Способ определения параметров орбиты космического объекта

Изобретение относится к способам определения орбит космических объектов (КО), например космического мусора, бортовыми средствами космического аппарата (КА). Способ заключается в вычислении фокального параметра, истинной аномалии, эксцентриситета и наклонения орбиты интересующего КО по аналитическим формулам, основанным на законах кеплеровского движения. Вычисления ведутся без использования итерационных процедур, на базе определения в последовательные моменты времени расстояний между КО и КА и некоторых углов. Эти исходные данные получают обработкой на борту КА изображений КО, получаемых с помощью бинокулярной системы оптических датчиков и ПЗС-матриц. Техническим результатом изобретения является повышение оперативности определения орбит КО на борту КА и тем самым - безопасности полетов КА. 3 ил.

 

Изобретение относится к области космонавтики, а именно к определению параметров орбиты космического объекта (КО), например, космического мусора, бортовыми средствами космического аппарата (КА).

Изобретение может быть использовано при обеспечении безопасности полетов КА путем обнаружения и точного определения средствами бортового комплекса параметров движения потенциально опасных КО, оценки динамики сближений КА и КО и определения необходимости выработки импульса корректирующего маневра уклонения КА от КО.

Известен «Способ определения параметров орбиты космического аппарата» патент RU №2150414, опубликовано 10.06.2000 - (Д1), заключающийся в выполнении измерений траекторных параметров, передаче на комплекс управления совокупности измеренных значений траекторных параметров с последующим их накоплением и обработкой по методу наименьших квадратов. Причем после окончания итерационного процесса исключают отдельные аномальные значения, корректируют точность измерений обрабатываемых траекторных параметров, после чего циклически повторяют обработку до ее завершения и получения оптимальной оценки орбитальных параметров движения КА в зоне измерений выполненного сеанса связи. Основным недостатком способа является низкая оперативность траекторных измерений параметров космического объекта и, следовательно, расчета орбитальных данных из-за ограничения зон радиовидимости объекта наземными средствами и циклического повторения обработки вычислений.

Известен «Параллактический способ определения координат объекта» патент RU №2027144, опубликовано 20.01.1995 - (Д2), основанный на применении бинокулярной системы оптических датчиков, разнесенных на базовое расстояние относительно друг друга и имеющих параллельные оптические оси. Технические средства, реализующие данный способ, описаны в источниках информации: «Распознавание в системах автоконтроля» / Шибанов Г.П., М.: Машиностроение, 1973, с.176-188 - (Д3); «Голографическое опознавание образов» / Василенко Г.И., М.: Советское радио, 1977, рис.4.21, с.282-283 - (Д4). Данный способ позволяет на основе измеренного параллактического смещения треков прохождения космических объектов, зафиксированных в ПЗС-матрицах (ПЗС-приборы с зарядовой связью) осуществлять определение расстояний - Δr (фиг.1) между космическим аппаратом и космическим объектом и угла - β (фиг.2, фиг.3) между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта. Основным недостатком способа является сравнительно низкое быстродействие при определении орбитальных параметров в связи с использованием вычислительных алгоритмов, связанных с необходимостью проведения итерационных расчетов при решении краевых задач.

Наиболее близким по совокупности существенных признаков к изобретению является способ, описанный в научном журнале «Американского Института Аэронавтики и Астронавтики» (US) в публикации Mark Psiaki «Autonomous orbit determination for two spacecraft from relative position measurements)) за номером AIAA-98-4560, опубликовано 10.08.1998 - (Д5), его адрес в Интернете http://arc.aiaa.org/doi/abs/10.2514/6.1998-4560. В данном способе используют измерения расстояния и бокового смещения космического аппарата относительно второго космического аппарата, определение расстояний между которыми осуществляют с помощью лазерных дальномеров. По совокупности существенных признаков этот способ выбран в качестве прототипа к изобретению. Основным недостатком, ограничивающим применение данного способа, является обязательное наличие средств лазерной локации на обоих космических объектах.

В изобретении данная проблема решена применением бинокулярной системы оптических датчиков, располагаемых на борту КА.

Сущность изобретения заключается в вычислении параметров орбиты космического объекта: фокального параметра - P(ti), истинной аномалии - ϑ(ti), эксцентриситета - e(ti) и наклонения орбиты - iко космического объекта в момент времени ti в соответствии с полученными аналитическим методом математическими зависимостями. При этом расчеты проводятся по полученным аналитическим формулам без использования итерационных вычислительных процессов. Исходной информацией являются определения абсолютной величины и ориентации вектора, соединяющего центр масс управляемого КА и положение КО.

Также сущность заявленного способа определения параметров орбиты космического объекта заключается в определении на борту космического аппарата в моменты времени ti, где i=1, 2, 3, …, значений радиус-вектора, соединяющего центр Земли с местоположением космического аппарата - rка(ti), значений широты подспутниковых точек космического аппарата - φка(ti), значений расстояния между космическим аппаратом и космическим объектом - Δr(ti), значений угла между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта β(ti), при этом дополнительно определяют в моменты времени ti бортовыми оптическими датчиками угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли - θ(ti), вычисляют значения радиус-вектора - rко(ti) космического объекта, соединяющего центр Земли с положением космического объекта в момент времени ti и угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti - δr(ti) в соответствии с математическими зависимостями:

r к о ( t i ) = r к а ( t i ) 2 + Δ r ( t i ) 2 2 r к а ( t i ) Δ r ( t i ) cos [ π 2 + θ ( t i ) ] ,

δ r ( t i ) = arcsin { Δ r ( t i ) r к о ( t i ) sin [ π 2 + θ ( t i ) ] } ,

где:

rкa(ti) - радиус-вектор космического аппарата, соединяющий центр Земли с положением космического аппарата в момент времени ti;

Δr(ti) - расстояние между центрами масс космического аппарата и космического объекта в момент времени ti;

θ(ti) - угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли в момент времени ti;

δr(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti,

вычисляют угловое расстояние между положениями космического объекта - Δν(ti, ti+1) для двух следующих друг за другом моментов времени измерений ti и ti+1 по формуле:

Δν(ti,ti+1)=arccos[cosσ(ti)cosδr(ti+1)-sinσ(ti)sinδr(ti+1)cosα(ti)],

где:

σ(ti)=arccos[cosδr(ti)cosδrка(ti)-sinδr(ti)sinδrка(ti)cosβ(ti)];

α(ti)=π-β(ti+1)-δ(ti);

δ ( t i ) = arcsin [ sin δ ( t i ) r ( t i ) sin β ( t i ) sin σ ( t i ) ] ;

σ(ti) - угловое расстояние между положением космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

δr(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

δrкa(ti) - угловое расстояние между положениями космического аппарата в моменты времени ti и ti+1;

β(ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti;

α(ti) - угол между плоскостью, образованной положениями космического аппарата и космического объекта в момент времени ti+1, и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

β(ri+1)- угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti+1;

δ(ti) - угол между плоскостью движения космического аппарата и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti,

вычисляют параметры орбиты космического объекта: фокальный параметр - P(ti), истинную аномалию - ϑ(ti), эксцентриситет - e(ti) и наклонение орбиты - iко в момент времени ti в соответствии с математическими зависимостями:

,

ϑ ( t i ) = a r c t g { c t g Δ ν ( t i , t i + 1 ) r к о ( t i ) [ P ( t i ) r к о ( t i + 1 ) ] r к о ( t i + 1 ) [ P ( t i ) r к о ( t i ) ] sin Δ ν ( t i , t i + 1 ) } ,

e ( t i ) = P ( t i ) r к о ( t i ) r к о ( t i ) cos ϑ ( t i ) ,

i к о ( t i ) = arcsin [ sin ϕ к о ( t i ) sin s ( t i ) ] ,

где:

s ( t i ) = a r c t g [ sin Δ ν ( t i , t i + 1 ) sin ϕ к о ( t i ) sin ϕ к о ( t i + 1 ) cos Δ ν ( t i , t i + 1 ) sin ϕ к о ( t i ) ] ;

φко(ti)=arcsin[sinj(ti)sin(δz(ti)+δr(ti))];

δ z ( t i ) = arcsin [ sin ϕ к а ( t i ) sin j ( t i ) ] ;

j(ti)=arccos[cosε(ti)cosφка(ti)];

ε ( t i ) = arccos [ cos i к а cos ϕ к а ( t i ) ] β ( t i ) ;

rко(ti+1) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti+1;

rко(ti) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti;

µ - произведение гравитационной постоянной на массу Земли;

Δt=ti+1-ti;

Δν(ti, ti+1) - угловое расстояние между положениями космического объекта для двух следующих друг за другом моментов времени измерений ti и ti+1;

s(ti) - дуга, лежащая в плоскости движения космического объекта и соединяющая его положение в момент времени ti и в ближайший момент времени прохождения экватора;

φко(ti) - широта подспутниковой точки космического объекта в момент времени ti;

φко(ti+1) - широта подспутниковой точки космического объекта в момент времени ti+1;

j(ti) - наклонение «условной» орбиты, проходящей через широты подспутниковых точек космического аппарата и космического объекта в момент времени ti;

δz(ti) - дуга, лежащая в плоскости «условной» орбиты с наклонением j(ti) и соединяющая подспутниковую точку космического аппарата в момент времени ti и плоскость экватора;

δr(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

φка(ti) - широта подспутниковой точки космического аппарата в момент времени ti;

ε(ti) - курсовой угол для плоскости условной орбиты, проходящей через широты подспутниковых точек космического аппарата, космического объекта и центр Земли в момент времени ti;

iкa - наклонение орбиты космического аппарата;

β(ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti.

Техническим результатом изобретения является повышение оперативности определения орбит движения КО за счет осуществления на борту КА обработки обнаруженных с помощью бинокулярной системы оптических датчиков и экспонированных ПЗС-матрицами в моменты времени ti и ti+1 изображений КО, получения при этом соответствующих моментам времени ti и ti+1 необходимых измеренных углов и осуществления безытерационного вычисления параметров орбиты КО с использованием предложенных математических зависимостей.

Указанный технический результат достигается тем, что в заявленном способе определения параметров орбиты космического объекта, заключающимся в определении на борту космического аппарата в моменты времени ti, где, где i=1, 2, 3, …, значений радиус-вектора, соединяющего центр Земли с местоположением космического аппарата - rка(ti), значений широты подспутниковых точек космического аппарата -φка(ti), значений расстояния между космическим аппаратом и космическим объектом - Δr(ti), значений угла между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта - β(ti), при этом определяют в моменты времени ti бортовыми оптическими датчиками угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли - θ(ti), вычисляют значения радиус-вектора - rко(ti) космического объекта, соединяющего центр Земли с положением космического объекта в момент времени ti и угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti - δr(ti) в соответствии с математическими зависимостями:

r к о ( t i ) = r к а ( t i ) 2 + Δ r ( t i ) 2 2 r к а ( t i ) Δ r ( t i ) cos [ π 2 + θ ( t i ) ] ,

δ r ( t i ) = arcsin { Δ r ( t i ) r к о ( t i ) sin [ π 2 + θ ( t i ) ] } ,

где:

rка(ti) - радиус-вектор космического аппарата, соединяющий центр Земли с положением космического аппарата в момент времени ti;

Δr(ti) - расстояние между центрами масс космического аппарата и космического объекта в момент времени ti;

θ(ti) - угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли в момент времени ti;

δr(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti,

вычисляют угловое расстояние между положениями космического объекта - Δν(ti, ti+1) для двух следующих друг за другом моментов времени измерений ti и ti+1 по формуле:

Δν(ti,ti+1)=arccos[cosσ(ti)cosδr(ti+1)-sinσ(ti)sinδr(ti+1)cosα(ti)],

где:

σ(ti)=arccos[cosδr(ti)cosδrка(ti)-sinδr(ti)sinδrка(ti)cosβ(ti)];

α(ti)=π-β(ti+1)-δ(ti);

δ ( t i ) = arcsin [ sin δ ( t i ) r ( t i ) sin β ( t i ) sin σ ( t i ) ] ;

σ(ti) - угловое расстояние между положением космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

δr(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

δrкa(ti) - угловое расстояние между положениями космического аппарата в моменты времени ti и ti+1;

β(ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti;

α(ti) - угол между плоскостью, образованной положениями космического аппарата и космического объекта в момент времени ti+1, и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

β(ti+1) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti+1;

δ(ti) - угол между плоскостью движения космического аппарата и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti,

вычисляют параметры орбиты космического объекта: фокальный параметр - P(ti), истинную аномалию - ϑ(ti), эксцентриситет - e(ti) и наклонение орбиты - iко в момент времени ti в соответствии с математическими зависимостями:

,

ϑ ( t i ) = a r c t g { c t g Δ ν ( t i , t i + 1 ) r к о ( t i ) [ P ( t i ) r к о ( t i + 1 ) ] r к о ( t i + 1 ) [ P ( t i ) r к о ( t i ) ] sin Δ ν ( t i , t i + 1 ) } ,

e ( t i ) = P ( t i ) r к о ( t i ) r к о ( t i ) cos ϑ ( t i ) ,

i к о ( t i ) = arcsin [ sin ϕ к о ( t i ) sin s ( t i ) ] ,

где:

s ( t i ) = a r c t g [ sin Δ ν ( t i , t i + 1 ) sin ϕ к о ( t i ) sin ϕ к о ( t i + 1 ) cos Δ ν ( t i , t i + 1 ) sin ϕ к о ( t i ) ] ;

φко(ti)=arcsin[sinj(ti)sin(δz(ti)+δr(ti))];

δ z ( t i ) = arcsin [ sin ϕ к а ( t i ) sin j ( t i ) ] ;

j(ti)=arccos[cosε(ti)cosφка(ti)];

ε ( t i ) = arccos [ cos i к а cos ϕ к а ( t i ) ] β ( t i ) ;

rко(ti+1) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti+1;

rко(ti) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti;

µ - произведение гравитационной постоянной на массу Земли;

Δt=ti+1-ti;

Δν(ti, ti+1) - угловое расстояние между положениями космического объекта для двух следующих друг за другом моментов времени измерений ti и ti+1;

s(ti) - дуга, лежащая в плоскости движения космического объекта и соединяющая его положение в момент времени ti и в ближайший момент времени прохождения экватора;

φко(ti) - широта подспутниковой точки космического объекта в момент времени ti;

φко(ti+1) - широта подспутниковой точки космического объекта в момент времени ti+1;

j(ti) - наклонение «условной» орбиты, проходящей через широты подспутниковых точек космического аппарата и космического объекта в момент времени ti;

δz(ti) - дуга, лежащая в плоскости «условной» орбиты с наклонением j(ti) и соединяющая подспутниковую точку космического аппарата в момент времени ti и плоскость экватора;

δr(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

φка(ti) - широта подспутниковой точки космического аппарата в момент времени ti;

ε(ti) - курсовой угол для плоскости условной орбиты, проходящей через широты подспутниковых точек космического аппарата, космического объекта и центр Земли в момент времени ti;

iка - наклонение орбиты космического аппарата;

β(ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti.

Заявленный способ определения параметров орбиты космического объекта поясняется следующими фигурами:

- на фигуре 1 приведено относительное расположение КА и КО,

- на фигуре 2 представлено относительное расположение плоскостей движения КА и КО,

- на фигуре 3 представлены трассы движения КА и КО.

На фиг.1-фиг.3 и в тексте приняты следующие обозначения:

1 - поверхность Земли,

2 - КА,

3 - радиус-вектор космического аппарата, соединяющий начало координат (центр Земли) с положением КА на его траектории - rка,

4 - угловое расстояние между текущими положениями космического аппарата и космического объекта - δr,

5 - радиус Земли - R,

6 - угол между направлением от КА до КО и местным горизонтом, лежащим в плоскости, образованной положениями КА, КО и центром Земли - θ,

7 - расстояние между центрами масс космического аппарата и космического объекта - Δr,

8 - радиус - вектор космического объекта, соединяющий начало координат (центр Земли) с положением КО - rко,

9 - местный горизонт,

10 - КО,

11 - момент времени измерений ti, предшествующий моменту времени измерений ti+1;

12 - угловое расстояние между положениями космического аппарата в моменты времени ti и ti+1 - δrка,

13 - угол между плоскостью движения КА и направлением от КА до KO - β,

14 - момент времени измерений ti+1, следующий за моментом времени измерений ti;

15 - угол между плоскостью движения космического аппарата и плоскостью образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti - δ,

16 - угол между плоскостью большого круга, образованной положениями космического аппарата и космического объекта в момент времени ti+1, и плоскостью большого круга, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti - α,

17 - траектория полета КА,

18 - угловое расстояние между положением космического аппарата и космического объекта - σ,

19 - угловое расстояние между положениями космического объекта в моменты времени ti и ti+1 - Δν,

20 - траектория полета КО,

21 - плоскость экватора, проходящая через центр Земли перпендикулярно оси ее вращения;

22 - угловое расстояние между положением космического аппарата в момент времени ti и плоскостью экватора, лежащее в плоскости условной орбиты образованной положениями КА и КО в момент времени ti и центром Земли - δZ,

23 - наклонение орбиты КА - iка,

24 - широта подспутниковой точки КА в момент времени ti - φка,

25 - курсовой угол для плоскости условной орбиты, проходящей через широты подспутниковых точек космического аппарата, космического объекта и центр Земли в момент времени ti - ε(ti),

26 - курсовой угол между проекцией вектора скорости КА на местный горизонт и местной параллелью в момент времени ti - ε(ti),

27 - наклонение орбиты космического объекта - iко,

28 - широта подспутниковой точки КО в момент времени ti - φко(ti),

29 - местная параллель на широте подспутниковой точки КА в момент времени ti,

30 - широта подспутниковой точки КО в момент времени ti+1 - φко(ti+1).

Покажем возможность осуществления изобретения, т.е. возможность его промышленного применения.

При осуществления изобретения с наземных пунктов управления ежесуточно во время сеанса связи на борт космического аппарата производится запись командно-программной информации, содержащей данные о его текущих орбитальных параметрах на момент сеанса связи («Бортовые системы управления космическими аппаратами»: Учебное пособие / Бровкин А.Г., Бурдыгов Б.Г., Гордийко С.В. и др., под редакцией Сырова А.С. М.: Изд-во МАИ-ПРИНТ, 2010, с.45-47, 56-61, 80-98)- (Д6). Далее происходит регистрация космических объектов бортовыми оптическими датчиками, представляющими собой бинокулярную систему разнесенных друг относительно друга оптических датчиков и имеющих параллельные оптические оси (Д3, Д4). На основе измеренного параллактического смещения треков прохождения космических объектов, зафиксированных на ПЗС-матрицах в моменты времени ti и ti+1, производится определение по методике (Д2) расстояния между центрами масс космического аппарата и космического объекта (Δr), а также угла β между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта (Д6). Затем бортовыми оптическими датчиками и исполнительными органами системы стабилизации и ориентации космического аппарата, описанными в (Д6, с.80-98) определяют угол θ (фиг.1, позиция 6) между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями КА, КО и центром Земли. Далее по вышеприведенным формулам определяют параметры орбиты космического объекта.

Процедуры и технология ежесуточной записи командно-программной информации, содержащей данные о текущих орбитальных параметрах КА на момент сеанса связи, показаны в (Д6, с.45-47).

Регистрация космических объектов, а также состав и технические возможности бортовых оптических датчиков приведены в (Д6, с.56-61).

Реализация бинокулярной системы разнесенных друг относительно друга оптических датчиков и имеющих параллельные оптические оси, описана в (Д3, Д4).

Способ измерений параллактического смещения треков прохождения космических объектов, зафиксированных на ПЗС-матрицах, а также измерение расстояний между центрами масс космического аппарата и космического объекта Δr и углов β между плоскостью движения космического аппарата и направлениями от космического аппарата до космического объекта производится по методикам, приведенных в (Д2 и Д3).

Взаимодействие бортовых оптических датчиков и исполнительных органов системы стабилизации и ориентации космического аппарата описано в (Д6, с.80-98) дает возможность определить угол - θ между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями КА, КО и центром Земли.

Возможность осуществления итерационного вычислительного бортового алгоритма, уточняющего орбитальные параметры космического объекта и прогнозирующего минимальное расстояние между космическим аппаратом и космическим объектом, показана в источниках информации: «Наведение в космосе» / Ричард Беттин. - М.: Машиностроение, 1966 - (Д7), «Введение в теорию полета искусственных спутников земли» / Эльясберг П.Е. - М.: Наука, 1965 - (Д8).

Способ определения параметров орбиты космического объекта, заключающийся в определении на борту космического аппарата в моменты времени ti, где i=1, 2, 3, …, значений радиус-вектора rка(ti), соединяющего центр Земли с местоположением космического аппарата, значений широты φкa(ti) подспутниковых точек космического аппарата, значений расстояния Δr(ti) между космическим аппаратом и космическим объектом, значений угла β(ti) между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта, отличающийся тем, что определяют в моменты времени ti бортовыми оптическими датчиками угол θ(ti) между направлением от космического аппарата до космического объекта и местным горизонтом, лежащий в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли, вычисляют значения радиус-вектора rко(ti) космического объекта, соединяющего центр Земли с положением космического объекта в момент времени ti, и угловое расстояние δr(ti) между текущими положениями космического аппарата и космического объекта в момент времени ti в соответствии с математическими зависимостями:
,
,
где:
rка(ti) - радиус-вектор космического аппарата, соединяющий центр Земли с положением космического аппарата в момент времени ti;
Δr(ti) - расстояние между центрами масс космического аппарата и космического объекта в момент времени ti;
θ(ti) - угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащий в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли в момент времени ti;
δr(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti,
вычисляют угловое расстояние Δv(ti, ti+1) между положениями космического объекта для двух следующих друг за другом моментов времени измерений ti и ti+1 по формуле:
Δv(ti, ti+1)=arccos[cosσ(ti)cosδr(ti+1)-sinσ(ti)sinδr(ti+1)cosα(ti)],
где:
σ(ti)=arccos[cosδr(ti)cosδrка(ti)-sinδr(ti)sinδrка(ti)cosβ(ti)];
α(ti)=π-β(ti+1)-δ(ti);
;
σ(ti) - угловое расстояние между положением космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;
δr(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;
δrка(ti) - угловое расстояние между положениями космического аппарата в моменты времени ti и ti+1;
β(ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti;
α(ti) - угол между плоскостью, образованной положениями космического аппарата и космического объекта в момент времени ti+1, и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;
β(ti+1) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti+1;
δ(ti) - угол между плоскостью движения космического аппарата и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti,
вычисляют параметры орбиты космического объекта: фокальный параметр P(ti), истинную аномалию ϑ(ti), эксцентриситет e(ti) и наклонение орбиты iко в момент времени ti в соответствии с математическими зависимостями:
,
,
,
,
где:
;
φко(ti)=arcsin[sinj(ti)sin(δz(ti)+δr(ti))];
;
j(ti)=arccos[cosε(ti)cosφка(ti)];
;
rко(i+1) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti+1;
rко(ti) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti;
µ - произведение гравитационной постоянной на массу Земли;
Δt=ti+1-ti;
Δv(ti, ti+1) - угловое расстояние между положениями космического объекта для двух следующих друг за другом моментов времени измерений ti и ti+1;
s(ti) - дуга, лежащая в плоскости движения космического объекта и соединяющая его положение в момент времени ti и в ближайший момент времени прохождения экватора;
φко(ti) - широта подспутниковой точки космического объекта в момент времени ti;
φко(ti+1) - широта подспутниковой точки космического объекта в момент времени ti+1;
j(ti) - наклонение «условной» орбиты, проходящей через широты подспутниковых точек космического аппарата и космического объекта в момент времени ti;
δz(ti) - дуга, лежащая в плоскости «условной» орбиты с наклонением j(ti) и соединяющая подспутниковую точку космического аппарата в момент времени ti и плоскость экватора;
δr(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;
φка(ti) - широта подспутниковой точки космического аппарата в момент времени ti;
ε(ti) - курсовой угол для плоскости условной орбиты, проходящей через широты подспутниковых точек космического аппарата, космического объекта и центр Земли в момент времени ti;
iка - наклонение орбиты космического аппарата;
β(ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti.



 

Похожие патенты:

Изобретение относится к радиолокации пассивных космических объектов (КО), например крупных метеоритов и астероидов (размерами более десяти метров), которые могут представлять опасность при столкновении с Землей.

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используются три территориально разнесенные наземные измерительные станции (ИС) и приемоответчик КА.

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используют три территориально разнесенные измерительные станции (ИС).

Изобретение относится к космической области и может быть использовано для управления полетами космических аппаратов (КА). Интегрируют информационно-вычислительный комплекс центра управления ретрансляцией и связью коммуникационными средствами в структурно выделенный сегмент, организовывают канал связи с комплексом внешних информационных обменов, на едином структурно выделенном сегменте планируют, инициируют и реализуют одновременное выполнение программных процедур, осуществляющих прием и обработку заявок потребителей на предоставление услуг ретрансляции и связи по всем видам информации, осуществляют обмен по локальной вычислительной сети всеми видами полетной информации по управляемым космическим аппаратам, внешними абонентами через комплекс внешних информационных обменов, прогнозируют движения космических аппаратов относительно спутников-ретрасляторов, производят выбор маршрутов ретрансляции информации, осуществляют доведение до потребителей сообщений о предоставлении услуг ретрансляции и связи, формируют программы управления полетами космических аппаратов, реализуют выдачу программ управления на космические аппараты.

Изобретение относится к системам наблюдения за полетом космического аппарата (КА) и может использоваться для определения параметров орбиты наблюдаемого КА. Для этого на орбиту выводят КА, в составе бортовой аппаратуры которого размещают навигационную аппаратуру потребителя глобальной навигационной спутниковой системы и аппаратуру измерения частоты сигнала, передаваемого наблюдаемым КА.

Изобретение относится к системам наблюдения за полетом космических аппаратов (КА) и может использоваться для определения параметров орбиты. Проводят измерения навигационных параметров орбиты КА с помощью наземных измерительных станций.

Изобретение относится к области космонавтики. Система обеспечения безопасности космических аппаратов (КА) состоит из модуля сбора геофизической информации (1) и блока базы данных параметров движения КА (2), которые своими выходами соединены с модулем обработки и анализа (МОА) (4), на вход которого подаются данные из базы данных характеристик бортовой аппаратуры КА (3), который сопоставляет данные о среде и траектории КА.

Изобретение касается обеспечения управления полетами автоматических и пилотируемых космических аппаратов (КА). Оно может быть использовано при создании и развертывании центров управления полетами существующих и перспективных КА.

Изобретение относится к области лазерной локации. Лазерное устройство контроля околоземного космического пространства содержит установленные на первой оптической оси вспомогательный источник лазерного излучения, селектор угловых мод с первым зеркалом резонатора, задающий генератор рабочего лазерного излучения, полупрозрачное зеркало вывода излучения и второе зеркало резонатора.

Изобретение относится к технике определения и прогнозирования торможения космических аппаратов на низких орбитах вследствие вариаций плотности верхней атмосферы.

Изобретение относится к способу обнаружения космических обломков. Технический результат - обнаружение космических обломков на геоцентрической орбите. Способ обнаружения космических обломков включает в себя генерацию виртуального фрагмента космических обломков в соответствии с законом сохранения массы с применением модели разрушения на обломки к объекту, возникшему в результате разрушения, вычисление орбиты каждого виртуального фрагмента космических обломков во время наблюдения в неподвижной точке с применением модели прохождения орбиты обломков к виртуальному фрагменту космических обломков и генерацию распределения частоты появления вектора движения каждого виртуального фрагмента космических обломков на небесной сфере на основе результата вычисления орбиты, установку вектора диапазона поиска на основе вектора движения, имеющего верхний уровень распределения частоты появления вектора движения, и применение способа наложения к областям в изображениях, фиксируемых в интервалах времени во время наблюдения в неподвижной точке. 4 з.п. ф-лы, 12 ил.

Изобретение относится к способам наблюдения за космическими объектами (КО) с помощью оптико-электронных средств и м.б. использовано для определения орбиты пассивного КО (ПКО) на геостационарной орбите автономно с борта активного КО (АКО). В процессе дрейфа по квазигеостационарной орбите (с меньшими радиусом и периодом, чем ПКО) АКО выполняет поиск и обнаружение ПКО. После этого определяется точка восходящего или нисходящего узла орбиты ПКО. По периодическим появлениям ПКО в этой точке определяют драконический период обращения ПКО. На каждом витке АКО приближается к ПКО на определенное расстояние. За два витка эти расстояния образуют динамическую базу стерео-триангуляционных измерений координат указанной узловой точки орбиты ПКО. По двум дополнительным точкам орбиты, находящимся до и после узловой точки вне экваториальной плоскости Земли, измеряют вектор скорости ПКО. После определения координат узловой точки и вектора скорости ПКО однозначно, за время полного витка после момента первой регистрации указанной точки, рассчитывают 6-мерный вектор орбитального движения ПКО. Технический результат изобретения состоит в минимизации числа АКО, времени наблюдения ПКО и соответствующих затрат характеристической скорости. 4 ил.

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов (КА), а именно к оптико-электронным системам контроля скорости. Система контроля скорости космических аппаратов при сближении включает расположенные на активном космическом аппарате телекамеру с приемником на основе КМОП-датчика, узкополосный светофильтр, блок управления и обработки сигнала. На пассивном космическом аппарате в плоскости стыковочного узла, перпендикулярной оси «OX» этого аппарата, расположены четыре оптических маяка. Оптические маяки образуют прямоугольник, две стороны которого параллельны строкам чувствительных элементов КМОП-датчика. Телекамера служит для получения изображения пассивного КА, узкополосный светофильтр подавляет засветки от подстилающей поверхности и бликов конструкции пассивного КА, блок управления и обработки сигнала осуществляет вычисление скорости пассивного КА и переключение режимов работы телекамеры. Достигаемый технический результат - повышение надежности системы взаимных измерений параметров сближения КА и, как следствие, увеличение безопасности, за счет введения дополнительной системы контроля скорости сближения КА, не использующей активную подсветку в радио- и оптическом диапазоне и устойчивую к наличию световых помех. 3 ил.

Группа изобретений относится к области траекторных измерений с использованием станции слежения (СС) за полетом космического аппарата (КА). При обмене информацией с КА по радиоканалу СС производит измерение дальности до КА и скорости ее изменения. Основная и дополнительные антенны СС принимают ответный сигнал с КА и передают его в блок интерферометрических измерений (БИИ), имеющий фазовый пеленгатор. В БИИ определяются углы азимута и места КА и скорости их изменения. Для раскрытия неоднозначности угловых измерений они дополнительно производятся на частоте, излучаемой с борта КА и равной 1/4 основной. Это позволяет не применять на СС антенн, создающих укороченные базы. Все шесть измеренных параметров (расстояние, углы и скорости их изменения) передаются в баллистический центр, где по ним определяется траектория и прогноз движения КА. Технический результат группы изобретений заключается в упрощении сети слежения за полетом КА при проведении траекторных измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к космической технике и может быть использовано для определения временной привязки телеметрических измерений с космического аппарата (КА). Способ определения временной привязки телеметрических измерений с КА включает генерацию на борту временных меток и передачу их с измеряемыми параметрами бортовых систем в сформированном телеметрическом кадре на наземный приемный пункт. При этом измеряют на борту космического аппарата напряженность магнитного поля Земли, измеряют параметры орбиты космического аппарата, по которым определяют напряженность магнитного поля Земли, определяют ошибку временной привязки телеметрических измерений Δt из соотношений где Ha - модуль напряженности магнитного поля Земли, полученный по измеренным параметрам орбиты космического аппарата, Н - модуль напряженности магнитного поля Земли, полученный по измерениям на борту космического аппарата, и определяют временную привязку телеметрических измерений по формуле t*=t+Δt, где t - временная привязка телеметрических измерений, полученная по бортовым временным меткам. Обеспечивается точная временная привязка телеметрических измерений с КА.

Изобретение относится к космической отрасли, а именно к способам обеспечения управления КА научного и социально-экономического назначения (НСЭН), и может использоваться при организации проведения сеансов связи (СС) с КА с целью принятия необходимых мер по разрешению конфликтных (КС) и парированию нештатных ситуаций (НШС) при эксплуатации технических средств наземного комплекса управления (НКУ), а именно командно-измерительных систем (КИС). Способ основан на принципе последовательных перемещений времени проведения одного из конфликтующих СС на время «заблокированной» зоны радиовидимости (ЗРВ). Для этого на основании информации о состоянии КИС и заявленных СС определяют наличие разного рода конфликтов между сеансами связи различных КА. Разрешение КС между СС производится с использованием ЗРВ, участвующих в КС («заблокированных»), с последующим разрешением вновь возникающих КС путем переноса времени проведения СС одного из участников конфликта на время его нахождения в ЗРВ свободной КИС. Техническим результатом изобретения является повышение эффективности управления КА НСЭН и увеличение количества проводимых СС. 1 табл., 3 ил.

Изобретение относится к радиолокационным системам (РЛС) в составе комплексов активной защиты Земли от приближающихся к ней объектов естественного и искусственного происхождения. Устройство включает в себя наземную РЛС с четырьмя приемными (ПРА) и одной передающей (ПДА) антеннами, с двумя фазовыми детекторами, четырьмя блоками отображения информации, регистром сдвига и блоком вычисления скорости астероида. ПДА, установленная в центре окружности, излучает пилообразный НЛЧМ сигнал. Отраженные от астероида сигналы принимаются ПРА, расположенными равномерно вдоль окружности. Параметры движения астероида определяют по моментам обнаружения и по частотам разностных сигналов, принимаемых и формируемых в ПРА, используя указанные выше средства РЛС. Технический результат изобретения состоит в расширении ассортимента РЛС комплексов активной защиты Земли.

Изобретение относится к космической технике и может быть использовано для защиты Земли и космических аппаратов (КА) от астероидно-кометной опасности (АКО). Выводят на орбиту КА со средствами аппаратуры наблюдения (АН) на базе телескопов, первичной обработки изображений и непрерывной прямой двусторонней радиосвязи, устанавливают АН на Луне, синхронизируют КА-телескопы по шкале единого времени, размещают главную оптическую ось АН каждого КА в точках Лагранжа, поочередно сканируют и получают изображения участков небесной сферы, определяют координаты и блеск наблюдаемых небесных объектов (НО), принимают и обрабатывают на наземном пункте управления изображения с зафиксированными новыми НО, с помощью информационно-аналитического центра мониторинга АКО собирают, обрабатывают, анализируют, систематизируют, каталогизируют и хранят информацию об объектах АКО, строят динамику перемещений НО во времени и пространстве, вычисляют орбиты НО, регулярно обновляют и передают потребителям информацию об уточненных параметрах НО, оценивают степень угрозы математическим методом, основанным на критерии минимума среднего риска и зависящим от стоимости ложной тревоги, вероятности отсутствия столкновения, условной вероятности ложной тревоги, весового множителя, стоимости ущерба при столкновении, вероятности столкновения, условной вероятности пропуска столкновения, плотности вероятности положения КА или Земли в пространстве, отношения правдоподобия, плотности вероятности положения опасных космических объектов в пространстве, принимают решения о дальнейших действиях. Изобретение позволяет повысить достоверность степени оценки возможного столкновения с НО. 8 з.п. ф-лы, 1 ил.

Изобретение относится к бортовым системам навигации (БСН) искусственных спутников Земли (ИСЗ) на низких (с высотой до 500-600 км) орбитах. БСН содержит устройство управления системой и соединенные с ним устройство преобразования навигационных сигналов в навигационные параметры, блок преобразования навигационных параметров в параметры движения центра масс (ЦМ) ИСЗ и блок прогнозирования параметров движения ЦМ. В состав БСН введены соединенные с устройством управления системой блок уточнения баллистического коэффициента (БК) - как параметра согласования расчетного и фактического движения ИСЗ, блок накопления текущих значений БК и блок прогнозирования БК. В блоке прогнозирования БК использован адаптивный (по параметрам, либо также и по структуре модели) алгоритм прогнозирования БК. В алгоритме могут быть использованы соотношения эмпирической регрессии или метод группового учета аргументов. Техническим результатом изобретения является повышение точности прогнозирования движения ЦМ спутника. 2 ил.

Изобретение относится к космонавтике и может быть использовано в навигации космического аппарата (КА). Принимают измерительные сигналы с КА и квазара, обеспечивают минимальный сдвиг по времени между измерениями с КА и квазара, выбирают проекцию углового положения квазара, максимально приближенную к положению КА, и с совпадением трасс прохождения сигналов от КА и квазара к измерительной станции, определяют двухчастотным методом смещение частот сигналов, определяют погрешность в измерениях скорости КА, определяют интегральную ионизацию трассы квазар-измерительная станция, вычисляют временную задержку прохождения сигнала, равную погрешности измерения дальности, передают полученные данные в баллистический центр совместно с результатами траекторных измерений КА для расчета траектории КА. Изобретение позволяет измерить погрешность траекторных изменений КА, вызываемых распространением измерительных радиосигналов через ионизированную среду. 2 ил.
Наверх