Устройство формирования сильноточных импульсов



Устройство формирования сильноточных импульсов
Устройство формирования сильноточных импульсов
Устройство формирования сильноточных импульсов
Устройство формирования сильноточных импульсов
H03K3/00 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2531560:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экпериментальной физики"-ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Устройство относится к высоковольтной импульсной технике и может быть использовано в ускорителях заряженных частиц и устройствах для формирования сильноточных импульсов. Достигаемый технический результат - повышение стабильности выходного напряжения и надежности работы. Устройство формирования сильноточных импульсов содержит импульсный зарядный трансформатор и разрядный контур, включающий в себя, по меньшей мере, один заряжаемый от зарядного трансформатора энергозапасающий конденсатор и, по меньшей мере, один управляемый трехэлектродный разрядник, а также устройство для запуска трехэлектродного разрядника, поджигающий импульсный трансформатор, конденсатор и неуправляемый двухэлектродный разрядник, причем конденсатор подключен к отводу вторичной обмотки зарядного трансформатора через резистор. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к высоковольтной импульсной технике и может быть использовано в ускорителях заряженных частиц и устройствах для формирования сильноточных импульсов.

Известны устройства формирования сильноточных импульсов на основе генератора Аркадьева-Маркса, в которых устройство запуска трехэлектродных разрядников первых каскадов собрано в отдельном блоке, а пусковой импульс поступает на управляющие электроды разрядников по передающему кабелю (Герасимов А.И., Федоткин А.С., Зенков Д.И., Назаренко С.Т. Надежный экранированный генератор Аркадьева-Маркса на 500 кВ и 6.25 кДж со стабильным временем задержки срабатывания. // ПТЭ №1, 1998 г - С.96-100), (Герасимов А.И., Гордеев B.C. и др. Экранированный генератор импульсного напряжения 800 кВ и энергии 32 кДж. // ПТЭ №6, 2005 г - С.21-27).

Недостатками подобных устройств является то, что сам по себе блок формирования запускающих импульсов является сложным и дорогостоящим прибором, а передача импульсов амплитудой десятки и сотни киловольт требует применения кабеля с высокой электропрочностью его изоляции, что увеличивает массу (что особенно критично для малогабаритных устройств), стоимость устройства и снижает его надежность.

Известны устройства формирования сильноточных импульсов, в которых пусковые импульсы для разрядников, подключающих энергозапасающие конденсаторы к нагрузке, формируются непосредственно в высоковольтном блоке устройства (Бойко Н.И., Евдошенко Л.С., Зароченцев А.И., Иванов В.М., Артюх В.Г. Тригатроны на 400 кВ для мощных низкоиндуктивных генераторов импульсов. // ПТЭ №1, 2008 г - С.78-86). При этом непосредственно от энергозапасающих конденсаторов происходит зарядка пускового конденсатора (входящего в состав устройства для запуска), который после срабатывания неуправляемого разрядника подключается к импульсному пусковому трансформатору.

Недостатками этих устройств является то, что напряжение зарядки пускового конденсатора и напряжение срабатывания неуправляемого разрядника равно полному напряжению зарядки энергозапасающих конденсаторов. Поэтому использование данной схемы запуска в портативных устройствах формирования сильноточных импульсов сопряжено с потерями энергии, сравнимыми с энергозапасом всего устройства, который, как правило, не превышает 100 Дж.

Наиболее близким к заявляемому и с наименьшими потерями энергии на управление трехэлектродным коммутирующим разрядником является устройство формирования сильноточных импульсов (К.А. Желтов. Пикосекундные сильноточные электронные ускорители. - Москва, Энергоатомиздат, 1991 - С.85-93), содержащее импульсный зарядный трансформатор и разрядный контур, включающий в себя, по меньшей мере, один заряжаемый от зарядного трансформатора энергозапасающий конденсатор и, по меньшей мере, один управляемый трехэлектродный разрядник, а также содержащее устройство для запуска трехэлектродного разрядника. В данном устройстве пусковой импульс формируется на нелинейной катушке индуктивности, включенной последовательно в цепь зарядки энергозапасающего конденсатора. Во время протекания зарядного тока магнитопровод катушки насыщается, и она имеет настолько малую индуктивность, что падение напряжения на ней практически равно нулю. В момент полной зарядки конденсатора, когда зарядный ток уменьшается до некоторого критического значения, магнитопровод выходит из насыщения, индуктивность катушки резко возрастает, и на ней формируется высоковольтный импульс, используемый для запуска трехэлектродного разрядника.

Недостатками устройства является сложность расчетов и настройки элементов устройства для запуска, ограничение амплитуды пускового импульса (не более половины напряжения зарядки энергозапасающего конденсатора), отсутствие возможности изменять полярность и временную привязку формирования пускового импульса (в указанном устройстве импульс формируется только за вершиной, на спаде импульса напряжения зарядки энергозапасающего конденсатора, что снижает надежность срабатывания управляемого разрядника).

В данном изобретении решалась задача создания надежного устройства формирования сильноточных импульсов с простой, стабильной и экономичной схемой управления трехэлектродным разрядником, подключающим энергозапасающий конденсатор к нагрузке.

Техническим результатом является снижение трудозатрат на разработку устройства, повышение стабильности его выходного напряжения и надежности работы.

Указанный технический результат достигается тем, что по сравнению с известным устройством формирования сильноточных импульсов, содержащим импульсный зарядный трансформатор и разрядный контур, включающий в себя, по меньшей мере, один заряжаемый от зарядного трансформатора энергозапасающий конденсатор и, по меньшей мере, один управляемый трехэлектродный разрядник, а также содержащее устройство для запуска трехэлектродного разрядника, новым является то, что устройство запуска трехэлектродного разрядника содержит поджигающий импульсный трансформатор и подключенные к его первичной обмотке конденсатор и неуправляемый двухэлектродный разрядник, причем конденсатор подключен также к отводу вторичной обмотки зарядного трансформатора через резистор, а высоковольтный вывод вторичной обмотки поджигающего трансформатора соединен с пусковым электродом трехэлектродного разрядника; длительность фронта импульса выходного напряжения поджигающего трансформатора не превышает 10% от длительности фронта импульса выходного напряжения зарядного трансформатора.

Наличие поджигающего короткопериодного импульсного трансформатора позволяет формировать пусковой импульс требуемой амплитуды и с малой длительностью переднего фронта напряжения. Это требуется для надежного срабатывания трехэлектродного разрядника при обеспечении достаточного коэффициента запаса по напряжению самопробоя, что гарантирует отсутствие несакционированных пробоев разрядника до прихода пускового импульса. Магнитопровод поджигающего трансформатора может быть выполнен из феррита практически любой доступной марки и не требует применения пермаллоя или аналогичного магнитного материала с прямоугольной петлей гистерезиса и большим значением индукции насыщения.

Пусковой конденсатор, подключаемый к первичной обмотке поджигающего трансформатора, заряжается через сравнительно низковольтный отвод вторичной обмотки зарядного трансформатора. Поэтому напряжение его зарядки в несколько раз меньше напряжения зарядки энергозапасающего конденсатора. Таким образом, двухэлектродный разрядник, который подключает пусковой конденсатор к поджигающему трансформатору, работает в слаботочном режиме и коммутирует энергию, которая значительно (в 20-50 раз) меньше энергии энергозапасающего конденсатора. При малых величинах коммутируемой энергии двухэлектродный разрядник работает стабильно, что обеспечивает малый разброс напряжений пробоя трехэлектродного разрядника и выходного напряжения устройства формирования сильноточных импульсов.

Резистор, через который пусковой конденсатор подключен к отводу вторичной обмотки зарядного трансформатора, позволяет гасить паразитные высокочастотные колебания, возникающие на пусковом конденсаторе во время переходных процессов в зарядном трансформаторе. Эти колебания возникают при подаче на первичную обмотку зарядного трансформатора напряжения питания с крутым фронтом и приводят к увеличению временной нестабильности срабатывания двухэлектродного разрядника и, вследствие этого, возрастанию нестабильности напряжения срабатывания трехэлектродного разрядника. Кроме того, путем изменения сопротивления резистора можно устанавливать заданный момент времени подачи пускового импульса относительно вершины импульса напряжения зарядки энергозапасающего конденсатора. В оптимальном варианте требуется небольшое опережение пускового импульса. В этом случае повышается надежность срабатывания трехэлектродного разрядника, поскольку при наличии задержки срабатывания, во всем временном интервале задержки напряжение на разряднике будет возрастать, а не уменьшаться, как это имеет место в устройстве по прототипу. Поэтому в заявляемом устройстве значительно снижена вероятность пропусков срабатывания трехэлектродного разрядника. Кроме того, это дает возможность эксплуатировать разрядник с большим коэффициентом запаса напряжения самопробоя по отношению к рабочему напряжению, что также способствует повышению надежности.

Из-за отсутствия нелинейных элементов расчет, наладка и настройка устройства на определенное выходное напряжение производится значительно проще, чем в устройстве по прототипу.

Таким образом, в данном изобретении при использовании перечисленных отличительных признаков реализуется указанный технический результат.

На фиг.1 показана схема заявляемого устройства на примере каскадного генератора Аркадьева-Маркса с трехэлектродным управляемым разрядником в первом каскаде, где:

1 - импульсный зарядный трансформатор;

2 - импульсный поджигающий трансформатор;

3 - энергозапасающие конденсаторы;

4 - конденсатор устройства запуска;

5 - трехэлектродный управляемый разрядник;

6 - двухэлектродный неуправляемый разрядник;

7 - разрядники каскадов генератора;

8 - резистор;

9 - зарядные катушки индуктивности;

10 - нагрузка.

На фиг.2 приведена зависимость характерного изменения формы импульса напряжения зарядки пускового конденсатора от сопротивления резистора 8, где:

11 - импульс напряжения зарядки энергозапасающего конденсатора;

12 - импульс напряжения зарядки пускового конденсатора;

τ1 - момент времени подачи пускового импульса;

τ2 - момент времени, совпадающий с вершиной импульса напряжения зарядки энергозапасающего конденсатора;

а - при меньшем сопротивлении резистора 8;

б - при большем сопротивлении резистора 8.

На фиг.3 приведены осциллограммы импульсов напряжения зарядки энергозапасающих и пускового конденсаторов при срабатывании разрядников 5 и 6 для разных значений амплитуды выходного напряжения зарядного трансформатора (сопротивление резистора 8 равно 1500 Ом):

а - при амплитуде выходного напряжения зарядного трансформатора 90 кВ;

б - при амплитуде выходного напряжения зарядного трансформатора 110 кВ.

На фиг.4 показан график прогнозируемой зависимости напряжения срабатывания управляемого разрядника от величины сопротивления резистора 8; кружками обозначены экспериментально полученные точки, соответствующие соотношениям напряжений зарядки конденсаторов 3 и 4.

Заявляемое устройство (фиг.1) работает следующим образом. При подаче питания на первичную обмотку импульсного зарядного трансформатора 1 происходит одновременная зарядка энергозапасающих конденсаторов 3 и пускового конденсатора 4. В момент времени τ1 (фиг.2), с некоторым опережением по отношению к τ2, конденсатор 4 заряжается до напряжения пробоя разрядника 6, что приводит к его срабатыванию и подключению конденсатора 4 к первичной обмотке поджигающего короткопериодного трансформатора 2. При этом на вторичной обмотке трансформатора формируется импульс напряжения, который подается на управляющий электрод разрядника 5 и приводит к его пробою. Это вызывает последовательное срабатывание разрядников 7 каскадного генератора и формирование на нагрузке 10 импульса напряжения Uн, амплитуда которого в N раз (где N - количество каскадов генератора) превышает зарядное напряжение. Благодаря малой индуктивности первичной обмотки поджигающего трансформатора 2 длительность пускового импульса во много раз меньше длительности зарядного импульса, что обеспечивает малый временной разброс срабатывания разрядника 5.

Пусковой конденсатор 4 подключен к сравнительно низковольтному отводу вторичной обмотки трансформатора 1, поэтому напряжение зарядки пускового конденсатора в несколько раз меньше напряжения зарядки энергозапасающих конденсаторов 3. Таким образом, двухэлектродный разрядник 6, по сравнению с разрядниками 5 и 7, работает в менее сильноточном режиме, что позволяет обеспечить малый разброс напряжений срабатывания и большой ресурс работы, как разрядника, так и заявляемого устройства. Опережение подачи пускового импульса по отношению к моменту времени τ2 позволяет обеспечить временной интервал (равный удвоенному интервалу между τ1 и τ2), в течение которого напряжение на трехэлектродном разряднике 5 не снижается. Это дает возможность компенсировать влияние задержки развития пробоя и обеспечить надежное срабатывание разрядника 5, а также увеличить диапазон его рабочих напряжений в отличие от устройства по прототипу, в котором непосредственно после подачи пускового импульса напряжение на трехэлектродном разряднике снижается.

В заявляемом устройстве путем одновременного изменения сопротивления резистора 8 и питающего напряжения на первичной обмотке зарядного трансформатора можно изменять амплитуду импульса напряжения на нагрузке. На фиг.2 приведены осциллограммы импульсов напряжения зарядки энергозапасающих конденсаторов 3 и пускового конденсатора 4, из которых видно, что при увеличении сопротивления резистора, напряжение на пусковом конденсаторе в момент времени τ1 снижается. Поддержание его на прежнем уровне, достаточном для срабатывания схемы управления, будет возможным только при увеличении питающего напряжения на первичной обмотке зарядного трансформатора, что приведет к увеличению напряжения срабатывания трехэлектродного разрядника. Таким образом, путем увеличения сопротивления резистора 8 можно в определенных пределах (примерно на 30%) увеличивать амплитуду импульса напряжения на нагрузке 10.

Выходное напряжение устройства примерно на 20% можно изменять и при фиксированном сопротивлении резистора 8 путем вариации выходного напряжения зарядного трансформатора 1 при изменении формы импульса зарядки энергозапасающих конденсаторов 3 (фиг.3). Это влечет за собой пробой трехэлектродного разрядника 5 либо вблизи вершины (фиг.3, а) при минимальном напряжении, либо на фронте импульса (фиг.3, б) при максимальном напряжении.

Заявляемое устройство было изготовлено, представляло собой источник импульсного питания электронной ускорительной трубки, собранный по схеме Аркадьева-Маркса, и испытано при следующих параметрах его элементов:

- импульсный зарядный трансформатор (1) собран на двух магнитопроводах ПЛ20×40×100, первичная обмотка содержит 20 витков, вторичная обмотка - 360 витков, отвод выполнен на 120 витках;

- импульсный поджигающий трансформатор (2) имеет разомкнутый трубчатый магнитопровод (склеенный из 6 ферритовых колец М2000НМ1-1709891 25×40×11), первичная обмотка содержит 20 витков, вторичная - 100 витков;

- энергозапасающие конденсаторы (3) - 50 шт. керамических конденсаторов К15-10-31.5 кВ-3300 пФ, включенных параллельно-последовательно, общая зарядная емкость 6600 пФ;

- конденсатор устройства запуска (4) - 2 последовательно включенных конденсатора К15-10-31.5 кВ-3300 пФ, общая емкость 1650 пФ;

- управляемый трехэлектродный разрядник (5) - металлокерамический водородный разрядник тригатронного типа, напряжение самопробоя 140-150 кВ;

- неуправляемый разрядник (6) - двухэлектродный металлокерамический водородный разрядник, напряжение самопробоя 40 кВ;

- неуправляемые разрядники (7) - двухэлектродные металлокерамические водородные разрядники на напряжение самопробоя 140-160 кВ кВ;

- резистор (8) - высоковольтный резистор ТВО-5;

- зарядные катушки индуктивности(9) - катушки, намотанные с шагом 0.5 мм на столбиках из органического стекла диаметром 16 мм (120 витков, индуктивность ≈50 мкГн);

- нагрузка (10) - электронная трубка ИА-9.

Заявляемое устройство обеспечивало формирование импульсов напряжения на трубке до 1200 кВ с разбросом не более 1% при величине доверительной вероятности 0.98 (в устройстве по прототипу указана погрешность 3%). Для облегчения расчетов выходного напряжения по экспериментально полученным соотношения напряжений зарядки энергозапасающих и пускового конденсаторов был построен график прогнозируемой зависимости напряжения срабатывания управляемого разрядника от величины сопротивления резистора 8 (фиг.4). По этому графику легко определить сопротивление резистора, необходимое для обеспечения пробоя трехэлектродного разрядника при заданном напряжении.

Таким образом, заявляемое устройство, по сравнению с устройством по прототипу, позволяет снизить трудозатраты на разработку и расчет параметров основных элементов, повысить стабильность выходного напряжения и надежность работы.

1. Устройство формирования сильноточных импульсов, содержащее импульсный зарядный трансформатор и разрядный контур, включающий в себя, по меньшей мере, один заряжаемый от зарядного трансформатора энергозапасающий конденсатор и, по меньшей мере, один управляемый трехэлектродный разрядник, а также содержащее устройство для запуска трехэлектродного разрядника, отличающееся тем, что устройство запуска трехэлектродного разрядника содержит поджигающий импульсный трансформатор и подключенные к его первичной обмотке конденсатор и неуправляемый двухэлектродный разрядник, причем конденсатор подключен также к отводу вторичной обмотки зарядного трансформатора через резистор, а высоковольтный вывод вторичной обмотки поджигающего трансформатора соединен с пусковым электродом трехэлектродного разрядника.

2. Устройство по п.1, отличающееся тем, что длительность фронта импульса выходного напряжения поджигающего трансформатора не превышает 10% от длительности фронта импульса выходного напряжения зарядного трансформатора.



 

Похожие патенты:

Изобретение относится к области траления морских акваторий и может быть использовано для вывода из строя противодесантных мин и подводных роботов-разведчиков, имеющих неконтактные гидроакустические и магнитные датчики цели и ориентации в прибрежной зоне.

Изобретение относится к устройству для компонентов высоковольтной импульсной системы испытания, предпочтительно для контроля качества мощных трансформаторов. Сущность: в устройстве для компонентов высоковольтной импульсной системы испытания, содержащей генератор импульсов и вспомогательные компоненты, а именно ограничительный разрядный промежуток (2), делитель (3) напряжения и компенсатор (4) перенапряжений, по меньшей мере два из вспомогательных компонентов установлены на общей основной раме с одним единственным головным электродом (11) для вспомогательных компонентов.

Изобретение относится к области вычислительной техники, автоматики и может использоваться в различных цифровых структурах и системах автоматического управления, передачи информации.

Изобретение относится к эмиссионной спектроскопии. Технический результат заключается в повышении точности количественного определения исследуемых составов с возможностью работы в режиме спектроскопии с временным разрешением. В заявке описан генератор зажигания для генерирования искрового разряда оптической эмиссионной спектроскопии (OES), в котором искровой разряд обладает формой кривой тока, содержащей первый модулированный участок, который включает множество пиков относительно большого тока и высокого градиента с переменной амплитудой и(или) длительностью между пиками, и второй модулированный участок относительно малого тока и низкого градиента, который по существу не имеет модулированных пиков.

Изобретение относится к области мощной сильноточной импульсной электротехники и может использоваться для генерации мощных импульсов наносекундной длительности.

Изобретение относится к области преобразовательной техники. В состав высоковольтного коммутатора входят блок электронных ключей и быстродействующий коммутатор.

Изобретение относится к электроэнергетике и может быть использовано в системах электроснабжения различных сфер народного хозяйства. Достигаемый технический результат - снижение затрат энергии от внешнего первичного источника электрической энергии.

Изобретение относится к энергетическим установкам, предназначенным для получения электрической энергии из газового электрического разряда. Техническим результатом является повышение стабильности, надежности и эффективности преобразования энергии при работе, который достигается за счет того, что устройство, содержащее первый и второй электроды, разделенные газовым разрядным промежутком, источник высокого напряжения, первый полюс которого соединен с первым электродом, а второй - с первым выводом первой индуктивности, второй вывод которой соединен со вторым электродом, дополнительно снабжено набором первых электродов, разделенных газовыми разрядными промежутками по отношению к второму электроду, и набором источников высокого напряжения, первые полюса каждого из которых соединены с одним из первых электродов набора первых электродов, а вторые полюса источников высокого напряжения из набора источников высокого напряжения соединены с первым выводом первой индуктивности, при этом второй электрод выполнен секционным, а первые электроды разделены между собой изолирующими перегородками, с возможностью образования отдельных газовых полостей между вторым электродом и каждым первым электродом.

Группа изобретений относится к устройствам цифровой вычислительной техники, в частности к недвоичной схемотехнике, и предназначена для создания троичных триггеров.

Предлагаемое устройство относится к области импульсной техники и предназначено для питания обмоток возбуждения устройств, создающих импульсные магнитные поля, в частности для питания обмоток возбуждения двигателей возвратно-поступательного движения (в.п.д.).

Изобретение относится к импульсной технике. Техническим результатом является возможность зарядки емкостного накопителя от нестабилизированного источника питания до уровня напряжения, превышающего напряжение источника питания, а также возможность изменения уровня напряжения, до которого можно зарядить накопитель, в каждом цикле его зарядки-разрядки вне зависимости от начальных условий. Способ зарядки заключается в том, что источник внешней ЭДС подключают управляемым ключом S к последовательному LCR контуру с диодом до момента времени, пока полная энергия, запасенная в контуре, с учетом линейной компенсации активных потерь, не достигнет величины, соответствующей заданному уровню напряжения на емкостном накопителе, после чего источник ЭДС отключают от контура ключом, и процесс зарядки завершается через диод в режиме свободных колебаний. 1 з.п. ф-лы, 4 ил.

Изобретение относится к системам с кодовым разделением каналов или с использованием сигналов с расширенным спектром. Технический результат - получение новых более сложных, нежели сигналы Баркера, сигналов, обладающих значительно большей помехоустойчивостью. Генератор сигналов Баркера-Волынской содержит два формирователя одиннадцатиэлементного сигнала Баркера, первый и второй формирователи трехэлементного сигнала Баркера, первый и второй формирователи семиэлементного сигнала Баркера, тактовый генератор, делитель частоты на три, делитель частоты на семь, делитель частоты на одиннадцать, сумматор по модулю два, инвертор, первый переключатель, второй двухсекционный переключатель и третий переключатель. 3 ил.

Изобретение относится к системам с кодовым разделением каналов или с использованием сигналов с расширенным спектром. Технический результат - обнаружение сигналов более сложных и помехоустойчивых, нежели сигналы Баркера. Обнаружитель комбинированных сигналов содержит один стодвадцатиразрядный регистр сдвига PC, девять сумматоров: СМ121, СМ77/1, СМ77/2, СМ49, СМ33/1, СМ33/2, СМ21/1, СМ21/2, СМ9 с количеством входов соответственно: сто двадцать один, семьдесят семь, семьдесят семь, сорок девять, тридцать три, тридцать три, двадцать один, двадцать один, девять, компаратор КП с резисторами R0, R, R1, R2, R3, R4, R5, потенциометр R6, двухсекционный переключатель П на девять позиций, причем выход каждого разряда, начиная с первого, регистра сдвига PC соединен с соответствующим входом сумматоров, выходы которых соединены с входными клеммами первой секции двухсекционного переключателя П, при этом каждый сумматор содержит операционный усилитель ОУ, инвертирующий вход которого соединен с его выходом, а также с соответствующими выходами регистра сдвига PC через резисторы R непосредственно либо через включенные последовательно с резисторами аналоговые инверторы. 2 ил.

Способ подбора профиля высоковольтных кольцевых экранов относится к высоковольтной импульсной технике и может быть использован в генераторах высоковольтных импульсов и ускорителях заряженных частиц при подборе профиля закругления острых торцевых кромок проводников сильноточных формирующих линий. Достигаемый технический результат - снижение напряженности электрического поля на поверхности экрана. Способ характеризуется тем, что используют профиль тела вращения, имеющего гладкую образующую, профиль образующей выбирают по форме одной из эквипотенциальных линий электрического поля, образованного двумя вспомогательными электродами, выполненными в виде групп цилиндрических и конических элементов, один электрод заземлен, другой имеет потенциал высоковольтного экрана, при этом для подбора профиля экрана используют эквипотенциальную линию с разностью потенциалов 0.3-0.7 U относительно любого электрода, где U - напряжение между вспомогательными электродами. 3 ил.

Изобретение относится к области вычислительной техники и может быть использовано в элементах управления микропроцессорных КМОП микросхемах и элементах считывания запоминающих устройств. Техническим результатом является повышение устойчивости к воздействию одиночных ядерных частиц без избыточного увеличения площади, занимаемой триггером на кристалле в составе интегральной КМОП микросхемы. Триггер состоит из пар NМОП и РМОП транзисторов, соединенных между собой, с шиной источника питания, линиями управления и выходными линиями, транзисторы объединены в два блока, каждый из которых содержит две группы из двух NМОП транзисторов и двух РМОП транзисторов, причем два блока транзисторов размещены на кристалле интегральной микросхемы один от другого на расстоянии, равном или больше порогового расстояния, для исключения одновременного воздействия одиночной ядерной частицы на оба блока транзисторов с уровнем больше порогового. 1 табл., 2 ил.

Изобретение относится к области создания устройств для генерирования широкополосных случайных стационарных процессов с заданными собственными и взаимными спектральными плотностями мощности. Технический результат заключается в повышении быстродействия работы устройства с быстрой петлей коррекции. Устройство генератора содержит цифровой модуль для формирования последовательностей случайных сигналов с использованием косинусоидального окна Ханна, а также цифровую обработку с использованием циклически меняющихся буферов для доступа к памяти DMA и аналоговые фильтры низкой частоты. 9 ил.

Изобретение относится к способам создания широкополосных случайных сигналов с заданными собственными спектральными плотностями мощности при испытаниях аппаратуры на вибростойкость к воздействиям случайной вибрации. Техническим результатом является повышение быстродействия преобразования с быстрой петлей коррекции. В способе генерируют непрерывный случайный процесс произвольной и заданной длины с использованием дискретных цифровых преобразований для управления несколькими вибростендами при их испытаниях с использованием циклически меняющихся буферов для доступа к памяти DMA. 6 ил.

Изобретение относится к электротехнике, к электрическим машинам с постоянными магнитами. Технический результат состоит в повышении к.п.д. Магнитоэлектрическая машина содержит статор, выполненный по крайней мере из двух «П»-образных шихтованных магнитопроводов, образующих внутреннюю прямоугольную полость, на которых размещены обмотки, выходы которых закреплены на одном из магнитопроводов и направлены к выпрямителю. На другом магнитопроводе выполнен зазор для размещения в ней системы управления. Система управления представляет собой замкнутый шихтованный магнитопровод, расположенный перпендикулярно статору в прорези «П»-образного магнитопровода, на котором расположены по крайней мере две обмотки, одна из которых подключена к стандартному источнику постоянного тока, а другая - к источнику переменного тока. 4 ил.

Изобретение относится к импульсной технике, а именно к бистабильным схемам с использованием в качестве активных элементов полевых транзисторов с внутренней положительной обратной связью, и может быть использовано в устройствах интерфейса ввода-вывода данных. Техническим результатом является создание более простого двухступенчатого ММ-триггера типа D с регулярной структурой за счет исключения общей обратной связи и организации локальных обратных связей в пределах каждой защелки ступеней триггера. Устройство содержит инверторы, комплементарные ключи, однотранзисторные ключи. 4 ил.

Изобретение относится к импульсной электронике и может использоваться в прецизионных время-импульсных преобразователях и генераторах сигналов двухтактного интегрирования. Технический результат заключается в увеличении крутизны фронтов выходных импульсов и повышении температурной стабильности пороговых напряжений. Устройство содержит первый и второй аналоговые коммутаторы и операционный усилитель. Второй аналоговый коммутатор имеет нормально замкнутый ключ, размыкающий контакт, последовательно соединенный с резистором цепи положительной обратной связи операционного усилителя, вход и выход дифференцирующей RC-цепочки подключены соответственно к выходу и входу операционного усилителя и управляющему входу второго аналогового коммутатора. 2 ил.
Наверх