Способ определения сплошности полимерного покрытия и устройство для его осуществления

Изобретение относится к области физико-химического анализа и может быть использовано для определения наличия трещин на поверхности образцов стального проката с полимерным покрытием, преимущественно при испытании полимерного покрытия на прочность при изгибе по ГОСТ Р 52146-2003. В способе определения сплошности полимерного покрытия, включающем контакт исследуемого образца с электропроводной жидкостью и измерение электрического тока, согласно изобретению ток образуется не от внешнего источника питания, а в результате появления на дефектных участках покрытия активного электрода - металлической полосы. Кроме того, в качестве электропроводной жидкости может применяться соляной раствор. Для реализации данного способа используют устройство для определения сплошности полимерного покрытия, включающее рабочий элемент с электропроводной жидкостью и прибор контроля тока, отличающееся тем, что рабочий элемент выполнен в виде электролитической ячейки, изготовленной из диэлектрического материала, в нижней части которой располагается электрод, выполненный из материала, не пассивирующегося в применяемой электропроводной жидкости, а верхняя часть которой имеет контактный элемент, выполненный из пластичного коррозионно-стойкого материала, при этом электролитическая ячейка снабжена системой ее заполнения и поддержания уровня выпуклого мениска в контактном элементе и контактирует с электропроводным элементом. Кроме того, электропроводный элемент может быть выполнен в форме металлического стакана, электрод - из графита, а контактный элемент - из резины. Техническим результатом является создание способа и устройства, которые обеспечивают точность, объективность, простоту и оперативность определения сплошности полимерного покрытия. 2 н. и 4 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к области физико-химического анализа и может быть использовано для определения наличия трещин на поверхности образцов стального проката с полимерным покрытием, преимущественно при испытании полимерного покрытия на прочность при изгибе по ГОСТ Р 52146-2003.

Известен способ определения пористости диэлектрических покрытий оптических элементов из меди и ее сплавов, включающий помещение исследуемого оптического элемента с диэлектрическим покрытием в раствор электролита и измерение величины тока при различных значениях напряжения. После этого заменяют исследуемый оптический элемент на эталонный оптический элемент без диэлектрического покрытия, выполненный из того же материала, устанавливают его идентично исследуемому элементу, измеряют величину тока при различных значениях напряжения и определяют пористость диэлектрического покрытия по формуле:

K = tan α п о р tan α э т × 100,

где k - пористость диэлектрического покрытия, %;

αпор - угол наклона вольт-амперной характеристики при измерении исследуемого образца к оси абсцисс;

αэт - угол наклона вольт-амперной характеристики при измерении эталонного образца к оси абсцисс.

При этом в качестве электролита применяют буферную систему при pH 6,6-9,4 с добавлением 0,004 вес.% 1,2,3-бензотриазола (Патент РФ №2099687, МПК G01N 15/08, опубл. 20.12.1997).

Применение указанного способа определения пористости для определения сплошности полимерного покрытия затруднено необходимостью использовать эталонные образцы. С другой стороны, указанный способ основан на расчете электросопротивления, возникающего в электролитической ячейке при прохождении электрического тока от источника питания через электролит и оголенные участки испытуемого образца. Трудоемкий расчет с построением вольт-амперных характеристик исследуемого и эталонного образца с измерением их угла наклона требует значительного времени и существенно затрудняет оценку прочности полимерного покрытия при испытаниях большого объема проката в условиях непрерывной линии окраски. Кроме того, указанный способ требует внешнего источника питания с регулируемым напряжением, что также усложняет процесс измерения.

Наиболее близким по технической сущности к предлагаемому изобретению является способ определения сплошности покрытий толщиной до 500 мкм, нанесенных на проводящее основание методом влажной губки, суть которого заключается в следующем. На губку, смоченную увлажняющим веществом, подается низкое напряжение. При перемещении губки над микроотверстием жидкость проникает через него до основания и замыкает электрическую цепь, о чем сообщает сигнализация в приборе (http://www.elcometer.ru/upload/file/12.%20Elcometer.pdf). Для реализации указанного способа используют устройство, включающее датчик, на конце которого находится губчатый материал различной конфигурации, смоченный в жидкости, сигнальный кабель, встроенный или внешний источник тока. Устройство предусматривает модели в вариантах с одним, двумя или тремя значениями напряжений (9 В, 67,5 В и 90 В) в зависимости от толщины покрытия. Недостатком известного способа и устройства является наличие источника питания, который необходимо менять в зависимости от толщины покрытия. Кроме того, частое (в условиях производства проката с полимерным покрытием) применение датчика, оборудованного губчатым материалом, приводит к его загрязнению и износу. А после каждого перерыва в работе губчатый материал необходимо промывать и смачивать жидкостью заново. Загрязнение и износ губчатого материала увеличивают электросопротивление датчика прибора и требуют повышения напряжения.

Задачей предлагаемого изобретения является создание способа и устройства, которые обеспечивают точность, объективность, простоту и оперативность определения сплошности полимерного покрытия.

Для решения поставленной задачи в известном способе определения сплошности полимерного покрытия, включающем контакт исследуемого образца с электропроводной жидкостью и измерение электрического тока, согласно изобретению электрический ток образуется не от внешнего источника питания, а в результате появления на дефектных участках покрытия активного электрода - металлической полосы. Кроме того, в качестве электропроводной жидкости может применяться соляной раствор. Для реализации данного способа используется устройство, включающее рабочий элемент с электропроводной жидкостью и прибор контроля тока. Согласно изобретению рабочий элемент выполнен в виде электролитической ячейки, изготовленной из диэлектрического материала, в нижней части которой располагается электрод, выполненный из материала, не пассивирующегося в применяемой электропроводной жидкости, а верхняя часть которой имеет контактный элемент, выполненный из пластичного коррозионно-стойкого материала, при этом электролитическая ячейка снабжена системой ее заполнения и поддержания уровня выпуклого мениска в контактном элементе и контактирует с электропроводным элементом. Кроме того, электрод может быть выполнен из графита, контактный элемент может быть выполнен из резины, а для удобства проведения испытаний, электропроводный элемент выполнен в форме металлического стакана.

Сущность предлагаемого технического решения состоит в следующем. В электропроводной жидкости полимерное покрытие является изолятором между металлической полосой, на поверхность которой оно нанесено, и вспомогательным электродом, расположенным в электролитической ячейке. Если на поверхности проката с полимерным покрытием имеются трещины или поры, жидкость проникает в них, в системе появляется активный электрод - металлическая полоса, цепь замыкается, что приводит к появлению электрического тока. В данном случае нет необходимости использовать внешний источник питания. Электрический ток образуется благодаря проникновению электропроводной жидкости в трещины полимерного покрытия в замкнутой цепи между электродом и оголенной поверхностью металлической полосы за счет разности электродных потенциалов.

Изобретение иллюстрируется чертежом, где на фиг.1 показано устройство для определения сплошности полимерного покрытия. Устройство содержит электролитическую ячейку 1, вставленную в стакан 2, который электрически соединен с положительной клеммой прибора контроля тока 3. На дно стакана 2 опирается вмонтированный в электролитическую ячейку электрод 4. В верхней части электролитическая ячейка имеет контактный элемент 5. Контактный элемент позволяет осуществлять контакт электропроводной жидкости с испытуемым образцом и ограничивать зону смачивания его поверхности. Электролитическая ячейка снабжена системой ее заполнения и подержания уровня выпуклого мениска электропроводной жидкости в контактном элементе 5, состоящей из трубки с воронкой 7.

Устройство работает следующим образом. Через воронку 7 в электролитическую ячейку 1 заливают электропроводную жидкость. Раствор наливают до тех пор, пока уровни в воронке и контактном элементе 5 электролитической ячейки не сравняются. Затем еще добавляют немного жидкости в воронку 7, чтобы создать выпуклый мениск в контактном элементе 5 электролитической ячейки. Образец 6, соединенный с отрицательной клеммой прибора контроля тока, опускают в мениск электропроводной жидкости до упора с контактным элементом 5 электролитической ячейки. Если на поверхности имеются трещины или поры, то возникает электрический ток, который фиксируется прибором. Длина контакта определяется диаметром носика.

Пример реализации изобретения

Описанный способ и устройство использовали при оценке прочности полимерного покрытия при изгибе от 0Т и более по ГОСТ Р 52146-2003. Для оценки прочности полимерного покрытия при изгибе от 0Т и более ГОСТ Р 52146-2003 предусматривает специальное испытание, основанное на изгибе образца на 180° до образования трещин. Если на поверхности покрытия отсутствуют трещины, то прочность при первом изгибе соответствует 0Т. В случае наличия трещин испытания продолжают. При отсутствии трещин прочность полимерного покрытия при втором изгибе составляет ½ Т. Образец изгибают до исчезновения трещин на поверхности покрытия.

Для проведения испытаний использовали устройство, в котором электрод был выполнен из графита, контактный элемент - из резины, а электропроводный элемент - в форме металлического стакана. Готовим электропроводную жидкость - раствор NaCl концентрацией 10 г/л, заливаем его в электролитическую ячейку через воронку, соединяем металлический стакан с положительной клеммой прибора контроля тока, а испытуемый образец соединяем с отрицательной клеммой прибора контроля тока. Изогнутый согласно ГОСТ Р 52146-2003 стальной образец с полимерным покрытием внешней поверхностью изгиба помещаем в электропроводную жидкость. Если на поверхности изгиба имеются трещины полимерного покрытия, жидкость проникает в них, в системе появляется активный электрод - металлическая полоса, цепь замыкается, что приводит к появлению электрического тока. Наличие электрического тока, измеренного с точностью до 1 µA на длине внешней поверхности изгиба, свидетельствует о том, что испытание следует продолжать, отсутствие тока говорит об отсутствии трещин полимерного покрытия и является объективным признаком оценки прочности полимерного покрытия при изгибе от 0Т и более.

В таблице 1 представлены результаты оценки прочности полимерного покрытия.

Таблица 1
Ток, µA
Т-изгиб ½Т 1½Т
Образец №1 140-150 100 8-16 8-20
Образец №2 140-150 90-120 4-12 0

Приведенные в таблице 1 данные показывают, что на исследованных образцах сила тока резко снижается уже при 1Т. При таких значениях силы тока рассмотреть наличие трещин на поверхности изгиба при десятикратном увеличении, а тем более невооруженным глазом, как это требует ГОСТ Р 52146-2003, практически невозможно. На образце №2 сила тока при 1,5Т равна 0, что свидетельствует об отсутствии трещин полимерного покрытия.

Сопоставленный анализ с прототипом позволяет сделать вывод, что заявляемый способ отличается от известного тем, что для определения сплошности полимерного покрытия по заявляемому способу, в отличие от известного, нет необходимости во внешнем источнике питания. Электрический ток образуется благодаря проникновению электропроводной жидкости в трещины полимерного покрытия в замкнутой цепи между электродом и оголенной поверхностью металлического проката за счет разности электродных потенциалов.

В результате применения предлагаемого способа и устройства обеспечивается точность определения сплошности полимерного покрытия, полученные результаты объективны и не зависят от человека, проводившего испытания. Таким образом, предлагаемое техническое решение обеспечивает достижение поставленного технического результата и может быть рекомендовано к широкому практическому применению.

1. Способ определения сплошности полимерного покрытия, включающий контакт исследуемого образца с электропроводной жидкостью и измерение электрического тока, отличающийся тем, что ток образуется не от внешнего источника питания, а в результате появления на дефектных участках покрытия активного электрода - металлической полосы.

2. Способ по п.1, отличающийся тем, что в качестве электропроводной жидкости используют соляной раствор.

3. Устройство для определения сплошности полимерного покрытия, включающее рабочий элемент с электропроводной жидкостью и прибор контроля тока, отличающееся тем, что рабочий элемент выполнен в виде электролитической ячейки, изготовленной из диэлектрического материала, в нижней части которой располагается электрод, выполненный из материала, не пассивирующегося в применяемой электропроводной жидкости, а верхняя часть которой имеет контактный элемент, выполненный из пластичного коррозионно-стойкого материала, при этом электролитическая ячейка снабжена системой ее заполнения и поддержания уровня выпуклого мениска в контактном элементе и контактирует с электропроводным элементом.

4. Устройство по п.3, отличающееся тем, что электрод выполнен из графита.

5. Устройство по п.3, отличающееся тем, что электропроводный элемент выполнен в форме металлического стакана.

6. Устройство по п.3, отличающееся тем, что контактный элемент выполнен из резины.



 

Похожие патенты:

Изобретение относится к сельскохозяйственному машиностроению, в частности к машинам и орудиям для обработки почвы и может найти применение научно-исследовательскими и производственными организациями при проектировании, исследованиях и эксплуатации рабочих органов почвообрабатывающих машин и орудий.

Изобретение относится к области испытания и определения свойств материалов. Способ измерения пористости частиц сыпучих материалов целесообразно применять при производстве гранулированных катализаторов, сорбентов, а также для определения свойств пористых материалов различного назначения.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов.

Изобретение относится к машиностроению и может быть использовано при измерении проницаемости пористых пластически деформируемых материалов для жидкости. Способ заключается в том, что образец помещают в замкнутую цилиндрическую полость между поршнем, создающим давление, и проницаемым для жидкости дном.

Изобретение относится к способу испытания бумажных фильтрующих элементов для очистки жидкостей, нефтепродуктов. Способ контроля ресурса фильтроэлемента включает прокачку жидкости, смешанной с искусственным загрязнителем, и фиксацию перепада давления на фильтроэлементе через равные величины его прироста.

Изобретение относится к области тестирования на герметичность и может быть использовано для тестирования на герметичность фильтрованного устройства (2) для сепарации аэрозолей и пылей из объемного потока газа.

Изобретение относится к методам неразрушающего контроля горных пород, а именно к способам установления детальной характеристики структуры трещинно-порового пространства кристаллических пород, определения скрытых неоднородностей, флюидопроницаемости.

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях.
Изобретение относится к области экологии и сельского хозяйства и предназначено для определения коэффициента фильтрации плывунного грунта в зоне распространения подзолистых почв.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов влагопроводности ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов. Способ заключается в том, что измерение производится по принципу просачивания воздуха через пористый материал с известной пористостью и влажностью. Образец известной длины и объема помещают в устройство, обеспечивающее измерение разности давлений на его входе и выходе и объема воздуха, протекшего через образец в стационарном режиме при давлении, близком к атмосферному. На основе измеренных пористости, влажности, разности давлений между торцами образца и времени протекания через него измеренного объема воздуха рассчитывают удельную поверхность конденсированной фазы, удельную поверхность твердой фазы и потенциал влаги однородных пористых материалов по формулам. При этом измерение входящих в формулу физических величин, таких как объем газа, протекающего через образец, время протекания газа, перепад давлений, производят на одних и тех же образцах пористых материалов. Техническим результатом является повышение точности определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, потенциала влаги однородных пористых материалов. 1 ил., 4 табл.

Изобретение относится к способам описания характеристик двухмерных и трехмерных образцов для определения распределений размеров тела пор и каналов пор, а также кривых зависимости капиллярного давления в пористой среде. Входная информация включает петрографические изображения высокого разрешения и лабораторные измерения пористости. Выходная информация включает распределения размеров тела пор и каналов пор и моделирование кривых зависимости капиллярного давления как для тела пор, так и каналов пор. 3 н. и 27 з.п. ф-лы, 27 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения достоверности оценки запасов углеводородов и математического моделирования пластовых процессов в низкопроницаемых коллекторах нефти и газа. Техническим результатом является определение повышенных значения капиллярных давлений в низкопроницаемых образцах горных пород без явления разрыва жидких флюидов при вращении центрифуги. Способ включает вытеснение насыщающего образец породы флюида вытесняющим флюидом при вращении центрифуги. При этом перед вращением центрифуги в загерметизированном кернодержателе центрифуги повышают начальное давление путем закачки в него вытесняющего флюида до уровня, превышающего прогнозируемое максимальное значение капиллярного давления в образце породы. Также предложено устройство для реализации способа. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерению физических свойств, связанных с прохождением текучей фазы в пористом материале. Способ оценки физических параметров пористого материала, находящегося в потоке текучих сред, содержит этапы, на которых образец (2) материала помещают в герметичную камеру (1) таким образом, чтобы входная сторона (3) образца сообщалась с первым объемом (V0) и чтобы его выходная сторона (4) сообщалась со вторым объемом. В первом объеме осуществляют модуляцию давления и в течение времени измеряют изменения соответствующих давлений в первом объеме и во втором объеме. При помощи дифференциального уравнения, параметрами которого являются собственная проницаемость материала, его пористость и его коэффициент Клинкенберга, производят цифровой анализ изменений измеряемых давлений для оценки по меньшей мере собственной проницаемости и коэффициента Клинкенберга, а также предпочтительно его пористости в ходе одного эксперимента. Техническим результатом является повышение оценки проницаемости kI и коэффициента Клинкенберга b, а также возможность одновременно производить оценку пористости ϕ в ходе одного эксперимента. 12 з.п. ф-лы, 28 ил., 4 табл.
Изобретение относится к области исследований параметров грунтов. Представлен способ определения коэффициента фильтрации плывунного грунта, по которому через образец грунта пропускают поток воды, на поверхности образца грунта размещают грузик, фиксируют начало погружения грузика, измеряют параметры образца и потока воды, рассчитывают по измеренным показателям коэффициент фильтрации грунта. Новым является то, что фиксируют величину концентрации полиакриламида в потоке воды, прошедшем через образец грунта, и при снижении величины концентрации больше 8% от начального значения вводят в поток воды, направляемый в образец грунта, раствор полиакриламида, восстанавливая величину концентрации полиакриламида в потоке воды, прошедшем через образец грунта, до начального значения. Достигается расширение функциональных возможностей. 1 пр., 1 табл.

Изобретение относится к контрольно-измерительной и экспериментальной технике и может быть использовано для контроля качества фильтрующих материалов. Способ определения максимального размера пор мембраны включает установку мембраны в ячейку и заполнение ячейки жидкостью, создание условий для проникновения льда сквозь мембрану и расчет значения максимального размера пор мембраны. Способы измерения максимального размера сквозных каналов пористого материала и повышения надежности испытаний установкой мембраны делят ячейку на две полости. Заполняют ячейку с мембраной дегазированной дистиллированной водой и охлаждают ее до температуры ниже 0°C при атмосферном давлении. В одну из полостей ячейки вносят затравку льда и по истечении времени полного замерзания воды начинают понижать температуру ячейки до тех пор, когда начнется кристаллизация воды во второй полости ячейки. По температуре начала кристаллизации и зависимости понижения температуры фазового равновесия воды и льда от радиуса пор находят максимальный размер пор мембраны. Техническим результатом является разработка простого неразрушающего способа измерения максимального размера сквозных каналов пористого материала, повышение надежности испытаний и расширение области измеряемого диапазона сквозных каналов в область более мелких пор. 1 ил.

Изобретение относится к газовой промышленности и может быть использовано для моделирования, проектирования подземных хранилищ газа (ПХГ) в водоносных структурах пласта коллектора и оценки активного объема ПХГ. Способ включает в себя отбор представительных образцов породы, имеющих типичные для подземного хранилища газа значения пористости и проницаемости, формирование имитатора породы пласта путем последовательного размещения представительных образцов породы в кернодержателе, подключение на вход имитатора породы пласта прецизионных насосов для закачки воды и газа, заполнение имитатора породы пласта водой и газом в объемах, соответствующих значениям начальной газо- и водонасыщенности подземного хранилища газа, определение открытого объема порового пространства имитатора породы пласта по объему закачанных в имитатор породы пласта воды и газа, установление пластовой температуры, создание в имитаторе породы пласта давления обжима и пластового давления, соответствующих значениям горного и пластового давлений подземного хранилища газа, и закрытие выхода имитатора породы пласта, последующую закачку газа на вход в имитатор породы пласта с помощью прецизионного насоса, достигая максимального для подземного хранилища газа значения пластового давления, имитацию отбора газа путем выпуска газа со входа имитатора породы пласта, достигая минимального для подземного хранилища газа значения пластового давления с регистрацией объема вышедшего газа и воды, определение активного газового объема имитатора породы пласта по разнице объемов газа и воды, вышедших из имитатора породы пласта, с последующим определением активного газового объема подземного хранилища газа, который определяют как произведение открытого объема порового пространства подземного хранилища газа на частное от деления активного газового объема имитатора породы пласта и открытого объема порового пространства имитатора породы пласта. Предложенное изобретение обеспечивает моделирование и оценку активного объема ПХГ в водоносных трещиновато-поровых структурах, адекватно отражающего поведение натурного пласта-коллектора проектируемого ПХГ. 7 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано при оценке качества пористых материалов, например керамики, металлокерамики. Задачей, решаемой изобретением, является повышение точности измерения. Устройство содержит измерительные камеры 1, насос 6, соединенный через клапаны 7, 9 с измерительной камерой 1, ЭВМ 12, соединенную с измерительными камерами 1 с одной стороны и насосом 6 с другой, рабочую камеру 2, соединенную с атмосферой, систему управления измерением 11, соединенную с насосом 6 с одной стороны и ЭВМ 12 с другой, датчики давления 10, установленные на измерительных камерах 1, и датчик температуры 13, установленный на рабочей камере 2. Датчик температуры 13 связан с ЭВМ 12. В измерительных камерах 1 выполнено несколько изолированных друг от друга полостей 3. В рабочей камере 2 выполнена одна полость 4. Датчик времени встроен в ЭВМ 12. Датчики давления 10 связаны с системой управления измерением 11, а их число соответствует числу полостей в камерах. Техническим результатом является повышение точности. 1 ил.

Настоящее изобретение относится к области техники производства сосудов с покрытием для хранения биологически активных соединений или крови. Способ инспектирования продукта процесса покрытия, где покрытие было нанесено на поверхность подожки с образованием поверхности с покрытием. Причем покрытие представляет собой PECVD-покрытие, выполненное в условиях вакуума. При этом способ включает следующие этапы: a) обеспечения продукта как объекта инспекции; (b) наполнения продукта с покрытием разновидностью летучего вещества после нанесения покрытия; (c) последующего выполнения измерения выделившихся газов посредством измерения высвобождения по меньшей мере одной разновидности летучего вещества из объекта инспекции в газовое пространство вблизи поверхности с покрытием; и (d) сравнения результата этапа (c) с результатом этапа (c) для по меньшей мере одного эталонного объекта, измеренного при таких же тестовых условиях. Техническим результатом является возможность определять присутствие или отсутствие покрытия, и/или физическое и/или химическое свойство покрытия. 3 н. 27 з.п. ф-лы, 19 ил.
Изобретение относится к области исследований параметров грунтов мелиорируемых земель. На верхней поверхности образца грунта размещают грузик. Через образец пропускают поток воды. Фиксируют концентрацию алкилдиметилбензиламмония хлорида в потоке воды, прошедшем через образец грунта. Фиксируют начало погружения грузика, измеряют параметры образца и потока воды, рассчитывают по измеренным показателям коэффициент фильтрации грунта. В потоке воды, пропускаемой через образец грунта, фиксируют величину концентрации алкилдиметилбензиламмония хлорида и при снижении величины концентрации больше 6% от начального значения в поток воды, направляемый в образец грунта, вводят раствор алкилдиметилбензиламмония хлорида, восстанавливая величину концентрации алкилдиметилбензиламмония хлорида в потоке воды, прошедшем через образец грунта, до начального значения. Достигается повышение надежности определения. 1 пр., 1 табл.
Наверх