Способ измерения влажности вискозного волокна

Изобретение относится к измерительной технике, в частности к измерению влажности волокнистых материалов, и может быть использовано в текстильной и хлопчатобумажной промышленности. Предлагаемый способ включает в себя размещение между двумя электродами пробы волокна, приложение к ним переменного напряжения и контроль тока, проходящего через материал. При этом прессование пробы волокна производят до его объемной плотности материала, превышающей 400 кг/м3, к электродам последовательно прикладывают переменное напряжение с частотой ≤50 Гц и частотой 20-100 кГц, контролируют соответствующие токи (I1 и I2), протекающие между электродами, и определяют значение тока смещения, проходящего через пробу, по формуле: I с м = I 2 2 I 1 2 I 0 , где I0 - фоновое значение тока, контролируемое между электродами на частоте 20-100 кГц при отсутствии между электродами волокна, затем находят величину массы воды в исследуемой пробе волокна на основании предварительно установленной зависимости тока смещения от массы воды в волокне. Повышение чувствительности и точности измерения влажности волокна является техническим результатом изобретения. 5 ил., 1 табл.

 

Изобретение относится к измерительной технике, в частности к измерению влажности волокнистых материалов, и может быть использовано в текстильной и хлопчатобумажной промышленности.

Остаточная влажность вискозного волокна определяет его качество и подлежит обязательному контролю в условиях промышленного производства. Повышение объективности данного контроля позволяет улучшить технические и коммерческие показатели волокна.

Известен термогравиметрический способ контроля содержания воды в волокне, основанный на регистрации изменения его массы при нагреве в сушильной камере (Аналитический контроль производства искусственных волокон. Справочное пособие под ред. А.К. Диброва и B.C. Матвеева. - М.: Изд. Химия. - 1986. - 334 с.).

К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, относится высокая длительность (4-5 часа) измерений и их низкая объективность (используются порции волокна массой в сотни грамм).

Известен способ определения влажности вещества, основанный на многократном пропускании через его пробу электромагнитных СВЧ-сигналов и последующем определении среднего значения измеряемой величины (Р.И. Сайтов, Р.Г. Абдеев, Н.А. Серафимов и др. - Патент РФ №2380689. Способ измерения влажности материалов. Опубл. 27.01.2010 г.).

К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, относится то, что в нем применяется сложное экспериментальное оборудование и анализируются пробы материала массой в десятки грамм. В результате также не достигается требуемая объективность контроля влажности промышленных партий продукции.

Наиболее близким способом того же назначения к заявляемому объекту по совокупности признаков является способ измерения влажности вискозного волокна, заключающийся в приложении переменного напряжения к двум электродам, между которыми располагают пробу спрессованного исследуемого материала и измерении ее электропроводности (И. Форейт. Емкостные датчики неэлектрических величин. - М.-Л.: Энергия. - 1966. - С.15, 99 - прототип).

К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе применяется одночастотный режим (из диапазона 0,2-5,0 МГц) измерений электропроводности проб исследуемого материала. В результате контролируемая величина тока, проходящего через волокно, кроме тока смещения (информативный параметр), включает в себя и ток проводимости. Данные токи сдвинуты по фазе друг относительно друга на угол в (90-δ) градусов (δ - угол, характеризующий диэлектрические потери в волокне). Величины составляющих контролируемого тока и δ различным образом зависят от частоты напряжения, приложенного к образцу исследуемого волокна, его влажности и степени прессования. Игнорирование этих факторов, как это сделано в прототипе, приводит к значительным неконтролируемым погрешностям.

Задача данного изобретения заключается в повышении чувствительности и точности диэлькометрического способа измерения влажности волокна.

Данный технический результат достигается при осуществлении изобретения тем, что в известном способе, включающем приложение переменного напряжения к двум электродам, между которыми располагают пробу спрессованного вискозного волокна, и измерение ее электропроводности, прессование пробы волокна производят до объемной плотности материала, большей 400 кг/м3. Затем к электродам последовательно прикладывают переменное напряжение амплитудой 20-30 В с частотой ≤50 Гц и с частотой (20-100)·103 Гц, контролируют соответствующие токи (I1 и I2), протекающие между электродами, и определяют значение тока смещения, проходящего через пробу, по формуле:

в которой I0 - фоновое значение тока, контролируемое между электродами на частоте (20-100)·103 Гц при отсутствии волокна. После этого находят величину массы воды в исследуемой пробе волокна на основании предварительно установленной зависимости тока смещения от массы воды в волокне.

Вышеизложенный технический результат достигается за счет выбора оптимальной плотности исследуемого волокна и использования контроля тока, проходящего через него, на двух различных частотах.

При плотности волокна, меньшей 400 кг/м3, на величины контролируемых токов I1 и I2 влияют переходные емкости на границе раздела "волокно - измерительные электроды", которые зависят от массы пробы волокна и ее расположения относительно электродов. При плотности волокна, большей 400 кг/м3, указанная граница раздела обогащается избыточной водой и переходные емкости исчезают, что обеспечивает стабильность регистрируемых сигналов и минимизацию погрешностей их измерения.

Ток через волокно, контролируемый на частоте, меньшей 50 Гц, равен току проводимости (I1), а на частоте 20-100 кГц - векторной сумме токов проводимости и тока смещения. При этом δ при влажности волокна в практически важном диапазоне 4-12% близок к нулю. В результате обеспечивается возможность простого определения истинного тока смещения, проходящего через волокно и однозначно связанного с массой находящейся в нем воды.

Использование амплитуды переменного напряжения в 20-30 В обеспечивает относительную погрешность измерения токов на уровне 1-2%.

В процессе проведенного анализа уровня техники не выявлены технические решения, характеризующиеся признаками заявляемого изобретения. А сравнение предлагаемого решения с наиболее близким по совокупности признаков аналогом позволило выявить совокупность существенных отличительных признаков для достижения технического результата. Анализ также показал, что заявляемое изобретение не следует для специалистов явным образом из известного уровня техники, так как не обнаружены технические решения, в которых содержание воды в вискозном волокне контролируется при его определенной плотности на основании регистрации токов, проходящих через пробу волокна на двух различных частотах.

Таким образом, сопоставительный анализ предложенного технического решения и уровня техники позволил установить, что заявленное изобретение соответствует требованию "новизна" и "изобретательский уровень" по действующему законодательству.

Чертежи, иллюстрирующие особенности реализации предлагаемого способа, представлены на фиг.1-5. Здесь на фиг.1-2 приведены соответственно частотные зависимости действительной и мнимой частей диэлектрической проницаемости волокна, контролируемые при его различной влажности (ρH20, кг/м3: 1-0; 2-40; 3-50; 4-64); на фиг.3 - частотные зависимости угла диэлектрических потерь волокна (ρH20, кг/м3: 1-0, 2-52, 3-64, 4-76, 5-104); на фиг.4 - зависимость тока смещения, проходящего через волокно, от массы находящейся в нем воды; а на фиг.5 - зависимость от степени уплотнения волокна нормированной величины контролируемого тока (влажность волокна 10%, частота зондирующего напряжения - 20 кГц, амплитуда - 20 В).

Сведения, подтверждающие возможность осуществления предложенного изобретения с получением вышеуказанного технического результата, заключаются в следующем. Проба вискозного волокна помещается в измерительную камеру (формы, близкой к кубической) и прессуется до получения плотности волокна, не меньшей 400 кг/м3. Затем к двум измерительным электродам, расположенным на внутренней поверхности противоположенных сторон камеры, прикладывается синусоидальное напряжение и контролируется ток, проходящий через волокно. Величина этого тока однозначно связана с количеством воды, находящейся в пробе волокна.

При реализации известных способов контроля влажности волокна (например, прототип) измерения тока проводят на одной частоте, находящейся в диапазоне от 0,2 до 5,0 МГц. При этом в регистрируемом полезном сигнале (Iизм) кроме токов смещения (Iсм - информативный параметр, однозначно связанный с содержанием воды в волокне) присутствует ток проводимости (Iпр) и паразитный ток, проходящий через камеру в отсутствие в ней волокна (I0). Амплитудное значение тока проводимости неконтролируемым образом зависит от плотности волокна, его химического состава и влажности. Кроме этого Iпр смещен относительно Iсм на угол (90-δ). Угол диэлектрических потерь также зависит от электрофизических свойств волокна и частоты зондирующего сигнала. Искомый ток в этом случае определяется соотношением:

Из полученного выражения следует, что определение количества воды в волокне по Iсм осуществляется с переменной погрешностью (Iпр и δ - переменные величины), учесть которую не представляется возможным.

Устранить указанную неопределенность позволяет индивидуальное определение тока проводимости и выбор частоты зондирующего напряжения, при которой диэлектрические потери в волокне пренебрежимо малы (δ близок к нулю).

Ток проводимости может быть определен при использовании переменного напряжения с частотой, не превышающей 50 Гц. На постоянном токе эти измерения затруднены процессами ионно-миграционной поляризации волокна (токоперенос в объеме электролитических ячеек, образованных в местах локального скопления воды в волокне). При частоте, большей 50 Гц, на контролируемую величину начинает накладываться ток смещения и погрешность измерения Iпр составляет 3-7%.

Выбор высокочастотного диапазона напряжения осуществлен на основании исследования электрофизических свойств волокна - контролировались частотные зависимости действительной (ε′) и мнимой (ε″) частей диэлектрической проницаемости волокна при различном содержании в нем воды. Полученные зависимости представлены на фиг. 1-2, соответственно.

Зависимость ε″ имеет максимум около 106 Гц, чему соответствует процесс ориентации молекул воды (диполей), адсорбированных на поверхности волокна, в направлении приложенного поля. При влажности волокна, превышающей 12%, ε″ возрастает, что свидетельствует о появлении еще одного механизма поляризации с большим характерным временем - макрополяризация электролита, заполняющего отдельные поры волокна.

Действительная часть диэлектрической проницаемости волокна на низких частотах (до 105 Гц) изменяется слабо (фиг.2), заметно возрастая при влажности, превышающей 11%.

Угол диэлектрических потерь при влажности волокна, меньшей 12%, и частоте используемого напряжения, не превышающей 100 кГц, близок к нулю (фиг.3).

При выборе оптимального диапазона частот зондирующего высокочастотного напряжения учитывались следующие обстоятельства. При частоте, меньшей 20 кГц, начинает заметно снижаться контролируемый ток - возрастает емкостное сопротивление волокна. При частоте, большей 100 кГц, становится существенным уменьшение ε′ и возрастание угла диэлектрических потерь. В диапазоне частот 20-100 кГц искомое значение тока смещения, проходящего через волокно, может быть определено по упрощенной формуле:

где I2=Iизм и I1=Iпр - токи через волокно, контролируемые на частоте 20-100 кГц и 1-50 Гц соответственно.

Искомое значение массы воды в исследуемом волокне находится по предварительно установленной зависимости между током смещения, проходящего через волокно, и содержанием в нем воды - фиг.4.

Величина тока, проходящего через волокно, критична к степени его сжатия - фиг.5. Этот факт обусловлен существованием переходной емкости на границе раздела "волокно-поверхность электрода". При плотности волокна, большей 400 кг/м3, влияние данного фактора становится несущественным.

Реализация предлагаемого способа осуществлялась в условиях производства на кипах волокна, находящихся в камере окончательного прессования (размеры камеры - 940×570×500 мм). Амплитуда напряжений, прикладываемых к измерительным электродам, составляла 20 В, частоты 20 Гц и 20 кГц, соответственно. Оценка интегрального содержания воды в кипах вискозного волокна осуществлялась на основании предварительно установленной на уменьшенном макете камеры прессования градуировочной зависимости, представленной на фиг.4. После взвешивания кипы определялась влажность находящегося в ней волокна (Вэкс), которая затем сравнивалась с результатами оценки влажности волокна, выполненной 5-6 раз по стандартной методике (В0 - термогравиметрический метод). Полученные результаты измерений представлены в таблице.

Вэкс 8,6-8,8 7,8-8,1 8,4-8,5 12,0-12,4
В0 7,8-13,0 7,2-10,3 8,1-9,4 9,3-13,3

Из анализа полученных результатов следует, что наблюдается качественное совпадение Вэкс и В0. При этом разработанный метод отличается существенно большей объективностью и повторяемостью результатов. Данное обстоятельство является следствием малой выборки порций волокна при использовании стандартного метода оценки его влажности.

Использование предлагаемого способа позволяет повысить объективность измерения содержания воды в вискозном волокне, что обеспечивает повышение его качества и коммерческих показателей.

Способ измерения содержания воды в вискозном волокне, заключающийся в приложении переменного напряжения к двум электродам, между которыми располагают пробу спрессованного исследуемого материала, и измерении ее электропроводности, отличающийся тем, что прессование пробы волокна производят до объемной плотности материала, превышающей 400 кг/м3, затем к электродам последовательно прикладывают переменное напряжение с частотой ≤50 Гц и частотой 20-100 кГц, контролируют соответствующие токи (I1 и I2), протекающие между электродами, и определяют значение тока смещения, проходящего через пробу, по формуле:
I с м = I 2 2 I 1 2 I 0 ,
в которой I0 - фоновое значение тока, контролируемое между электродами на частоте 20-100 кГц при отсутствии волокна, и после этого находят величину массы воды в исследуемой пробе волокна на основании предварительно установленной зависимости тока смещения от массы воды в волокне.



 

Похожие патенты:

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения.

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к измерительной технике и может быть использовано для измерения влагосодержания, а также других физических свойств (концентрации смеси, плотности) различных материалов и веществ, перемещаемых по ленточным конвейерам, транспортерам.

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации, при составлении земельного кадастра и т.п. .

Изобретение относится к способам определения влажности жидких углеводородов и топлив и может найти применение в экспресс-контроле влажности жидких органических сред, для чего берут контрольный образец жидкости с действительной и мнимой диэлектрическими проницаемостями, много большими, чем у исследуемого жидкого углеводорода, которые помещают в отдельные переплетенные между собой трубопроводы.

Изобретение относится к исследованию и анализу материалов, а именно к способам определения влажности зерна зерновых сельскохозяйственных культур, в том числе подсолнечника, кукурузы и рапса.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации при составлении земельного кадастра и т.п. .

Изобретение относится к устройству измерения физических свойств жидкости в емкости. Повышение точности измерения является техническим результатом заявленного устройства, которое представляет собой первый рабочий чувствительный элемент в виде первого резонатора - отрезка коаксиальной линии, заполняемого контролируемой жидкостью, между полым внутренним и наружным проводниками которого размещена совокупность одного или более соосных с ними и вложенных один в другой металлических цилиндров, поочередно короткозамкнутых и разомкнутых на одном из их концов, и эталонный чувствительный элемент в виде второго резонатора, заполняемого эталонной жидкостью, являющегося полостью внутреннего проводника первого резонатора, при этом оба резонатора подключены через соответствующие элементы возбуждения и съема колебаний и линии связи этих резонаторов с соответствующими электронными блоками, выходы которых подсоединены к входу функционального преобразователя, подсоединенного выходом к индикатору. Второй резонатор выполнен идентично первому резонатору коаксиальным, при этом его наружным проводником служит внутренняя поверхность полого внутреннего проводника, внутренним проводником - центральный металлический стержень, а между ним и указанным наружным проводником размещена совокупность одного или более соосных с ними и вложенных один в другой металлических цилиндров, поочередно короткозамкнутых и разомкнутых на одном из их концов. 1 ил.

Заявленное изобретение относится к способу определения влажности жидких углеводородов и может найти применение в нефтехимической промышленности, лабораторной практике для контроля качества горюче-смазочных материалов, в частности для экспресс-контроля качества авиационного керосина. Техническим результатом изобретения является повышение чувствительности и уменьшение трудоемкости определения взвешенной влаги в жидком углеводороде. Способ основан на помещении исследуемого углеводорода в сверхвысокочастотное электромагнитное поле и измерении потерь на фиксированной температуре t1, дополнительно после измерений на t1 нагревают исследуемый углеводород в закрытой пробе, далее измеряют в нем потери сверхвысокочастотного электромагнитного поля на второй фиксированной температуре t2, причем t1<t2, при этом фиксированную температуру t1 выбирают не выше 0°C, т.е. t1≤0°C, а разность температур t2-t1 должна быть не менее 50°C, т.е. t2-t1≥50°C, после чего по изменению потерь сверхвысокочастотного электромагнитного поля судят о наличии взвешенной эмульсионной влаги, которая переходит в растворенное состояние. 4 ил.

Изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, в частности для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом предлагаемого изобретения является повышение чувствительности определения объемной концентрации осажденной влаги в жидких углеводородах. Данный технический результат достигается тем, что в известном способе определения объемной концентрации осажденной влаги в жидких углеводородах, заключающемся в помещении исследуемого жидкого углеводорода в полость цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту жидкости, удалении через время t≥10 с жидкого углеводорода из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа H011, измерении изменения добротности, вызванного наличием осажденной влаги, дополнительно исследуемый жидкий углеводород через открытую верхнюю торцевую стенку помещают в полость резонатора над диэлектрической пластиной-основанием, расположенной симметрично относительно середины длины, с диаметром, равным диаметру резонатора, и толщиной, много меньшей его высоты, при этом ось пластины-основания совмещают с осью цилиндрического объемного резонатора, после удаления исследуемого жидкого углеводорода с оставлением влаги, капли влаги прижимают диэлектрической пластиной, закрывают верхнюю торцевую стенку, диаметр прижимной диэлектрической пластины выбирают равным диаметру резонатора, а толщину - на порядок меньше толщины диэлектрической пластины-основания. 7 ил.

Предлагаемое изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, и в частности, для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом изобретения является повышение чувствительности и реализация возможности ее изменения при определении объемной концентрации осажденной влаги в жидких углеводородах. Указанный технический результат достигается тем, что в способе определения объемной концентрации осажденной влаги в жидких углеводородах, заключающемся в полном заполнении исследуемой жидкостью цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту, удалении через время t≥10 сек жидкости из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа Н011, оценке по изменению добротности цилиндрического объемного резонатора объемной концентрации осажденной влаги, дополнительно, на нижней-торцевой стенке устанавливают диэлектрик высотой h, с диэлектрической проницаемостью εд и диаметром, равным диаметру резонатора, при удалении исследуемой жидкости влагу оставляют на поверхности диэлектрика, при этом варьируя отношение , возможно изменение диапазона измерений при сохранении высокой чувствительности к объемной концентрации осажденной влаги, где l - длина резонатора. 1 з.п. ф-лы, 6 ил.

Влагомер // 2572087
Влагомер относится к измерительной технике и может быть использован для контроля влажности материалов путем измерения комплексной диэлектрической проницаемости. Влагомер содержит перестраиваемый по частоте генератор гармонического сигнала, электронное устройство управления генератором, устройство измерения, первичный преобразователь, образованный внешним экранным и сигнальным проводниками, измерительную ячейку, включенную между выходом генератора и входом первичного преобразователя. Измерительная ячейка содержит резистор, первый вывод которого соединен с выходом генератора, а второй вывод соединен с входом первичного преобразователя, первый детектор, подключенный к первому выводу резистора, второй детектор, подключенный ко второму выводу резистора, выходы детекторов подключены к устройству измерения. Техническим результатом является повышение точности, обеспечение независимости измерений от плотности материала при малых влажностях. 2 з.п. ф-лы,1 ил.

Изобретение относится к области измерительной электротехники, а именно к влагомеру для контроля влажности жидких и сыпучих материалов путем измерения их диэлектрической проницаемости. Влагомер содержит электронный блок, измерительную ячейку и первичный преобразователь высокочастотного сигнала, образованный металлическим основанием и металлическим прутком. В качестве металлического основания применен бункер, трубопровод или лоток. На первом конце прутка закреплен изолятор, пруток вторым концом соединен с основанием. На изоляторе закреплен металлический корпус, внутри которого установлена измерительная ячейка. В первом варианте влагомера на основании установлена металлическая бобышка, выполненная в виде стакана с отверстием в его дне. Корпус с измерительной ячейкой установлен внутри стакана и прижат крышкой-фиксатором к дну стакана. Во втором варианте влагомера на основании закреплены резьбовые шпильки, а корпус с измерительной ячейкой прижат к основанию пластиной с посадочными отверстиями под шпильки и закреплен гайками. Техническим результатом является повышение точности и стабильности измерений в промышленных условиях эксплуатации, обеспечение возможности демонтажа и установки зонда влагомера без изменения настроек. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к области подповерхностной радиолокации и контроля насыпи железных дорог и автодорог. Влажность, загрязненность и толщину слоев насыпи определяют с помощью георадара. В составе насыпи железной или автодороги применяют один или несколько слоев отражательного геотекстиля. Отражательный геотекстиль включает электропроводящие элементы. Измеряют электромагнитные сигналы георадара, отраженные от электропроводящих элементов геотекстиля. Результаты численно обрабатывают на ЭВМ. Затухание отраженных электромагнитных сигналов определяют по амплитуде, а показатель преломления - по скорости сигналов. Влажность насыпи определяют по показателю преломления, а загрязненность - по показателю преломления и затуханию сигналов. Толщину и влажность слоев слоисто-неоднородной насыпи определяют по форме годографа отраженных сигналов. Способ является бесконтактным, неразрушающим, быстрым и эффективным. Технический результат заключается в увеличении эффективности и качества обследования насыпи, повышении безопасности на железных дорогах и автодорогах. 10 з.п. ф-лы, 5 ил.

Изобретение относится к СВЧ-способу определения содержания физической глины и гумуса в почвах, Способ включает измерение показателя преломления почвы с влажностью, превышающей максимальное содержание связанной воды, образцы которой выдерживают в герметическом контейнере в течение 1-2 суток при комнатной температуре, измеряют показатель преломления на частотах f1=0,35 ГГц и f2=1,75 ГГц, находят разность показателей преломления Δn=n(f1)-n(f2), на частотах f1 и f2 одновременно измеряют и показатель поглощения, находят разность показателей поглощения Δκ=κ(f1)-κ(f2) и определяют массовую долю физической глины С в почве из соотношения: и массовую долю гумуса в почве из соотношения: где С - содержание физической глины в почве (в массовых долях); Δn - разность показателей преломления; Δκ - разность показателей поглощения; Н - содержание гумуса в почве (в массовых долях). Повышение точности определения массовой доли физической глины и гумуса в почвах является техническим результатом изобретения. 2 ил.

Изобретение относится к измерительной технике и предназначено для измерения диэлектрической проницаемости и влажности материалов при помощи устройства влагомер-диэлькометр, которое содержит электронный блок, измерительную ячейку и первичный преобразователь, представляющий собой отрезок длинной линии, образованный металлическим прутком и металлическим основанием, при этом измерительная ячейка конструктивно совмещена с первичным преобразователем и содержит детектор, подключенный непосредственно к входу первичного преобразователя. Предложено пять вариантов выполнения первичного преобразователя. Вариант 1 - металлическое основание выполнено в виде прямоугольной рамки, вариант 2 - металлическое основание выполнено в виде полого цилиндра с продольными щелями. Первичные преобразователи указанных вариантов устанавливаются на стержень для контроля материалов в резервуаре. Для контроля проб устройство снабжено кассетой. Вариант 3 выполнен на основе кюветы с дополнительной пластиной-крышкой. В варианте 4 преобразователь выполнен в виде трубы для измерения материалов в потоке под давлением. В варианте 5 устройства внутренний проводник первичного преобразователя совмещен конструктивно с его корпусом, что позволяет встраивать первичный преобразователь в стенку трубы буровой колонны или в стенку камеры бетоносмесительного устройства. Повышение точности измерения диэлектрической проницаемости и влажности материала непосредственно в резервуарах на разных уровнях, в трубопроводах под давлением, а также в условиях жестких механических воздействий является техническим результатом изобретения. 5 н. и 18 з.п. ф-лы, 17 ил.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания. Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт и влагосодержание W нефтепродукта определяют по формуле W=(ME4-εН)/3εн, где М=(υ1λB)2/(υ1-υ2)2; υ1 и υ2 - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, εH - диэлектрическая проницаемость нефтепродукта. 1 ил.
Наверх