Способ хроматографического анализа парабенов (эфиров 4-гидроксибензойной кислоты) в продуктах питания, косметике, фармацевтических препаратах и биологически активных добавках

Изобретение относится к области аналитической химии и может быть использовано в химической, косметической, фармацевтической и других отраслях промышленности при анализе парабенов методом высокоэффективной жидкостной хроматографии (ВЭЖХ). Изобретение позволяет проводить идентификацию и количественный анализ парабенов при использовании спектрофотометрического или (и) диодно-матричного детекторов. Способ включает процедуры подготовки образцов и условия хроматографического разделения и детектирования. Исходный образец пищевого продукта, косметического изделия, фармацевтического препарата или БАДа предварительно подготавливают согласно одной из процедур пробоподготовки. Затем подготовленный образец подвергают разделению на хроматографической колонке. На выходе каждую фракцию детектируют, измеряя величину абсорбции излученного света согласно закону Бугера-Ламберта-Бера. Идентификацию парабенов проводят по временам удерживания. В качестве дополнительного критерия идентификации возможно использование сигнальных отношений высот или площадей пиков, полученных на разных длинах волн или (и) электронных спектров интересуемых соединений. Количественный расчет концентраций парабенов проводится методом внешнего стандарта, учитывая линейный диапазон зависимости выходного сигнала от концентрации или массы парабенов в стандартных растворах. Техническим результатом является отсутствие необходимости в получении производных, сравнительно быстрая пробоподготовка и хроматографический анализ, относительно низкая себестоимость анализа, идентичность условий хроматографического анализа для всех типов исследуемой продукции, что уменьшает время подготовки системы между анализами, возможность применения дополнительных критериев для идентификации парабенов (сигнальные отношения или (и) электронные спектры). 2 ил.

 

Изобретение относится к области аналитической химии и может быть использовано в химической, косметической, фармацевтической и других отраслях промышленности при анализе парабенов методом высокоэффективной жидкостной хроматографии (ВЭЖХ).

Постоянно растущие потребности человечества обуславливают увеличение темпов создания и потребления пищевых продуктов, фармацевтических препаратов, изделий косметической промышленности. Это обуславливает необходимость использования в подобном производстве широкого круга химических добавок, обеспечивающих их длительную сохранность. Одними из таких добавок являются парабены. Основное преимущество парабенов в сравнении с иными консервирующими агентами, такими как бензойная, салициловая, сорбиновая кислоты - независимость степени консервирующего действия от величины pH продукта, в котором они используются. Характерной особенностью пищевых продуктов, фармацевтических препаратов, косметики является их тесный контакт с различными тканями и органами человеческого организма (желудочно-кишечными трактом, кожей, кровью и т.д.), который облегчает проникновение в организм нежелательных химических соединений. Данные исследований показывают, что парабены могут оказывать цитотоксический и канцерогенный эффект на ткани организма человека (Sony M.G., Carabin I.G., Burdock G.A. Safety assessment of esters of 4-hydroxibenzoic acid (parabens). Food and Chem. Toxicol., 2005, vol.43, P.985-1015).

Изобретение позволяет проводить идентификацию и количественный анализ парабенов при использовании спектрофотометрического или (и) диодно-матричного детекторов. Способ включает процедуры подготовки образцов и условия хроматографического разделения и детектирования. Исходный образец пищевого продукта, косметического изделия, фармацевтического препарата или БАДа предварительно подготавливают согласно одной из процедур пробоподготовки (процедуры 1-4) и затем подвергают хроматографическому разделению на жидкостном хроматографе.

Известен способ определения парабенов в сое методом капиллярной газовой хроматографии CN 102323367 (A) - 2012-01-18, включающий в себя взвешивание образца, добавление раствора внутреннего стандарта в образец, подкисление, экстракцию эфиром, обезвоживание и газохроматографический анализ. Недостатками указанного способа является узкий круг объектов (образцы сои), для которого применим данный подход.

Canosa с соавторами предложили способ газохроматографического анализа парабенов с применением масс-селективного детектора (Canosa P., Rodriguez I., Rubi E., and Cela R.. Determination of Parabens and Triclosan in Indoor Dust Using Matrix Solid-Phase Dispersion and Gas Chromatography with Tandem Mass Spectrometry, Anal. Chem., vol.79, 2007, P.1675-1681). Наряду с высокой чувствительностью и селективностью способ требует проведения процедуры получения производных (дериватизации) с N-метил-N-(трет-бутилдиметилсилил)трифторацетамидом, в связи с чем возникает необходимость контроля полноты получения производных. Более того использование дериватизирующих агентов и масс-спектрометрического детектора существенно увеличивают себестоимость анализа, что осложняет его внедрение в производственную практику.

Известен способ определения парабенов методом ВЭЖХ, предложенный Borremans M. с соавторами (Borremans M., Loco J. Van., Roos P., Goeyens L. Validation of HPLC Analysis of 2-Phenoxyethanol, 1-Phenoxypropan-2-ol, Methyl, Ethyl, Propyl, Butyl and Benzyl 4-Hydroxybenzoate (Parabens) in Cosmetic Products, with Emphasis on Decision Limit and Detection Capability. Chromatographia, 2004, vol.49, P.47-53). Способ предлагает определение парабенов в косметической продукции с помощью высокоэффективной жидкостной хроматографии после экстракции водно-этанольным раствором и ультразвуковым воздействием. Недостатками такого подхода являются невозможность определения метилпарабена при наличии в составе образца сорбиновой кислоты, а также довольно узкий круг объектов анализа (косметические изделия).

Предложенный Куликовым с соавторами (Kulikov A.U., Verushkin A.G. Simultaneous Determination of Paracetamol, Caffeine, Guaifenesin and Preservatives in Syrups by Micellar LC. Chromatographia, 2008, vol.67, P.347-355), выбранный в качестве прототипа метод ион-парной (мицеллярной) ВЭЖХ дает возможность определения только метил- и пропилпарабена, в то время как анализ этилпарабена не описывается.

Данное изобретение позволяет в одном анализе проводить качественное и количественное определение четырех интересуемых соединений: метилого, этилового, пропилового и бутилового эфиров 4-гидроксибензойной кислоты (парабенов) при помощи метода высокоэффективной жидкостной хроматографии на обращенно-фазовом сорбенте с использованием спектрофотометрического или (и) диодно-матричного детекторов в образцах пищевых продуктов, косметических изделий, фармацевтических препаратов и биологически активных добавок с предварительной пробоподготовкой.

Предложенный способ отличают: отсутствие необходимости в получении производных, сравнительно быстрая пробоподготовка и хроматографический анализ, относительно низкая себестоимость анализа, идентичность условий хроматографического анализа для всех типов исследуемой продукции, что уменьшает время подготовки системы между анализами, возможность применения дополнительных критериев для идентификации парабенов (сигнальные отношения или (и) электронные спектры).

Технический результат достигается за счет того, что в способе хроматографического анализа парабенов (эфиров 4-гидроксибензойной кислоты) в продуктах питания, косметике, фармацевтических препаратах и биологически активных добавках производится проведение пробоподготовки исследуемого образца, применение метода высокоэффективной жидкостной хроматографии на обращенно-фазовом сорбенте с использованием спектрофотометрического детектора или (и) диодно-матричного детектора, расчете концентрации парабенов, по полученной величине сигналов согласно изобретению для пищевых продуктов пробоподготовка включает в себя взвешивание, экстракцию водно-органической смесью растворителей, количественный перенос навески в мерную посуду, осаждение мешающих соединений, фильтрацию, разбавление полученного фильтрата; количественный расчет концентрации парабенов проводится методом внешнего стандарта, учитывая линейный диапазон зависимости выходного сигнала от концентрации или массы стандартных растворов.

При анализе образцов косметики и фармацевтических препаратов на жировой основе пробоподготовка включает в себя взвешивание образца, экстракцию этилацетатом, очистку на колонке с силикагелем, упаривание растворителя под вакуумом, растворение сухого остатка в подвижной фазе.

При анализе твердых фармацевтических препаратов, субстанций и твердых и сыпучих биологически активных добавок пробоподготовка включает в себя взвешивание образца, экстракцию этилацетатом, фильтрование, обезвоживание фильтрата, упаривание растворителя под вакуумом, растворение сухого остатка в подвижной фазе.

При анализе жидких и суспензионных фармацевтических препаратов и жидких биологически активных добавок пробоподготовка включает в себя разведение образца и фильтрование.

На фигурах приведены результаты применения способа к различным типам исследуемого объекта:

Фиг.1. Хроматограмма фармацевтического препарата «Маалокс».

Фиг.2. Хроматограмма косметического крема Proteskin.

На фиг.1 обозначены 1-метилпарабен, 2-пропилпарабен. На фиг.2 обозначен 1-метилпарабен.

Способ осуществляется следующим образом. Перед проведением хроматографического разделения проводят подготовку образцов согласно нижеприведенным процедурам.

Процедура 1. Для образцов пищевых продуктов применяется следующая процедура подготовки образцов.

Взвешивание продукта. 2 г продукта с точностью до третьего знака, экстракция 50 см3 водно-ацетонитрильной смеси (50:50 об.%), количественный перенос навески в мерную посуду вместимостью 100 см3, осаждение мешающих соединений растворами Карреза, доведение водой до метки, фильтрация, десятикратное разбавление полученного фильтрата. Конечный фильтрат пропускают через мембранный фильтр.

Процедура 2. Для образцов косметики и фармацевтических препаратов на жировой основе.

Взвешивание продукта. 2 г продукта с точностью до третьего знака, гомогенизация, троекратная экстракция 25 см3 этилацетата, очистка на колонке с содержанием 10 г силикагеля, упаривание растворителя под вакуумом, растворение сухого остатка в 2 см3 подвижной фазы, дополнительная очистка от гидрофобных соединений двойной экстракцией гексаном по 1 см3.

Процедура 3. Для твердых фармацевтических препаратов, субстанций и твердых и сыпучих биологически активных добавок.

Размельчение образца в ступке, взвешивание продукта. 2 г продукта с точностью до третьего знака, экстракция 15 см3 этилацетата трижды, обезвоживание экстракта, фильтрование, упаривание органического растворителя под вакуумом, растворение сухого остатка в 4 см3 подвижной фазы, разбавление до предполагаемой концентрации, входящей в калибровочный диапазон.

Процедура 4. Для жидких и суспензионных фармацевтических препаратов и жидких биологически активных добавок.

Разведение 1-5 г образца до предполагаемой концентрации, попадающей в калибровочный диапазон, фильтрование разбавленного образца для удаления взвешенных частиц через мембранный фильтр.

Подготовленный образец подвергают хроматографическому разделению в следующих условиях:

Предколонка: 2,1×10 мм 120, C18, 5 мкм, 120 Å;

Колонка: 2,1×150 мм, C18, 3 мкм, 120 Å;

Подвижная фаза: Ацетонитрил (25 об.%) - вода (75 об.%), режим элюирования градиентный (таблица 1).

Таблица 1
Условия градиентного элюирования
Время, мин Ацетонитрил, об.% Вода, об.%
0 25 75
16 25 75
16 40 60
30 40 60
30 25 75
45 25 75

Скорость подачи элюента: 0,2 см3/мин;

Температура термостата колонок: 30,0°C;

Вводимый объем: 10 мкл - косметика, фармацевтические препараты, 50 мкл - пищевые продукты;

Детектирование: абсорбция при λ1=254 нм, контроль при λ2=230 нм.

Допускается применение иных условий хроматографического анализа, не ухудшающих разрешения сигналов аналитов.

На выходе из колонки каждую фракцию детектируют, измеряя величину абсорбции излученного света согласно закону Бугера-Ламберта-Бера. Идентификацию парабенов проводят по временам удерживания. В качестве дополнительного критерия идентификации возможно использование сигнальных отношений высот или площадей пиков, полученных на разных длинах волн или (и) электронных спектров интересуемых соединений. Величину сигнальных отношений определяют по формуле:

R = A λ 1 A λ 2 ,

где Aλ1 - величина сигнала, измеренного при длине волны излучения λ1;

Aλ2 - величина сигнала, измеренного при длине волны излучения λ2.

Количественный расчет концентраций парабенов (C, мг/кг) проводится методом внешнего стандарта, учитывая линейный диапазон зависимости выходного сигнала от концентрации или массы стандартных растворов.

Расчет 1. При анализе пищевых продуктов (процедура 1) пользуются следующей формулой:

C = A K V 1 V 2 m ,

где A - величина получаемого сигнала (площадь пика или высота);

K - калибровочный коэффициент, найденный по калибровочному графику;

V1 - объем мерной колбы, в которую переносят навеску, см3;

V2 - объем мерной колбы для конечного разбавления, см3;

m - масса навески образца, г.

Расчет 2. При анализе образцов косметики, фармацевтических препаратов на жировой основе, а также твердых фармацевтических препаратов, субстанций и биологически активных добавок (процедура 2-3), используют следующую формулу:

C = A K V 1 V 2 m ,

где A - величина получаемого сигнала (площадь пика или высота);

K - калибровочный коэффициент, найденный по калибровочному графику;

V1 - объем подвижной фазы, в котором растворен осадок после упаривания, см3;

V2 - объем мерной колбы для конечного разбавления, см3;

m - масса навески образца, г.

Расчет 3. Для жидких и суспензионных фармацевтических препаратов (процедура 4) вычисления концентрации парабенов проводят по следующей формуле:

C = A K V 1 m ,

где A - величина получаемого сигнала (площадь пика или высота);

K - калибровочный коэффициент, найденный по калибровочному графику;

V1 - объем мерной колбы для конечного разбавления, см3;

m - масса образца, взятого для разбавления, г.

Способ хроматографического анализа парабенов (эфиров 4-гидроксибензойной кислоты) в продуктах питания, косметике, фармацевтических препаратах и биологически активных добавках, заключающийся в проведении пробоподготовки исследуемого образца, применении метода высокоэффективной жидкостной хроматографии на обращенно-фазовом сорбенте с использованием спектрофотометрического детектора, расчете концентрации парабенов по полученной величине сигналов, отличающийся тем, что пробоподготовка включает взвешивание образца и экстракцию, при этом для пищевых продуктов экстракцию проводят водно-органической смесью растворителей, а пробоподготовка дополнительно включает перенос навески в мерную посуду, осаждение мешающих соединений, фильтрацию, разбавление полученного фильтрата; количественный расчет концентрации парабенов проводится методом внешнего стандарта, учитывая линейный диапазон зависимости выходного сигнала от концентрации или массы стандартных растворов, при анализе парабенов в образцах косметики и фармацевтических препаратах на жировой основе экстракцию осуществляют этилацетатом, а пробоподготовка дополнительно включает очистку на колонке с силикагелем, упаривание растворителя под вакуумом, растворение сухого остатка в подвижной фазе, при анализе парабенов в твердых фармацевтических препаратах, субстанциях и твердых и сыпучих биологически активных добавках экстракцию осуществляют этилацетатом, а пробоподготовка дополнительно включает фильтрование, обезвоживание фильтрата, упаривание растворителя под вакуумом, растворение сухого остатка в подвижной фазе.



 

Похожие патенты:

Изобретение относится к области масс-спектрометрии, а именно к источникам ионов с мягким методом ионизации с использованием электрораспыления анализируемых растворов в неоднородном постоянном электрическом поле при атмосферном давлении, и найдет широкое применение в масс-спектрометрии, спектрометрии подвижности ионов при решении задач органической и биоорганической химии, иммунологии, медицины, диагностике заболеваний, биохимических исследований, фармацевтике, проведении анализов в протеомике, метаболомике и криминалистике.

Изобретение относится к области аналитической химии и непосредственно касается хроматографического метода определения содержания органических примесей в макроциклических полиэфирах, а именно в бензокраун-эфирах, которые применяются в аналитической химии, биохимии, медицине, фармации.

Изобретение относится к аналитическому приборостроению и может найти применение в лабораторных газовых хроматографах. Термостат состоит из снабженного дверцей, входным и выходным каналами с управляемыми заслонками теплоизолированного корпуса, внутренний объем которого разделен установленным с зазором по периметру кожухом на две камеры - рабочую и смесительную с крыльчаткой осевого вентилятора и выполненного в виде двух подключенных через коммутатор к терморегулятору кольцеобразных спиралей нагревателя, закрепленных через изоляторы на плоскости кожуха, перпендикулярной оси крыльчатки вентилятора, напротив напорной части лопастей крыльчатки и заключенных в ограниченный с трех сторон объем, сформированный кожухом и двумя закрепленными на нем кольцеобразными отражателями воздуха, обращенными в сторону крыльчатки.

Изобретение относится к области электронной техники и приборостроения, в частности к устройствам для детектирования и анализа органических соединений в составе воздуха атмосферного давления с использованием явления селективной поверхностной ионизации органических молекул на нагретой поверхности термоэмиттера ионов.

Изобретение относится к газовой хроматографии, в частности к использованию бинарных сорбентов, обеспечивающих разделение близкокипящих структурных и оптических изомеров органических веществ, например, пара- и мета-ксилолов, малополярных и полярных оптически активных форм камфена, пинена, лимонена, бутандиола-2,3 и ментола, и может быть использовано при анализе различных смесей в химической, фармацевтической, медицинской, пищевой и других отраслях промышленности.

Изобретение относится к аналитической химии и может быть использовано для определения химических соединений в различных областях химии, фармации, медицины, контроле окружающей среды и технологических процессах в нефтегазовой, химической и пищевой промышленности и так далее.

Изобретение относится к аналитическому приборостроению и может найти применение в лабораторных и промышленных газовых хроматографах. Пламенно-ионизационный детектор содержит выполненный в виде стакана с крышкой корпус из нержавеющей стали с расположенными в нем каналами для подачи воздуха, водорода, газообразной пробы и размещенный в крышке канал для выхода продуктов горения и элемент поджига пламени.
Изобретение относится к медицинским токсикологическим исследованиям, в частности к санитарной токсикологии, и может быть использовано для количественного определения N-нитрозаминов в биологических жидкостях, в частности в моче.

Изобретение относится к аналитической химии, а именно к способам исследования свойств каменноугольных продуктов по результатам хроматографического анализа. Способ определения качества каменноугольных продуктов включает нанесение жидкой пробы с растворенным в ней исследуемым каменноугольным веществом на линию старта на хроматографическую пластину, содержащую слой сорбента.

Изобретение относится к области аналитической химии и предназначено для использования при определении фракционного состава каменноугольных смол. Способ определения фракционного состава каменноугольной смолы включает нанесение на хроматографическую пластину со слоем сорбента капли пробы, представляющей собой раствор смолы в растворителе.

Изобретение относится к газохроматографическим методам анализа и может быть использовано в нефтяной и других отраслях промышленности для скрытой маркировки нефти и нефтепродуктов при проведении различного типа экспертиз в торговых и промышленных предприятиях. Сущность изобретения заключается в том, что летучие соединения (маркеры) экстрагируют из нефти путем барботажного контакта газового потока с раствором летучих маркеров в малолетучем растворителе (нефть или нефтепродукты) с последующим парофазным анализом методом газовой хроматографии. Причем в качестве летучих маркеров используют алифатические одноатомные спирты и их смеси, а газовый поток, насыщенные летучими соединениями (спиртовые маркеры и углеводороды нефти), барботируют через неполярный растворитель для удаления летучих углеводородов нефти. Затем поток газа, насыщенный летучими спиртовыми маркерами, барботируют через небольшой объем дистиллированной воды для получения концентрированного водного раствора спиртового маркера, который дозируют в газовый хроматограф для анализа. Устройство для осуществления способа содержит последовательно соединенные блок подготовки газа и три последовательно соединенные барботера, первый из которых заполнен пробой нефти с летучим спиртовым маркером объемом V1, второй - неполярным растворителем объемом V2=Vi, а третий барботер заполнен дистиллированной водой объемом V3=0,01V1. Техническим результатом изобретения является повышение чувствительности газохроматографического определения летучих спиртовых маркеров транспортируемых нефти и нефтепродуктов. 2 н.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области испытаний и может использоваться для определения сорбционной емкости до заданной степени насыщенных водой сорбентов нефтью и нефтепродуктами. В различной степени водонасыщенный сорбент вводится в нефть или нефтепродукт непосредственно с водной среды. Расчет сорбционной емкости М рассчитывается по формуле М=p(C1-С2)/m, где р - плотность нефтепродукта, (C1) - объем нефти или нефтепродукта до введения сорбента, (C2) - объем нефти или нефтепродукта после удаления сорбента, m - масса сухого сорбента. Техническим результатом является разработка простого и эффективного способа испытаний для определения сорбционной нефтеемкости сорбентов от степени их водонасыщения. 1 ил.

Использование: области измерительной техники для исследования параметров многокомпонентных газовых сред. Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов включает формирование газовой среды с заданной совокупностью характеристик, таких как состав, концентрация, температура, давление и влажность, определение указанных характеристик. При этом анализируемые электромеханические приборы помещают в герметизированный контейнер, который оснащают датчиками давления, температуры и влажности формируемой газовой среды и помещают в климатическую камеру. Затем контейнер с электромеханическими приборами подключают к системе хроматографов и формируют в нем газовую среду с заданной совокупностью характеристик, подавая в предварительно осушенный с использованием силикагеля и отвакуумированный контейнер воздействующую на электромеханические приборы газовую смесь заданного состава, концентрации, давления и влажности из предварительно подготовленного источника газовой смеси, пропуская газовую смесь через генератор влажного газа. Далее контейнер с анализируемыми электромеханическими приборами и сформированной газовой средой нагревают в климатической камере до заданной температуры в течение заданного периода времени. Затем определение концентрации заданных газовых компонентов, температуры, давления и влажности воздействующей на электромеханические приборы газовой среды ведут динамически в режиме он-лайн с заданным промежутком времени с использованием одновременно всех подключенных к контейнеру хроматографов, а также датчиков температуры и влажности, давления, находящихся в контейнере с электромеханическими приборами, определение работоспособности электромеханических приборов после воздействия сформированной газовой среды осуществляют с использованием комплекта оборудования для проверки работоспособности прибора. Устройство для реализации способа включает хроматографы для определения концентраций газовой смеси, датчики для измерения давления, температуры и влажности, вакуумный насос. При этом гермегазированный контейнер с приборами и с установленными в нем датчиками температуры, давления и влажности размещен в климатической камере, герметизированный контейнер подключен посредством системы пневмопереходов к системе хроматографов, каждый из которых определяет концентрацию компонента из состава анализируемой газовой смеси. При этом на входной пневмомагистрали для подачи анализируемой пробы газовой смеси в систему хроматографов установлены краны-дозаторы автоматической и ручной подачи пробы анализируемой газовой смеси, система пневмомагистралей сообщена с побудителем расхода, поддерживающего заданный расход в пневмомагистрали. Кроме того, герметизированный контейнер соединен с системой хроматографов посредством выходной пневмомагистрали для возврата газовой среды в герметизированный контейнер. Техническим результатом является обеспечение возможности оперативного и точного определения одновременно всей указанной совокупности характеристик воздействующей газовой среды, по которым судят о сохранении работоспособности после всех произведенных воздействий. 2 н.п. ф-лы, 1 ил., 2 пр.
Изобретение относится к области прогнозирования процессов старения синтетических полимерных материалов (СПМ) в зависимости от продолжительности их эксплуатации или хранения. Анализ летучих органических соединений (ЛОС), мигрирующих из СПМ, проводят путем активного отбора проб на сорбент, с последующей термической десорбцией и газохроматографическим анализом. Прогнозирование процессов старения материалов и оценку токсичности газовыделения проводят по динамике качественного и количественного состава компонентов газовыделения в исходном состоянии СПМ и в процессе искусственного климатического термовлажностного старения. Анализ динамики суммарного газовыделения (ΣT) из каждого материала проводят для всех веществ, мигрирующих из исследованных СПМ. Оценку изменения токсичности и прогнозирование процессов старения материалов проводят по разработанным показателям суммарного газовыделения (ΣT) и по гигиеническому показателю Р=(ΣTисх/ΣTn)/V, где Tисх и Tn - показатели токсичности газовыделения каждого вещества в исходном и состаренном состояниях соответственно, а ΣТисх и ΣTn - суммарный показатель токсичности газовыделения всех входящих в состав образца СПМ в исходном и состаренном состояниях, V - длительность старения (год, месяц). Изобретение позволяет достигать высокой точности метода детектирования количественного и качественного состава ЛОС в газовыделении в процессе старения материалов и воспроизводимости результатов анализа. 3 табл.

Изобретение может быть использовано для анализа многокомпонентных газовых смесей в замкнутых объемах. Способ определения параметров газовой среды в герметизированном контейнере с электромеханическими приборами включает отбор пробы анализируемой газовой среды из герметизированного контейнера и измерение совокупности характеристик компонентов газовой среды, выделяющихся из объектов в герметизированный контейнер, таких как концентрация, температура и давление. При этом электромеханические приборы, совместно с герметизированным контейнером, в котором они находятся, помещают в климатическую камеру. Затем герметизированный контейнер с электромеханическими приборами подключают к системе из заданного числа хроматографов, селективно определяющих концентрацию одновременно всех компонентов анализируемой газовой среды в герметизированном контейнере, который оснащен датчиками температуры и давления. Далее отобранную пробу анализируемой газовой смеси направляют по входной пневмомагистрали, соединяющей герметизированный контейнер с системой хроматографов. Определение параметров газовой среды в герметизированном контейнере с электромеханическими приборами ведут путем моделирования условий хранения объектов, задавая ступенчатый режим положительных температур на трех уровнях, поддерживаемых в климатической камере, соответствующих условиям хранения объектов и в ускоренном режиме относительно реального времени хранения объектов и при заданном давлении. Затем регистрируют показания хроматографов, датчиков температуры и датчиков давления в режиме он-лайн, через заданные промежутки времени, с учетом полученных данных строят графики зависимостей концентрации выделяемых компонентов газовой среды от температуры и времени при заданных значениях давления газовой среды в герметизированном контейнере, а прогнозирование изменения концентрации выделяемых объектами компонентов газовой среды в диапазоне реальных условий хранения их в герметизированном контейнере осуществляют исходя из характера полученных графических зависимостей до получения стабильных (равновесных) значений концентраций на каждом температурном уровне, которые сравниваются с имеющейся базой данных номинальных значений концентраций компонентов, часть отобранной пробы, которая не участвует в процессе анализа, возвращают по выходной пневмомагистрали в герметизированный контейнер. Техническим результатом является возможность оперативного, достоверного, точного определения одновременно всей совокупности таких параметров анализируемой газовой смеси, как концентрация, температура и давление и возможность прогнозирования изменений параметров во времени. 2 н.п. ф-лы, 2 пр., 4 ил.

Изобретение относится к области аналитической химии и может быть использовано в химической, фармацевтической и других отраслях промышленности при анализе парабенов методом высокоэффективной жидкостной хроматографии (ВЭЖХ). Способ включает процедуры подготовки образцов и условия хроматографического разделения и детектирования. Исходный образец фармацевтического препарата или БАДа предварительно подготавливают согласно одной процедуре пробоподготовки. Затем подготовленный образец подвергают разделению на хроматографической колонке. На выходе каждую фракцию детектируют, измеряя величину абсорбции излученного света согласно закону Бугера - Ламберта - Бера. Идентификацию парабенов проводят по временам удерживания. В качестве дополнительного критерия идентификации возможно использование сигнальных отношений высот или площадей пиков, полученных на разных длинах волн, или (и) электронных спектров интересуемых соединений. Количественный расчет концентраций парабенов проводится методом внешнего стандарта, учитывая линейный диапазон зависимости выходного сигнала от концентрации или массы парабенов в стандартных растворах. Техническим результатом является отсутствие необходимости в получении производных, сравнительно быстрая пробоподготовка и хроматографический анализ, относительно низкая себестоимость анализа, идентичность условий хроматографического анализа для всех типов исследуемой продукции, что уменьшает время подготовки системы между анализами, возможность применения дополнительных критериев для идентификации парабенов (сигнальные отношения или (и) электронные спектры). 2 ил., 1 табл.
Изобретение относится к области контроля перемещающихся своим ходом транспортных средств и может быть использовано для досмотра с целью обнаружения скрытых предметов, веществ и материалов, запрещенных к перевозке. При реализации способа в объеме транспортного средства размещают устройство, содержащее, по меньшей мере, один концентратор пробы для анализа, навигатор GPS/ГЛОНАСС, микропроцессор и радиопередатчик, подключенный к навигатору и микропроцессору. После выдерживания в течение времени, достаточного для достоверного сбора концентратором пробы информации о примесях, присутствующих в атмосфере объема транспортного средства, устройство передают для анализа на содержание запрещенных к перевозке грузов и анализируют адсорбированные концентратором примеси. Техническим результатом является упрощение технологии мониторинга при одновременном повышении его безопасности и расширении области его применения. 5 з.п. ф-лы.

Изобретение относится к аналитической химии и касается количественного определения тетрациклина в молоке и молочных продуктах. Способ определения тетрациклина в молоке и молочных продуктах заключается в предварительном сорбционном концентрировании тетрациклина природным цеолитом и последующем определении данного аналита методом высокоэффективной жидкостной хроматографии с ультрафиолетовым детектированием при длине волны 350 нм. Техническим результатом является повышение чувствительности оценки содержания тетрациклина в молоке и молочных продуктах, низкая себестоимость анализа, простота исполнения и экспрессность. 1 табл., 1 ил.

Изобретение относится к области определения сорбционных характеристик веществ, а именно к способам измерения величины сорбции и построения изотерм сорбции газа (пара) в различных мембранных материалах. Для определения изотерм сорбции газов и паров в мембранных материалах предварительно определяют количество газа (пара) в газовой фазе сорбционного объема. Далее проводят сорбцию газа (пара) мембранным материалом при заданном парциальном давлении газа (пара) до полного насыщения им мембранного материала и десорбцию газа (пара) потоком газа-носителя в хроматографический детектор. Сорбцию и десорбцию осуществляют в изотермических условиях в хроматографической петле, присоединенной к крану-дозатору. Используя полученную хроматограмму, рассчитывают количество сорбированного газа (пара) n 1 p o l , моль, по формулам: n 1 ∑ = n 1 G + n 1 p o l , VΣ,G=Vpol+VG, V p o l = m p o l ρ p o l , где n 1 ∑ , моль, - суммарное количество газа или пара в сорбционном объеме, определяемое из площади пика хроматограммы, n 1 G - количество газа или пара, находящееся в пустом объеме VG петли, заполненной мембранным материалом, и определяемое по уравнению состояния газа или пара, V∑,G, см3, - суммарный сорбционный объем, рассчитываемый по уравнению состояния газа или пара из предварительного определенного количества газа или пара в газовой фазе сорбционного объема, Vpol, см3, - объем мембранного материала, mpol, г, - масса мембранного материала в сорбционном объеме, ρpol, г/см3, - плотность мембранного материала. Устройство для осуществления данного способа состоит из блока подготовки газов или паров, блока детектирования - детектора газового хроматографа и блока проведения сорбции-десорбции, выполненного в виде хроматографической петли, присоединенной к шестиходовому крану-дозатору. Кран выполнен с возможностью переключения в положение для сорбции газа или пара в мембранном материале и в положение для десорбции газа или пара потоком газа-носителя в блок детектирования. Техническим результатом является упрощение и ускорение измерений, а также предотвращение изменения свойств мембранных материалов под действием нагрева-охлаждения. 2 н.п. ф-лы, 4 табл., 14 пр., 3 ил.

Изобретение относится к сельскому хозяйству и может быть использовано для определения остаточных количеств биоорганического соединения (д.в. поли-NN-диметил-3,4 метилпиролидиния галогенида (хлорида)) с ярко выраженными бактерицидными и фунгипротекторными свойствами в растительных объектах (яблоки, груши, айва, сливы, персики). Способ количественного определения остаточных количеств поли-NN-диметил-3,4 метилпиролидиния галогенида (хлорида) в растительном материале методом газовой хроматографии с помощью газового хроматографа, оснащенного пламенно-ионизационным детектором. При этом параметры хроматографирования: температура колонки 190°C, расход азота через колонку 30 мл/мин, расход водорода 40 мл/мин, расход воздуха 420 мл/мин; размера частиц активированного угля в колонке 0,25 мм; температуры и времени выдерживания пробы в водяной бане, герметически закупоренные сосуды выдерживали 30 мин при температуре 70°C. Техническим результатом является повышение объективности и достоверности определения микроколичеств поли-NN-диметил-3,4 метилпиролидиния галогенида (хлорида) в растительном материале, а также полное разделение пиков, высокая точность результата. Стандартное отклонение 6,4%, доверительный интервал среднего при n=5 и d=0,95 7,9%. 3 табл., 3 пр.
Наверх