нанодисперсном состоянии, который может быть использован в электронной промышленности для изготовления керамики.
Изобретение относится к технологии получения нитрида алюминия и предназначено для использования в технологии тугоплавких керамических изделий. .
Изобретение относится к области получения тугоплавких керамических материалов, в частности к способам получения нитрида алюминия в режиме горения. .

Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих кубический нитрид алюминия, и может найти применение при изготовлении керамических, металлокерамических и металлических дисперсно-упрочненных изделий.

Изобретение относится к химической технологии получения соединений алюминия, а именно к технологии получения нитевидного нитрида алюминия AlN в виде нитевидных кристаллов, пригодных для изготовления сенсорных зондов на кантилеверах атомно-силовых микроскопов, применяемых при исследовании морфологии и топографии поверхности, адгезионных и механических свойств элементов микроэлектроники, объектов нанобиотехнологий и особо при высокотемпературных измерениях в нанометаллургии.
Изобретение относится к химической технологии получения неорганических веществ, в частности соединений алюминия. .

Изобретение относится к технологии получения технической керамики, в частности, устойчивой при высоких температурах, обладающей высокой теплопроводностью, и может быть использовано в производстве шихты для керамических изделий, в том числе, многослойных керамических подложек, керамических нагревателей, излучателей и огнеупорных конструкционных материалов.
Изобретение относится к области получения высокоогнеупорных керамических материалов, в частности к получению оксинитрида алюминия, который может быть использован в качестве компонента керамики и металлокерамики для изготовления режущего инструмента, термостойких и теплопроводных элементов конструкций, а также в окислительных средах вместо нитрида алюминия и в сочетании с ним.
Изобретение относится к порошковой технологии, в частности к получению мелкодисперсного порошка нитрида алюминия, имеющего широкое применение в радиотехнической и электронной промышленности в качестве основного компонента теплопроводящих паст и материала для изготовления керамических подложек для гибридных интегральных схем. Способ получения нитрида алюминия включает активирование грубодисперсного порошка алюминия путем механической обработки в мельнице в присутствии жирных органических кислот, выход на режим азотирования в токе азота, подаваемого в реактор со скоростью не более 0,1 л/мин, и азотирование при температуре 550-750°С и скорости подачи азота, равной 5-6 л/мин в расчете на 100 г продукта, в течение 3-5 мин. Изобретение позволяет получить однофазный, слабоагрегированный порошок нитрида алюминия с размером частиц в диапазоне 0,3-0,5 мкм и содержанием примесного кислорода в нем <0,65 мас.%. 2 з.п. ф-лы, 3 пр.

Изобретение относится к технологии получения керамических порошков нитрида алюминия, которые могут быть использованы в электронике, электротехнике, в частности, в качестве материала подложек мощных силовых и СВЧ-полупроводниковых приборов. Нитрид алюминия получают путем сжигания компактированного в пресс-форме при давлении 7 МПа нанопорошка алюминия с добавлением нанопорошка железа в количестве 0,2 мас.% в воздухе. Технический результат изобретения заключается в повышении выхода нитрида алюминия до 90 мас.% в продуктах сгорания. 2 табл.

Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля. Сущность изобретения заключается в обработке нагретого алюминия газообразными реагентами в виде галогенида алюминия, например трифторида алюминия, и азотсодержащего газа и последующую конденсацию конечного продукта, причем порошок трифторида алюминия размещают в одной реакционной камере с гранулами металлического алюминия и испаряют одновременно при температуре 1050-1150°C, а конденсацию осуществляют на поверхности жидкого алюминия. Изобретение позволяет получать нитевидный нитрид алюминия со средним диаметром менее 100 нм по всей протяженности волокна и с соотношением длины волокна к диаметру более 100. 4 ил., 2 пр.

Изобретение относится к составным частям устройств для получения полупроводниковых материалов, а именно дисперсного нитрида алюминия. Реакционная камера выполнена из жаропрочной стали, футерована нитридом алюминия, снабжена герметично соединенными с корпусом камеры средством для отвода газов и гибким трубопроводом, который выполнен с возможностью герметичного соединения со средством подачи азотсодержащих газов, и снабжена устройством нагрева, выполненным с возможностью создания градиента температуры вдоль реакционной камеры. При этом камера расположена вертикально и выполнена разъемной с образованием нижней, средней и верхней секций. Нижняя и средняя секции разделены перфорированной перегородкой, а средняя и верхняя секции разделены фильтром. Технический результат заключается в повышении выхода нитрида алюминия, снижении интенсивности процесса агломерации и уменьшении времени и энергозатрат на процесс образования нитрида алюминия. 3 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к получению полупроводниковых материалов для производства металлокерамики, керамики и композитов. Установка для получения дисперсного нитрида алюминия включает трёхсекционную реакционную камеру с цилиндрическим корпусом, выполненным из жаропрочного материала, внутренняя поверхность которого футерована нитридом алюминия, и устройство нагрева для создания градиента температуры вдоль реакционной камеры. Нижняя 1 секция снабжена перфорированной перегородкой и трубопроводом 5 для подачи аргона. Нижняя 1 и средняя 2 секции разделены перегородкой 6 с отверстием. В средней 2 секции установлены перегородки 7 и 8. На внешнюю поверхность перегородки 7 нанесена винтовая нарезка или резьба. Средняя 2 и верхняя 3 секции разделены фильтром 11, выполненным из углеволоконного или пористого керамического материала. Средство 9 подачи азотсодержащих газов соединено со средней 2 секцией через ротаметр, а средство 12 для отвода газов - с верхней секцией 3. В нижнюю 1 секцию загружают металлический алюминий и фторид алюминия (III), получают газообразный фторид алюминия (I) при температуре более 1100 °С барботированием газообразным фторидом алюминия (III) расплава металлического алюминия. Затем полученный газообразный фторид алюминия (I) взаимодействует с азотсодержащими газами, подаваемыми через средство 9. Дисперсный нитрид алюминия получают, создавая закрученный поток смеси фторида алюминия (I) с азотсодержащими газами, с помощью винтовой нарезки перегородки 7. Полученные дисперсный нитрид алюминия и фторид алюминия (III) раздельно осаждают фильтрованием через фильтр 11. Газообразные продукты выводят через средство 12. Заявленные способ и устройство обеспечивают возможность осуществления одностадийного процесса получения дисперсного нитрида алюминия чистотой до 99,9% и фракцией до 10 нм при одновременном увеличении выхода конечного продукта. 3 н.п. ф-лы, 2 ил.

Изобретение относится к получению нанопорошка оксинитрида алюминия. Тонкодисперсный порошок алюминия вводят в поток термической плазмы, в котором осуществляют взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,16<O/Al<1,24. Обеспечивается получение порошка с размером частиц менее 100 нм. 1 ил., 1 пр.
Наверх