Способ рафинации растительного масла

Изобретение относится к масложировой промышленности. Способ рафинации растительного масла предусматривает смешивание нерафинированного растительного масла с водным раствором гидратирующего агента - раствором поваренной соли концентрацией 11- 16% в количестве 0,5-0,8% от массы масла, после смешивания производят перемешивание полученной смеси в течение 16-20 минут, затем обрабатывают раствором кислотного реагента концентрацией 21-25% в количестве 0,35-0,80% от веса масла и перемешивают в течение 16-25 минут, добавляют в полученную смесь водный раствор щелочного реагента - раствор жидкого натриевого стекла, или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного, далее непрерывно перемешивают для образования геля кремниевой кислоты, затем определяют кислотное число масла и для нейтрализации свободных жирных кислот добавляют раствор жидкого натриевого стекла, или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного. После нейтрализации и образования хлопьев соапстока в полученную смесь добавляют 5-6%-ный раствор поликатионита FL 45 С в количестве 60-70 г на 1 тонну растительного масла и перемешивают в течение 16-25 минут, затем осуществляют отстаивание масла, его фильтрацию и вымораживание, при этом обработку реагентами осуществляют при температуре 25-30°С.Изобретение позволяет создать высокотехнологичный способ рафинации, который позволил бы повысить производительность получения рафинированного масла с улучшенными органолептическими свойствами, снизить себестоимость производства продукта, а также сократить время рафинации растительного масла и повысить его органолептические показатели за счет однородности смеси. 4 з.п. ф-лы, 2 пр.

 

Изобретение относится к масложировой промышленности и может быть использовано для очистки растительных масел и жиров.

Природные масла и жиры представляют собой сложную многокомпонентную систему, состоящую в основном из триацилглицеринов (триглицеридов) различного состава, строения и степени непредельности, из разнообразных сопутствующих веществ, молекулярно- и коллоиднорастворимых в глицеридах. Для повышения пищевого достоинства и технологических свойств масел и жиров их подвергают различной степени очистки - рафинации. Рафинация - это ряд важнейших технологических процессов обработки жиров (масел) с целью удаления из них примесей и тех сопутствующих веществ, которые снижают качество масла. Существуют различные способы очистки и рафинирования масла: физические (отстаивание, центрифугирование, фильтрование), химические (гидратация, щелочная рафинация и др.) и физико-химические (отбеливание, дезодорация и др.).

Известен способ рафинации растительных масел или жиров (см. RU 2145340 С1, С11В 3/00), предусматривающий выведение фосфолипидов, воскоподобных и красящих веществ. Выведение воскоподобных и красящих веществ проводят путем обработки масел или жиров при температуре 20-30°С 5,0-10,0%-ным водным раствором лимонной кислоты в количестве 0,5-1,0% к массе масла или жира, затем водным раствором силиката натрия плотностью 1,0-1,3 г/см3 в количестве 0,5-1,5% к массе масла или жира, обработки образовавшейся смеси масла или жира и осадка в постоянном магнитном поле с магнитной индукцией 0,7-1,2 Тл и отделении осадка. Отделение осадка осуществляют в слое толщиной 20-40 мм при скорости потока 4,0-6,0 мм/с либо в поле центробежных сил.

Недостатком данного способа является проведение процесса при жестких технологических условиях, а именно при повышенном температурном режиме и использовании энергоемкого магнитного поля. А это приводит к удорожанию готового продукта. Вместе с тем при получении рафинированного масла описанным способом образуются большие отходы и потери растительного масла. Кроме того, отработанный адсорбент отправляется в отвал.

Известен также способ щелочной рафинации растительного масла (см. RU 2258734 С1, 20.08.2005), предусматривающий гидратацию масла, обработку ортофосфорной кислотой, нейтрализацию масла щелочью, отделение соапстока, фильтрацию. В данном способе при гидратации растительное масло нагревают до температуры 60°С, а ортофосфорную кислоту используют в количестве 0,8 кг на 1 т растительного масла. Перед отделением соапстока в нейтрализованное масло, содержащее соапсток, добавляют 4%-ный раствор поликатионита FL 45 С в количестве 50 г на 1 т растительного масла при атмосферном давлении и перемешивании в течение 15-20 мин.

Недостатком данного способа является то, что обработку масла ортофосфорной кислотой и едким натром осуществляют при температуре 60°С, что требует значительных затрат энергии. При заявленных режимах большая часть восков растворяется в горячем масле и может быть выведена из него только на стадии вымораживания и фильтрации. При этом повышаются энергетические затраты процесса. Данный способ не позволяет полностью очистить масло от восков и качество рафинации масла остается низким, что влечет за собой ухудшение органолептических свойств конечного продукта.

Наиболее близким аналогом является способ рафинации растительного масла (см. RU 2224786 С2, С11В 3/00, С11В 3/02, С11В 3/16), включающий смешивание нерафинированного растительного масла с водным раствором гидратирующего агента, экспозицию смеси нерафинированного масла и водного раствора гидратирующего агента, обработку водным раствором щелочного агента и отделение рафинированного растительного масла от осадка в поле центробежных или гравитационных сил, экспозицию смеси нерафинированного растительного масла и водного раствора гидратирующего агента проводят в течение 0,5-2,0 часов, после экспозиции смесь последовательно обрабатывают водным раствором кислотного реагента и водным раствором силиката натрия плотностью 1,05-1,35 г/см3 и проводят экспозицию в течение 0,5-2,0 часов, а после обработки водным раствором щелочного агента осуществляют экспозицию в течение 0,5-2,0 часов, при этом смешивание нерафинированного растительного масла с водным раствором гидратирующего агента, экспозицию смеси нерафинированого растительного масла и водного раствора гидратирующего агента, обработку водным раствором кислотного агента и водным раствором силиката натрия, последующую экспозицию, обработку раствором щелочного агента, последующую экспозицию и отделение рафинированного растительного масла от осадка проводят при температуре 15-35°С. В качестве водного раствора гидратирующего агента используют раствор хлорида натрия концентрацией 1-10% в количестве, обеспечивающем соотношение массовая доля фосфолипидов в масле - реагент (1:1,0)-(1:2,5), или раствор лимонной кислоты и хлорида натрия концентрацией 1-10% при соотношении сухих лимонной кислоты и хлорида натрия (0,5:10)-(10:0,5) в количестве, обеспечивающем соотношение массовая доля фосфолипидов в масле - реагент (1:1,0)-(1:2,5). В качестве водного раствора кислотного реагента используют водный раствор фумаровой кислоты концентрацией 3-12% в количестве 0,5-2,0% к массе растительного масла, или водный раствор винной кислоты концентрацией 3-12% в количестве 0,5-2,0% к массе растительного масла, или водный раствор лимонной кислоты концентрацией 5-15% в количестве 0,5-2,0% к массе растительного масла или водный раствор янтарной кислоты концентрацией 5-15% в количестве 0,5-2,5% к массе растительного масла. В качестве водного раствора щелочного агента используют водный раствор гидроксида натрия концентрацией 40-100 г/л в количестве, обеспечивающем нейтрализацию свободных жирных кислот, с избытком 10-15% или водный раствор силиката натрия плотностью 1,05-1,35 г/см3 в количестве, обеспечивающем нейтрализацию свободных жирных кислот, с избытком 10-15%.

Недостатками наиболее близкого аналога являются низкая производительность и неудовлетворительное качество рафинированного масла. Низкая производительность предопределяет увеличение себестоимости конечного продукта. Объясняется это, в том числе, и большими затратами времени на экспозицию операций данного способа. Так, например, экспозицию смеси нерафинированного растительного масла и водного раствора гидратирующего агента проводят до 2-х часов. Кроме того, даже при длительной экспозиции операций рафинации растительного масла не может быть достигнута однородность смеси, что негативно влияет на качество проводимой конкретной операции способа. В итоге качество конечного продукта, то есть рафинированного масла, получается недостаточным.

Задачей изобретения является создание высокотехнологичного способа рафинации, который позволил бы повысить производительность получения рафинированного масла с улучшенными органолептическими свойствами, а также снизить себестоимость производства продукта. Улучшение органолептических свойств полученного рафинированного масла явилось следствием того, что, в данном случае, произошло улучшение физико-химических показателей рафинированного масла за счет повышения однородности смеси в конкретных операциях нового способа рафинации. Вместе с тем использование поликатионита FL 45 С позволило более полно отделить соапсток от масла, сократить отход масла в соапсток, а также исключить потери масла с промывными водами. Это объясняется также тем, что при использовании поликатионита FL 45 С мы исключаем водную промывку масла. Использование поликатионита FL 45 С после обработки масла кислотой и щелочью позволяет также не только более полно очистить масло от сопутствующих веществ, присущих самому маслу, но и уменьшить содержание солей, которые образуются при взаимодействии кислоты и раствора жидкого стекла или метасиликата натрия. Техническим результатом, достигнутым в процессе решения поставленной перед разработчиком задачи, являются снижение затрат времени на весь процесс рафинации растительного масла и повышение однородности смеси масла и реагентов в процессе нового способа рафинации.

Сущность изобретения состоит в том, что способ рафинации растительного масла, согласно изобретению, включает смешивание нерафинированного растительного масла с водным раствором гидратирующего агента - раствором поваренной соли концентрацией 11- 16% в количестве 0,5-0,8% от массы масла, а после смешивания производят перемешивание полученной смеси в течение 16-20 минут, затем обрабатывают раствором кислотного реагента концентрацией 21-25% в количестве 0,35-0,80% от веса масла и перемешивают в течение 16-25 минут, добавляют в полученную смесь водный раствор щелочного реагента - раствор жидкого натриевого стекла или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного, далее непрерывно перемешивают для образования геля кремниевой кислоты, затем определяют кислотное число масла и для нейтрализации свободных жирных кислот добавляют раствор жидкого натриевого стекла или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного, после нейтрализации и образования хлопьев соапстока в полученную смесь добавляют 5-6%-ный раствор поликатионита FL 45 С в количестве 60-70 г на 1 тонну растительного масла и перемешивают в течение 16-25 минут, затем осуществляют отстаивание масла, его фильтрацию и вымораживание, при этом обработку реагентами осуществляют при температуре 25-30°С.

Кроме того, техническая сущность изобретения состоит в том, что в качестве водного раствора кислотного реагента используют водный раствор 15% лимонной кислоты в количестве 0,5-0,6% к массе растительного масла.

Вместе с тем техническая сущность изобретения состоит в том, что в качестве водного раствора кислотного реагента используют водный раствор 10% фумаровой кислоты в количестве 0,8% - 0,9% к массе растительного масла.

Кроме того, техническая сущность изобретения состоит в том, что в качестве водного раствора кислотного реагента используют водный раствор винной кислоты в количестве 0,8-0,9% к массе растительного масла.

Также техническая сущность изобретения состоит в том, что в качестве водного раствора кислотного реагента используют водный раствор 10% янтарной кислоты в количестве 0,8-0,9% к массе растительного масла.

Новый способ рафинации растительного масла осуществляют следующим образом. Нерафинированное масло подают в гидрататор, в котором его, в зимнее время, подогревают паром, проходящим через змеевики до температуры 25-30°С. В летнее время производят прокачивание через пластинчатый теплообменник для охлаждения до температуры 25-30°С. Затем масло насосом передают в нейтрализатор.

Также в нейтрализатор при перемешивании подают водный раствор гидратирующего агента - раствор поваренной соли 11-16% концентрацией в количестве 0,5-0,8% от массы масла и перемешивают в течение 16-20 минут. Далее подают раствор кислотного реагента концентрацией 21- 25% в количестве 0,35-0,80% от веса масла, и перемешивают в течение 16-25 минут. Потом отбирают пробу масла для определения кислотного числа масла, подают водный раствор щелочного реагента - раствор жидкого натриевого стекла или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного. Далее непрерывно перемешивают для образования геля кремниевой кислоты. Обработку реагентами осуществляют при температуре 25-30°С. Затем определяют кислотное число масла. Далее, для нейтрализации свободных жирных кислот, добавляют необходимое количество водного раствора щелочного реагента - раствора жидкого натриевого стекла или раствора реагента для рафинации растительных масел SilicaGel RAF 200. После образования хлопьев соапстока в масло, при включенной мешалке, добавляют 5-6%-ный раствор поликатионита FL 45 С в количестве 60-70 г на 1 тонну растительного масла. После перемешивания через 16-25 минут мешалку отключают и отстаивают масло. Соапсток после отстоя сливают в приемники, из которых его подают на последующую обработку. Нейтрализованное масло насосом подают на отбелку и далее на рамный фильтр-пресс для фильтрации, а затем осуществляют вымораживание. Очищенное масло направляют в емкость для хранения.

Необходимо подчеркнуть, что в данном способе рафинации растительного масла предусмотрена последовательная обработка масла раствором кислотного реагента, затем водным раствором щелочного реагента - раствором жидкого натриевого стекла или раствора реагента для рафинации растительных масел SilicaGel RAF 200. Обработка масла вначале раствором кислотного реагента необходима для воздействия на связи фосфатидов и восков, разрушая их и освобождая воски, которые сорбируются на геле кремниевой кислоты. Гель образовывается в результате взаимодействия раствора кислотного реагента и водного раствора щелочного реагента - раствора жидкого натриевого стекла или раствора реагента для рафинации растительных масел SilicaGel RAF 200. А поскольку процесс идет при низких температурах (25-30°С), то воски не растворяются в масле, а осаждаются на геле кремниевой кислоты. Поэтому на стадии вымораживания снимаются только остатки восков.

Изобретение иллюстрируется следующими примерами, которые, однако, не охватывают, а тем более не ограничивают весь объем притязаний данного изобретения.

Пример 1

Нерафинированное масло подают в гидрататор, где нагревают или охлаждают прокачкой через пластинчатый теплообменник до температуры 25°С. Далее передают в нейтрализатор. В нейтрализатор при перемешивании подают раствор повареной соли (NaCl) 15% концентрации в количестве 0,8% от веса масла, перемешивают в течение 16 минут, добавляют раствор лимонной кислоты концентрацией 15% в количестве 0,6% от веса масла, проводят перемешивание в течение 16-20 минут, отбирают пробу масла для определения кислотного числа, подают раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного. Далее непрерывно перемешивают для образования геля кремниевой кислоты. Обработку реагентами осуществляют при температуре 25°С.

После определения кислотного числа масла добавляют необходимое количество раствора реагента для рафинации растительных масел SilicaGel RAF 200 (для нейтрализации свободных жирных кислот). После нейтрализации и образования хлопьев соапстока в смесь добавляют 6%-ный раствор поликатионита FL 45 С в количестве 70 г на 1 тонну растительного масла при включенной мешалке. После перемешивания в течение 20 минут мешалку отключают и отстаивают масло. Масло подают на фильтр-пресс, а затем для удаления восков подвергают вымораживанию. Полученное очищенное масло подают в емкость на хранение.

Пример 2

Нерафинированное масло подают в гидрататор, где нагревают или охлаждают прокачкой через пластинчатый теплообменник до температуры 27°С, далее передают в нейтрализатор. В нейтрализатор при перемешивании подают раствор поваренной соли (NaCl) концентрацией 11% в количестве 0,5% от веса масла, перемешивают в течение 16 минут, добавляют раствор фумаровой кислоты концентрацией 10% в количестве 0,8% от веса масла, проводят перемешивание в течение 17-18 минут, отбирают пробу масла для определения кислотного числа, подают раствор метасиликата натрия из расчета в кг реагент / масло 60:13000, далее непрерывно перемешивают для образования геля кремниевой кислоты. Обработку реагентами осуществляют при температуре 26°С.

После определения кислотного числа масла добавляют необходимое количество раствора метасиликата натрия (для нейтрализации свободных жирных кислот). После нейтрализации и образования хлопьев соапстока в смесь добавляют 5%-ный раствор поликатионита FL 45 С в количестве 60 г на 1 тонну растительного масла при включенной мешалке. После перемешивания в течение 20 минут мешалку отключают и отстаивают масло. Масло подают на фильтр-пресс, а затем для удаления восков подвергают вымораживанию. Полученное очищенное масло подают в емкость на хранение.

Продолжительность обработки растительного масла поликатионитом FL 45 С выбрана по следующим соображениям. При обработке масла менее 16 минут не происходит полного отделения соапстока от масла, а при увеличении времени обработки более 25 минут (максимальное время перемешивания) также будет происходить отделение соапстока от масла, но это экономически невыгодно, так как снижается производительность технологической линии, требуется увеличение емкости аппаратов.

Использование данного изобретения в народном хозяйстве страны позволит увеличить выпуск рафинированного масла и улучшить его органолептические свойства.

1. Способ рафинации растительного масла, характеризующийся тем, что он включает смешивание нерафинированного растительного масла с водным раствором гидратирующего агента - раствором поваренной соли концентрацией 11-16% в количестве 0,5-0,8% от массы масла, а после смешивания производят перемешивание полученной смеси в течение 16-20 минут, затем обрабатывают раствором кислотного реагента концентрацией 21-25% в количестве 0,35-0,80% от веса масла и перемешивают в течение 16-25 минут, добавляют в полученную смесь водный раствор щелочного реагента - раствор жидкого натриевого стекла или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного, далее непрерывно перемешивают для образования геля кремниевой кислоты, затем определяют кислотное число масла и для нейтрализации свободных жирных кислот добавляют раствор жидкого натриевого стекла или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного, после нейтрализации и образования хлопьев соапстока в полученную смесь добавляют 5-6%-ный раствор поликатионита FL 45 С в количестве 60-70 г на 1 тонну растительного масла и перемешивают в течение 16-25 минут, затем осуществляют отстаивание масла, его фильтрацию и вымораживание, при этом обработку реагентами осуществляют при температуре 25-30°С.

2. Способ по п.1, отличающийся тем, что в качестве водного раствора кислотного реагента используют водный раствор 15% лимонной кислоты в количестве 0,5-0,6% к массе растительного масла.

3. Способ по п.1, отличающийся тем, что в качестве водного раствора кислотного реагента используют водный раствор 10% фумаровой кислоты в количестве 0,8-0,9% к массе растительного масла.

4. Способ по п.1, отличающийся тем, что в качестве водного раствора кислотного реагента используют водный раствор винной кислоты в количестве 0,8-0,9% к массе растительного масла.

5. Способ по п.1, отличающийся тем, что в качестве водного раствора кислотного реагента используют водный раствор 10% янтарной кислоты в количестве 0,8-0,9% к массе растительного масла.



 

Похожие патенты:

Изобретение относится к масложировой промышленности. Способ обработки сильнокислого гидрофуза включает нагревание гидрофуза, разделение на фракции при помощи активатора, перемешивание смеси и отстаивание.

Изобретение относится к масложировой и пищевой промышленности, именно к методам очистки отработанных фритюрных масел. Способ очистки фритюрного жира с использованием природных адсорбентов, в котором термообработанный фритюрный жир, имеющий температуру 180оC, отстаивают от механических примесей, одновременно охлаждая.

Изобретение относится к масложировой промышленности. Способ включает разделение гидрофуза на фракции введением в него активатора, перемешивание смеси и отстаивание.
Изобретение относится к масложировой промышленности и может быть использовано для очистки растительных масел. Способ предусматривает гидратацию раствором электролита, отделение фосфатидной эмульсии от масла, нейтрализацию электролизатом воды с рН>7 с добавлением соли с получением активированного раствора соли с концентрацией 0,1-1% и отделение нейтрализованного масла.

Изобретение относится к масложировой промышленности. Способ включает его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, для полученной партии гидрофуза определяют его объем, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков.

Изобретение относится к масложировой промышленности. Способ очистки растительных масел от восков предусматривает вымораживание масла с добавлением вспомогательных фильтровальных порошков.

Способ переработки гидрофуза осуществляется следующим образом.Для полученной партии гидрофуза с известным объемом (Vгф) предварительно определяется водородный показатель исходного гидрофуза (рНгф) и процентное содержание в нем воды (Kвгф)6 изоэлектрическая точка белка гидрофуза (рНиз).

Изобретение относится к масложировой промышленности. Способ включает получение раствора жира путем растворения материала на основе жира в растворителе.
Изобретение относится к масложировой промышленности. Способ предусматривает охлаждение масла, введение в него активированного инициатора кристаллизации, выдержку при перемешивании фаз и отделение примесей с помощью фильтра.
Изобретение относится к масложировой промышленности и может быть использовано для очистки растительного масла от воскоподобных веществ. В охлажденное гидратированное масло вводят при перемешивании комплексный реагент, полученную смесь подвергают экспозиции и разделению.

Группа изобретений относится к биотехнологии. Предложены способ получения лизогликолипида, способ биоконверсии гликолипидов и способ получения пищевого продукта. Способы заключаются в применении липолитического фермента, обладающего гликолипазной активностью, выделенного из Corynebacterium и содержащего по меньшей мере один мотив GDSX, где X представляет собой гидрофобный аминокислотный остаток; или блок GANDY, содержащий аминокислотный мотив GGNDA или GGNDL, или блок HPT. При этом указанный фермент содержит аминокислотную последовательность SEQ ID NO:8 или аминокислотную последовательность, которая по меньшей мере на 70% идентична ей, или кодируется нуклеотидной последовательностью SEQ ID NO:9 или нуклеотидной последовательностью, которая по меньшей мере на 70% идентична ей, и которая кодирует указанный липолитический фермент. При применении в указанных способах липолитические ферменты из Corynebacterium обладают значительной гидролизующей галактолипиды активностью и/или значительной ацилтрансферазной активностью в отношении галактолипида. 6 н. и 15 з.п. ф-лы, 17 ил., 4 табл., 12 пр.

Изобретение относится к области пищевой промышленности, а именно направлено на решение задач упрощения и повышения эффективности процессов микрокапсулирования при производстве дезодорированных и капсулированных жирорастворимых пищевых продуктов, в частности улучшение органолептических показателей рыбных жиров, используемых для обогащения продуктов питания. Улучшение органолептических показателей достигается способом получения микрокапсул рыбного жира, характеризующимся получением эмульсии масло-в-воде путем смешивания в воде рыбного жира и капсулирующего компонента, взятых в соотношении 30-35 и 25-30 мас.%, остальное - вода, гомогенизацией и диспергированием полученной эмульсии в ультразвуковом поле и последующей распылительной сушкой микроэмульсии, при этом ультразвуковое диспергирование ведут с частотой озвучивания 28 кГц и интенсивностью 40 Вт/см2, а распылительную сушку ведут с параллельным потоком горячего воздуха с температурой на входе и выходе соответственно 160-180°C. 3 з.п. ф-лы, 6 пр., 1 табл.

Изобретение относится к масложировой промышленности. Аппарат для очистки растительных масел и жиров, состоящий из вертикального цилиндрического корпуса с коническим днищем, заключенных в паровую рубашку, вертикального вала с прямоугольными вертикальными лопастями, привода, патрубков для подвода и отвода масла, греющего пара и конденсата, а также газовой фазы, прямоугольные вертикальные лопасти выполнены перфорированными, при этом с их тыльной стороны соответственно для каждого отверстия установлены наклонные п-образные направляющие. Изобретение позволяет повысить эффективность перемешивания растительного масла с капельками реагента или частичками отбельного порошка, что снижает продолжительность процессов хемосорбции и адсорбции, и уменьшить энергетические затраты на перемешивание за счет создания преобладающей смешанной радиально-осевой и тангенциальной циркуляции жидкой фазы в аппарате при снижении лобового сопротивления вертикальных прямоугольных лопастей, обусловленного их перфорацией и наличием наклонных п-образных направляющих. 1 ил.

Изобретение относится к масложировой промышленности. Способ комплексной очистки растительных масел предусматривает холодную гидратацию масла с последующей вакуумной мембранной фильтрацией с использованием половолоконных мембран из полимерного материала, имеющего диаметр пор в диапазоне от 0,01 до 5 мкм, волокно мембраны имеет внутренний диаметр в диапазоне от 0,1 до 10 мм, внутреннее пространство полых волокон мембраны соединено с вакуумной системой для создания градиента давлений с разных сторон мембранной полупроницаемой перегородкой и формирования внутри волокон разряжения величиной от 0,1 до 0,9 кгс/см2 с возможностью обеспечения направленного движения очищаемого масла по всей площади мембраны, при этом полимерный материал выбран из группы, включающей поливинилиденфторид, поливинилхлорид, полипропилен, полиэтилен, полиэфирсульфон, полиакриламид, ацетатцеллюлозу или их комбинации, или их сополимеры. Изобретение позволяет создать экономически эффективный и высокотехнологичный способ комплексной очистки растительных масел, который позволяет получить продукт повышенного качества с более низкими, по сравнению с существующими технологиями очистки масел, затратами на очистку растительных масел от фосфатидов, воскоподобных веществ и тугоплавких глицеридов, и других примесей, а также с минимальным количеством образующихся отходов и малоценных продуктов. 8 з.п. ф-лы, 1 ил., 1 табл., 2 пр.

Изобретение относится к способу очистки и обработки натуральных масляных глицеридов, который включает обеспечение (а) исходного сырья, включающего натуральные масляные глицериды, и (b) низкомолекулярных олефинов; перекрестный метатезис натуральных масляных глицеридов с низкомолекулярными олефинами в реакторе реакции метатезиса в присутствии катализатора метатезиса для формирования полученного реакцией метатезиса продукта, включающего олефины и сложные эфиры; отделение олефинов в полученном реакцией метатезиса продукте от сложных эфиров в полученном реакцией метатезиса продукте с получением отделенного потока олефинов; и рециркуляцию отделенного потока олефинов в реактор реакции метатезиса. Натуральное масляное исходное сырье может быть преобразовано в полезные химикаты, например воски, пластические массы, косметические препараты, биотоплива и т.д. любым числом различных реакций обмена. 19 з.п. ф-лы, 2 ил., 13 пр., 1 табл.

Изобретение относится к пищевой промышленности. Способ уменьшения эмульгируемости растительного масла в водных фазах, вклчающий приведение в контакт неочищенного растительного масла или слизи растительного масла с составом, включающим в себя первый ферментный компонент, включающий в себя по меньшей мер, один расщепляющий фосфолипид фермент, а также второй ферментный компонент, включающий в себя по меньшей мере один не расщепляющий фосфолипид фермент, причем вторым ферментным компонентом является альфа-амилаза. Далее осуществляют отделение слизей от растительного масла, причем до приведения в контакт, согласно первому этапу, неочищенное растительное масло контактирует с водой и/или кислотой, но отделения водной фазы до первого этапа не происходит, наоборот, предварительно кондиционированное масло используется непосредственно на первом этапе. Изобретение позволяет за счет комбинации двух видов ферментов снизить содержание фосфолипидов растительного масла, увеличить выход масла, повысить скорость реакции при ферментативном удалении слизи, уменьшить объем слизи и улучшить отделяемость образовавшейся слизистой фазы. 9 з.п. ф-лы, 8 ил., 9 табл., 2 пр.

Изобретение относится к масложировой промышленности и может быть использовано для адсорбционной очистки растительных масел от свободных жирных кислот, перекисных соединений, а также катионов тяжелых металлов. Способ адсорбционной очистки растительных масел заключается в обработке его адсорбентом, имеющим каркасную структуру. В качестве адсорбента используют титансодержащее металлоорганическое каркасное соединение типа MIL-125 формулы Ti8O8(ОН)4[O2C-C6H4CO2]6, содержащее в качестве линкера остатки 1.4-дикарбоновой кислоты бензола, а в узлах решетки кластеры в виде оксометаллатных многогранников, содержащих ионы титана, при его концентрации 0.8-1.4 г/л и времени контакта при комнатной температуре 1.5-2.5 ч. Изобретение позволяет повысить экономичность и степень удаления из растительных масел свободных жирных кислот, перекисных соединений, а также катионов тяжелых металлов. 2 табл., 6 пр.
Изобретение относится к масложировой промышленности. Способ производства рафинированного масла со сниженным содержанием глицидилового эфира, предусматривает этап отбеливания, этап дезодорирования, этап окончательного отбеливания и этап окончательного дезодорирования. Причем этап окончательного дезодорирования проводят при температуре по меньшей мере на 4°С ниже, чем этап дезодорирования. Способ производства рафинированного масла со сниженным содержанием глицидилового эфира предусматривает этап отбеливания, этап дезодорирования, этап окончательного отбеливания. Причем этап окончательного отбеливания проводят при температуре ниже 80°С. Предложено рафинированное масло, полученное вышеуказанными способами, которое может быть введено в напиток и/или продукт питания, предпочтительно продукт детского питания. Изобретение позволяет получить эффективный и экономичный способ производства рафинированного масла с приемлемыми вкусовыми качествами и низким содержанием глицидилового эфира. 5 н. и 13 з.п. ф-лы, 7 табл., 7 пр.
Изобретение относится к масложировой промышленности. Способ обработки растительных масел и/или животных жиров включает: нагревание масла и/или жира до температуры 20-90 оС, предварительную обработку масла и/или жира кислотой в течение 1 минуты, регулирование рН щелочным соединением в интервале 4-8 при температуре по меньшей мере 20 оС, и получение водной смеси, добавление ферментов в водной смеси, уменьшение температуры водной смеси до температуры кристаллизации тугоплавких глицеридов, разделение водной смеси на водную фазу и содержащую обработанные растительные масла и/или обработанные животные жиры фазу. Изобретение позволяет осуществить одновременные обессмоливание (с использованием ферментов) и депарафинизацию (кристаллизацию тугоплавких глицеридов), что позволяет осуществлять процессы при пониженных температурах. 12 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к масложировой промышленности. Способ получения рафинированного ароматного подсолнечного масла предусматривает выведение свободных жирных кислот, фосфолипидов, восков и воскоподобных веществ, красящих соединений, продуктов окисления и влаги на стадии гелевой сорбции с последующей стадией контрольного вымораживания. При этом гелевую сорбцию проводят путем смешения нерафинированного масла с гелевым раствором, перемешивания, отстаивания, формирования и осаждения гелевого осадка и отделения масла от гелевого осадка. Гелевую рафинацию проводят при температуре 14-15°C модифицированным гелевым раствором плотностью 1,33-1,38 г/см3, взятым с избытком 35-50% по отношению к необходимому для хемосорбции свободных жирных кислот и проводят хемосорбцию и осаждение гелевого осадка в течение 10-12 часов. Модифицированный гелевый раствор готовят путем растворения в воде, нагретой до 60-65°C, порошка метасиликата натрия, предпочтительно 9-ти водного, до достижения плотности раствора 1,35-1,38 г/см3 с последующим вводом двуокиси кремния до получения отношения двуокиси кремния к окиси натрия 1,25-1,35; температура гелевого раствора при вводе в масло не должна превышать 22°C. Контрольное вымораживание проводят при температуре 6°C в течение 4-х часов с вводом сорбента (предпочтительно ацетатного) в количестве 0,2-0,25% от массы масла с последующей фильтрацией при температуре 12°C. Изобретение позволит повысить качество рафинированного масла за счет сохранения в нем натурального вкуса и аромата, физиологически и биологически активных веществ, увеличить стойкость масла при хранении и кулинарной обработке, сократить число технологических операций, снизить отходы, потери, расход вспомогательных материалов, повысить выход целевого продукта и снизить затраты при его производстве. 2 з.п. ф-лы, 2 табл., 2 пр.
Наверх