Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при постоянном перемешивании с получением синтетического карналлита, содержащего не более 5 мас.% жидкой фазы, с введением частично обезвоженного карналлита в виде пыли печей обезвоживания карналлита в процессе синтеза. Перед смешением твердый измельченный калиевый электролит магниевых электролизеров нагревают выделенными из зоны нагрева газами. На стадии растворения реакционную смесь нагревают до температуры не более 120°C при массовом соотношении KCl/MgCl2 в реакционной смеси 0,78-0,83, причем начальная концентрация хлористого магния в растворе составляет 23-32 мас.%, а пыль печей обезвоживания карналлита вводят в смесь при содержании общей воды в системе 42-52 мас.%. Изобретение позволяет снизить расход теплоты, сократить время и повысить содержание карналлита в продукте.

 

Изобретение относится к металлургии магния, в частности к способам получения хлормагниевого сырья для последующей его переработки электролизом с получением магния, хлора и отработанного электролита.

Получение исходного хлормагниевого сырья является одной из основных операций в производстве магния и хлора посредством электролиза хлорида магния. Существует несколько основных способов получения карналлита для электролиза магния.

Основной способ получения искусственного (обогащенного) карналлита для российских магниевых предприятий основан на перекристаллизации карналлитовой породы (М.А. Эйдензон, Магний. М.: Металлургия, 1969, с.145).

Дробленная карналлитовая порода и горячий маточный раствор, содержащий около 32 мас.% MgCl2, поступают на растворение, где интенсивно перемешиваются с нагревом до 110-120°C. Хлориды магния и калия переходят в раствор, примеси - в осадок. После отделения от примесей раствор охлаждают с выделением кристаллов карналлита. Пульпу фильтруют с разделением карналлита и маточного раствора. Маточный раствор подогревают и возвращают на растворение карналлитовой породы. К недостаткам способа относятся значительные энергозатраты на нагрев оборотного раствора хлорида магния, сложное аппаратурно-технологическое оформление процесса.

Известен способ получения синтетического карналлита из растворов хлорида магния (Эйдензон М.А. Металлургия магния и других легких металлов. М.: Металлургия, 1974, с.21-22). Раствор хлорида магния очищают от примесей и упаривают до содержания в нем 31 мас.% MgCl2. Концентрированный раствор смешивается в реакторе с пульпой отработанного электролита и/или хлорида калия. При охлаждении смеси из раствора выпадают кристаллы карналлита. После сгущения и центрифугирования получают синтетический карналлит, отправляемый на обезвоживание. Маточный раствор возвращают на выпарку. Недостатком способа является наличие большого количества оборотного раствора, на нагрев которого необходимы значительные затраты тепла, а также наличие крупногабаритного, занимающего значительные производственные площади оборудования.

Существует также способ получения карналлита из хлормагниевых растворов (Патент РФ №2182559), согласно которому хлормагниевый раствор очищают и концентрируют, смешивают с твердым калийхлорсодержащим реагентом (твердым измельченным калиевым электролитом магниевых электролизеров и хлористым калием), смесь обезвоживают до содержания кристаллизационной воды 2-6 молей на один моль KCl·MgCl2 при поддержании в карналлите массового соотношения Mg/K, равного 0,5-0,8. Способ отличает широкий интервал расхода хлорида калия, составляющий (78-124)% от стехиометрического соотношения KCl/MgCl2 в карналлите (KCl·MgCl2·6H2O).

Наиболее близким из известных аналогов к предлагаемому (прототипом) является способ производства магния из оксидно-хлоридного сырья (Патент РФ №2118406), в котором для получения синтетического карналлита применяют очищенные хлормагниевые растворы и/или гидраты хлорида магния, которые смешивают с твердым измельченным хлористым калием и/или твердым измельченным калиевым электролитом магниевых электролизеров до соотношения в смеси KCl/MgCl2=0,5-1,0, нагревают до температуры менее 150°C и при постоянном перемешивании охлаждают с получением продукта, содержащего не более 5 мас.% жидкой фазы. Хлормагниевые растворы после очистки от примесей смешивают и концентрируют до содержания хлорида магния (27-45) мас.%, а на стадии синтеза карналлита вводят частично обезвоженный карналлит, в качестве которого используют пыль печей обезвоживания карналлита и/или возгоны, образующиеся при переработке карналлита в расплавленном состоянии.

В этом способе велик интервал расхода хлорида калия, а нагрев реакционной смеси до высоких температур требует значительных затрат тепла. К тому же достоверно не доказано, что высокие температуры способствуют синтезу карналлита. Получение карналлита при смешении высококонцентрированного раствора хлорида магния (35-45) мас.% с твердым хлоркалиевым сырьем негативно сказывается на процессе синтеза карналлита, снижая степень конверсии хлористого калия в карналлит, ввиду плохого растворения KCl в таком растворе. В данном способе не указано, в какой момент процесса и в каком количестве в реактор подается частично обезвоженный карналлит.

Задачей настоящего изобретения является создание менее затратного способа получения синтетического карналлита с сокращением длительности процесса и повышением качества продукта.

Поставленная задача решается тем, что в заявленном способе, включающем очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при постоянном перемешивании с получением синтетического карналлита, содержащего не более 5 мас.% жидкой фазы, с введением частично обезвоженного карналлита в виде пыли печей обезвоживания карналлита, предложено перед смешением твердый измельченный калиевый электролит магниевых электролизеров нагревать выделенными из зоны нагрева газами, а на стадии растворения реакционную смесь нагревать до температуры не более 120°C при массовом соотношении KCl/MgCl2 в реакционной смеси 0,78-0,83, причем начальная концентрация хлористого магния в растворе составляет 23-32 мас.%, а пыль печей обезвоживания карналлита вводить в смесь при содержании общей воды в системе 42-52 мас.%.

Твердый измельченный калиевый электролит магниевых электролизеров предварительно нагревают отходящими из аппарата синтеза газами (парами воды). Это обстоятельство позволяет утилизировать тепло отходящих паров воды с одновременным снижением энергозатрат на нагрев исходных материалов.

Смесь на стадии растворения нагревают до температуры менее 120°C при постоянном перемешивании, что позволяет снизить затраты тепла без ухудшения качества продукта.

Массовое соотношение в реакционной смеси хлорида калия к хлориду магния, равное 0,78-0,83, что составляет (100-106)% от стехиометрического соотношения компонентов в карналлите, обеспечивает высокое качество карналлита. Более высокое соотношение (свыше 0,83) ведет к повышенному содержанию свободной фазы хлористого калия в продукте, более низкое (менее 0,78) приводит к неполному связыванию хлористого магния в карналлит.

Начальная концентрация хлористого магния в растворе составляет 23-32 мас.%, что обеспечивает более полное растворение твердых частиц отработанного электролита и получение продукта высокого качества.

На завершающем этапе процесса, когда содержание общей воды в реакционной смеси составляет 42-52 мас.% в реактор добавляют частично обезвоженный карналлит в виде пыли печей обезвоживания карналлита в количестве, обеспечивающем снижение содержания общей воды в продукте до 35-40 мас.%. Данная операция позволяет повысить качество продукта за счет связывания обезвоженным карналлитом свободной воды с получением шестиводного кристаллогидрата, а также позволяет сократить длительность процесса (см. примеры 1 и 2), т.к. в этом случае до упарка реакционной смеси и сушка продукта исключаются, что способствует сокращению энергозатрат. Экспериментально доказано, что при добавлении обезвоженного карналлита в реакционную смесь на начальной стадии процесса или в середине процесса, когда содержание общей воды в смеси составляет свыше 52 мас.% наблюдается повышенный расход пыли печей обезвоживания карналлита и ее комкование, что ведет к снижению качества продукта. Введение обезвоженного карналлита в реакционную смесь, содержащую менее 42 мас.% общей воды, существенно не влияет на длительность процесса и приводит к неполному связыванию обезвоженного карналлита в шестиводный продукт.

При осуществлении изобретения достигается снижение энергозатрат на нагрев исходных материалов, выпарку реакционной смеси и сушку продукта, а также за счет сокращения времени процесса растворения и исключения длительных стадий до упарки свободной воды из реакционной смеси и сушки продукта. К тому же наблюдается улучшение качества продукта за счет необходимого соотношения KCl/MgCl2 в реакционной смеси и за счет повышения количества карналлитовой фазы, вызванное добавлением частично обезвоженного карналлита.

Пример 1. 100 кг хлормагниевого раствора, содержащего, мас.%: MgCl2 - 28,5; NaCl - 0,3; KCl - 0,1; CaCl2 - 0,1; Н2О - 71,0 смешали с 33,2 кг твердого измельченного калиевого электролита магниевых электролизеров следующего состава, мас.%: MgCl2 - 2,5; KCl - 70,8; NaCl - 19,5; H2O - 3,8; CaCl2 - 0,4; MgO - 0,2. Массовое отношение KCl/MgCl2 в исходной реакционной смеси составляло 0,8. При постоянном перемешивании и нагреве смеси до 113-117°C происходило растворение частиц электролита. Затем проводили синтез и упаривание смеси при температуре 110-113°C с получением сухого и рассыпчатого продукта в количестве 97,4 кг, содержащего, мас.%: MgCl2 - 30,1; KCl - 24,2; NaCl - 7,0; H2O - 37,4; CaCl2 - 0,2; MgO - 0,1. В процессе выделилось 35,8 кг водяного пара, который направили на нагрев свежих порций твердого измельченного калиевого электролита магниевых электролизеров. Длительность процесса составила 140 мин. Содержание карналлитовой фазы в продукте составило 75 мас.%.

Пример 2. 100 кг хлормагниевого раствора, содержащего, мас.%: MgCl2 - 28,5; NaCl - 0,3; KCl - 0,1; CaCl2 - 0,1; Н2О - 71,0 смешали с 33,2 кг твердого измельченного калиевого электролита магниевых электролизеров следующего состава, мас.%: MgCl2 - 2,5; KCl - 70,8; NaC - 19,5; H2O - 3,8; CaCl2 - 0,4; MgO - 0,2. Массовое отношение KCl/MgCl2 в исходной реакционной смеси составляло 0,8. При постоянном перемешивании и нагреве смеси до 113-117°C происходило растворение частиц электролита. Затем проводили синтез и упаривание смеси при температуре 110-113°C. По окончании синтеза, когда содержание общей воды в смеси составило 44 мас.% в реактор ввели пыль печей обезвоживания карналлита, следующего состава, мас.%: MgCl2 - 45,1; KCl - 33,6; NaCl - 12,5; H2O - 8,5; MgO - 0,3, в количестве 26,7 кг. Получили 133,6 кг сухого рассыпчатого продукта, содержащего, мас.%: MgCl2 - 31,0; KCl - 24,4; NaCl - 7,6; H2O - 37,1; CaCl2 - 0,2; MgO - 0,1. В процессе выделилось 26,3 кг водяного пара, который направили на нагрев свежих порций твердого измельченного калиевого электролита магниевых электролизеров. Длительность процесса составила 90 мин. Содержание карналлитовой фазы в продукте составило 85 мас.%.

Способ получения синтетического карналлита, включающий очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при постоянном перемешивании с получением синтетического карналлита, содержащего не более 5 мас.% жидкой фазы, с введением частично обезвоженного карналлита в виде пыли печей обезвоживания карналлита, отличающийся тем, что перед смешением твердый измельченный калиевый электролит магниевых электролизеров нагревают выделенными из зоны нагрева газами, а на стадии растворения реакционную смесь нагревают до температуры не более 120°C при массовом соотношении KCl/MgCl2 в реакционной смеси 0,78-0,83, причем начальная концентрация хлористого магния в растворе составляет 23-32 мас.%, а пыль печей обезвоживания карналлита вводят в смесь при содержании общей воды в системе 42-52 мас.%.



 

Похожие патенты:
Изобретение относится к области химии и может быть использовано для получения карналлита, который является сырьем для магниевой промышленности. .

Изобретение относится к области химии и может быть использовано для производства технического бишофита, который используют в строительстве, при обработке дорожных покрытий, а также в качестве источника магния.

Изобретение относится к области химии и может быть использовано для переработки гидроминерального сырья. .

Изобретение относится к технике управления процессом растворения хлорида калия в концентрированном растворе хлорида магния и может быть использовано в процессе получения синтетического карналлита при его синтезе и кристаллизации на установках вакуум-кристаллизации.

Изобретение относится к области неорганической химии, в частности термосолянокислотной обработки железомагнезиальных серпентинизированных ультраосновных пород для получения двуокиси кремния, хлорида магния, пигмента, а также тонкодисперсного кремнезема, которые могут использоваться в синтезе нанокомпозитных материалов, особых и оптических стекол, в качестве наполнителя в резине и пластмассах, силикагельных сорбентов, носителей катализаторов, формовочного вещества в металлургии, составной части в лакокрасках, пластмассах, линолеуме, эмалях, в высокотемпературных огнестойких красках, в производстве тонкокерамических и огнеупорных веществ, в качестве исходного вещества для кремния, магния и его оксида и т.д.

Изобретение относится к технике управления процессами растворения карналлитовых руд, содержащих карналлит, хлориды калия и натрия и др. .

Изобретение относится к области химии и может быть использовано в производстве минеральных солей. .

Изобретение относится к химической промышленности и может быть использовано при комплексной очистке водных растворов хлоридов металлов, таких как хлориды лития, натрия, калия, магния, кальция от примесей железа и сульфат-ионов.
Изобретение относится к области цветной металлургии, в частности к получению синтетического карналлита. .
Изобретение относится к области металлургии и химической технологии неорганических веществ. .

Изобретение относится к способу получения диарилкарбоната в сочетании с электролизом образующихся содержащих хлорид щелочного металла отработанных водных растворов.

Изобретение относится к способу получения диарилкарбоната и переработке, по меньшей мере, одной части образованного при этом раствора, содержащего хлорид щелочных металлов, в находящемся ниже по технологической цепочке электролизе хлорида щелочных металлов, включающему следующие стадии: a) получение фосгена взаимодействием хлора с монооксидом углерода, b) взаимодействие фосгена, образованного согласно стадии a), c, по меньшей мере, одним монофенолом в присутствии основания, при необходимости, основного катализатора до диарилкарбоната и раствора, содержащего хлорид щелочных металлов, c) отделение содержащей образованный на стадии b) диарилкарбонат органической фазы и, по меньшей мере, одноразовая промывка содержащей диарилкарбонат органической фазы, d) отделение раствора, содержащего хлорид щелочных металлов, оставшегося согласно стадии с), от остатков растворителя и, при необходимости, остатков катализатора путем отпаривания раствора с водяным паром и обработкой адсорбентами, e) электрохимическое окисление, по меньшей мере, одной части раствора, содержащего хлорид щелочных металлов со стадии d) с образованием хлора, щелочи и, при необходимости, водорода, где при отделении d) раствора перед обработкой адсорбентами значение рН раствора устанавливают меньше или равно 8 и f) по меньшей мере, одну часть полученного согласно стадии e) хлора возвращают на получение фосгена согласно стадии a) и/или g) по меньшей мере, одну часть полученного согласно стадии e) раствора щелочи возвращают на получение диарилкарбоната согласно стадии b).

Изобретение относится к технике управления процессом получения хлористого калия при формировании раствора вводом воды в осветленный насыщенный раствор, поступающий со стадии растворения сильвинитовых руд и осветления жидкой фазы, на установках вакуум-кристаллизации.
Изобретение относится к технике получения хлористого калия из сильвинитовых руд методом растворения-кристаллизации. .

Изобретение относится к технике получения хлорида калия из сильвинитового сырья. .
Изобретение относится к технике получения гранулированного хлористого калия, полученного, например, растворением сильвинитовых руд, кристаллизацией хлористого калия из насыщенного осветленного раствора, его выделением и сушкой с последующим гранулированием.
Изобретение относится к технике окрашивания белого галургического хлористого калия с получением продукта с окраской, характерной для флотационного хлористого калия.

Изобретение относится к технике управления процессом получения хлористого калия галургическим методом при формировании раствора вводом воды в осветленный насыщенный раствор, поступающий со стадий растворения сильвинитовых руд и осветления жидкой фазы в запиточный стакан установок вакуум-кристаллизации.
Изобретение относится к цветной металлургии и может быть использовано при подготовке хлормагниевого сырья к электролизу. .

Изобретение относится к технике управления процессом получения хлористого калия галургическим методом вводом воды в разбавленный водой осветленный насыщенный раствор, поступающий со стадий растворения сильвинитовых руд и осветления жидкой фазы из запиточного стакана в корпуса установки вакуум-кристаллизации.

Изобретение может быть использовано при получении хлористого калия галургическим методом. Способ управления процессом получения хлористого калия путем изменения входного потока воды включает регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от его весового расхода, содержания в нем хлористого калия, хлористого магния, кристаллического хлористого натрия и его температуры. Проводят расчеты степени насыщения раствора по хлористому калию, коэффициента повышения концентрации насыщенного раствора по хлористому натрию при степени его насыщения по хлористому калию менее 1, коэффициента прироста степени насыщения раствора по хлористому натрию за счет содержания в нем кристаллического хлористого натрия. Дополнительно определяют объемный расход раствора и по полученным данным определяют весовой расход раствора. Рассчитывают концентрацию насыщения раствора по хлористому калию, общую концентрацию NaCl, концентрацию MgCl2 и воды в растворе. Замеренные и вычисленные значения технологических параметров подают в систему управления расходом воды. Изобретение позволяет упростить управление процессом получения хлористого калия. 1 табл., 2 пр.
Наверх