Сталь для изготовления изделий с повышенной прокаливаемостью

Изобретение относится к области металлургии, в частности к сталям бейнитного класса с повышенной прокаливаемостью, и может быть использовано при изготовлении крупногабаритных изделий, работающих в условиях значительных ударных воздействий, сосудов высокого давления, режущего инструмента, в спецтехнике. Сталь содержит, в мас.%: углерод 0,10-0,20, марганец 2,0-3,0, хром 2,0-3,0, кремний 1,0-1,5, молибден 0,4-0,6, ванадий 0,08-0,12, железо - остальное. После нагрева под закалку до температуры 930°С, выдержки в течение 1 часа и охлаждения на воздухе изделия из стали имеют структуру нижнего бескарбидного бейнита. Сталь обладает повышенной устойчивостью переохлажденного аустенита в области бейнитного превращения, повышенной прокаливаемостью, ударной вязкостью и трещиностойкостью при сохранении высокого уровня прочности. 1 табл.

 

Изобретение относится к области металлургии, в частности к области изыскания сталей бейнитного класса, и может быть использовано при изготовлении крупногабаритных изделий, работающих в условиях значительных ударных воздействий, сосудов высокого давления, режущего инструмента, в спецтехнике.

Известна сталь (а.с. №836190, МПК C22C 38/24, от 16.04.79 г.), содержащая углерод, марганец, хром, кремний, молибден, ванадий, железо при следующем соотношении ингредиентов, в масс.%:

Углерод 0,1-0,2
Марганец 3,2-4,0
Хром 3,2-4,0
Кремний 0,17-0,36
Молибден 0,5-1,0
Ванадий 0,3-0,5
Железо остальное

Данный состав принят в качестве прототипа.

Известная сталь содержит в составе большое количество марганца, хрома, и, особенно - ванадия и молибдена, что приводит к сформированию в аустените спецкарбидов, не позволяющих обеспечить повышение устойчивости переохлажденного аустенита, поэтому при замедленном охлаждении, даже на воздухе, формируется структура верхнего карбидного бейнита. Отсюда - снижение прочности, трещиностойкости и ударной вязкости. Кроме того, прокаливаемость стали на уровне 110-160 мм, что ограничивает ее применение для крупногабаритных изделий с сечением более 160 мм. Для получения высокопрочной стали этого состава необходима закалка после аустенитизации с 900°C в жидкой среде (масле, соляной ванне) и отпуск при 250°C, что усложняет технологический процесс получения заданной структуры и свойств, затратно, экологически невыгодно. Состав не системно-легирован.

Признаки прототипа, совпадающие с признаками заявляемого изобретения - углерод в количестве 0,1-0,2 масс.%, марганец, хром, кремний, молибден, ванадий, железо.

Задача изобретения - получение экономно-системно-легированной стали для работы в условиях ударных воздействий крупногабаритных изделий, обладающих повышенной устойчивостью переохлажденного аустенита в области бейнитного превращения, повышенной прокаливаемостью, ударной вязкостью, трещиностойкостью при сохранении высокого уровня прочности.

Поставленная задача была решена за счет того, что известная сталь, содержащая углерод, марганец, хром, кремний, молибден, ванадий, железо, содержит ингредиенты в следующем соотношении, масс.%:

Углерод 0,10-0,20
Марганец 2,0-3,0
Хром 2,0-3,0
Кремний 1,0-1,5
Молибден 0,4-0,6
Ванадий 0,08-0,12
Железо остальное

В качестве примесей сталь может содержать, мас.%: серу до 0,009; фосфор до 0,20; медь до 0,19; титан до 0,004; никель до 0,16. Сталь после аустенитизации с прокатного нагрева охлаждают на воздухе.

Отличительным признаком заявляемого состава стали является количественное соотношение используемых ингредиентов, масс.%: марганец - 2,0-3,0; хром - 2,0-3,0; кремний - 1,0-1,5; молибден - 0,4-0,6; ванадий - 0,08-0,12; железо - остальное.

Состав имеет одновременно слабую (марганец, хром), среднюю (молибден) и сильную (ванадий) группы карбидообразователей, введенных по схеме сохранения непрерывности цепочки связей карбидообразователей Mn-Cr-Mo-V. Сохранение такой системы связей компонентов, их соотношения в заявленном диапазоне концентраций, с уменьшением концентрации от слабого к сильному карбидообразователю, но с сохранением соотношения Cr к Mn как 1:1, позволяет избежать образования спецкарбидов, ухудшающих ударную вязкость, трещиностойкость изделий и снижающих уровень прокаливаемости. Особенно это касается крупногабаритных изделий.

Получают состав стали при следующих соотношениях карбидообразователей относительно хрома, в мас. частях: Cr:Mn 1:1; Cr:Mo 1:0,2; Cr:V 1:0,04, а относительно друг друга по цепочке от хрома к ванадию, в мас.частях: Mn:Cr 1:1; Cr:Mo 1:0,2; Mo:V 1:0,2. При содержании в стали углерода до 0,2% структуру пакетного мартенсита получают на воздухе с прокатного нагрева.

Состав стали в заявленном диапазоне концентраций компонентов, сочетание и соотношение концентраций карбидообразователей между собой и с кремнием обеспечивают: при нагреве получение мелкого однородного зерна аустенита, а при медленном охлаждении на воздухе с прокатного нагрева - повышенную устойчивость переохлажденного аустенита и, как следствие - получение структуры низкоуглеродистого пакетного мартенсита.

Экспериментальные исследования структуры и свойств стали показали, что содержание кремния в количестве 1,0-1,5 масс.% в экономно-системно-легированном составе стали повышает термодинамическую активность углерода, а активность железа понижает. В результате, в процессе изотермической выдержки в области формирования нижнего бейнита или в процессе медленного охлаждения (на воздухе и с еще более низкими скоростями) в этой области атомы углерода накапливаются в аустените, но недостаток железа не позволяет выделиться цементиту. В результате формируется специфическая структура бескарбидного бейнита.

Кремний в заявляемой экономно-системно-легированной стали гомогенизирует структуру, нейтрализует процесс карбидообразования в области бейнитного превращения, позволяя легирующим элементам и углероду оставаться в аустените, тем самым, повышая его устойчивость в процессе охлаждения и деформационную стабильность при эксплуатации изделий, в первую очередь - крупногабаритных.

Кремний в состав системно-легированной стали впервые введен в количестве 1,0-1,5 масс.%. По полученным значениям ударной вязкости и трещиностойкости результат оказался неожиданным. Известно, что кремний, растворяясь в феррите, увеличивает твердость и прочность, но уменьшает вязкость стали (А.С. Самоходский. Технология термической обработки металлов. М. «Машгиз», 1962 г., с.194). Например, (Разрушение. М. «Металлургия», перевод с англ., под ред. Г. Либовиц, 1976 г., с.234, 241, 263) заявлено, что содержание кремния от 0,27 до 1,55% вязкость в стали не повышает. Заявляемая же сталь, имея высокую прочность, приобрела одновременно высокую ударную вязкость, трещиностойкость, прокаливаемость. Очевидно, неожиданный результат был получен в связи с суммарным эффектом, включающим системность легирования, соотношение компонентов и их концентрацию, добавку волокнистого легирующего кремния в оптимальных пределах, который способен организовать поверхностное или объемное дублирование своей структуры в процессе взаимодействия с другими легирующими компонентами заявляемого состава при образовании новой фазы.

Сталь заявляемого состава получают следующим образом.

Кремний, хром, молибден, марганец и ванадий вводят в печь в виде ферросплавов. Отливают пробные слитки по ГОСТ 7832-65.

Исследование проводили на образцах цилиндрической формы диаметром 3 мм и высотой 10 мм. Металлографические исследования проводили с помощью светового микроскопа на шлифах, приготовленных на поперечных сечениях ударных образцов. В качестве светового микроскопа использовали микроскоп Олимпус-GX-51. Ударная вязкость определялась на образцах с острым надрезом, KCV и на образцах с дополнительными боковыми надрезами, и KCU с U-образным надрезом. Удельная работа трещины, КСТ* и динамическая трещиностойкость, КСТ* определялась в соответствии с ГОСТ 9454-78. Термическую обработку образцов проводили в печах «Накал» при температуре нагрева под закалку 930°C, время выдержки 1 час, охлаждение на воздухе. Скорость охлаждения оценивали с помощью зачеканеной в образец хромель-алюмелевой термопары, соединенной с цифровым прибором «Термодат».

Заявляемый химический состав стали и ее свойства представлены в таблице.

Для экспериментальной проверки заявляемого состава были подготовлены восемь сплавов: из заявляемого состава (пп.4-6), состава прототипа (пп.1-3) и состава за пределами заявляемого состава (пп.7-8). Из них три состава показали оптимальные результаты (пп.4-6 таблицы).

Заявляемый состав стали и соотношения содержания ее компонентов позволяют получать уровень прочности от 1300 МПа (см. табл. п.4) до 1380 МПа (см. табл. п.5) и далее до 1500 МПа (см. табл. п.6) при высоких характеристиках пластичности, ударной вязкости и динамической трещиностойкости (см. табл. пп.4-6).

Для обеспечения высокой устойчивости переохлажденного аустенита в состав вводят карбидообразователи всех трех групп, организуя непрерывную цепочку их для того, чтобы избежать образования спецкарбидов, перераспределяя углерод между группами в цепочке связей. Из группы слабых карбидообразователей имеется хром и марганец, взятые в соотношении 1:1 и концентрации: Cr и Mn (2,0-3,0 и 2,0-3,0 соответственно). По отношению к группе слабых карбидообразователей карбидообразователь средней силы - Mo (молибден) и сильный V (ванадий) введены в состав по убывающей, но в различных соотношениях концентраций (Mo - 0,4-0,6%, V - 0,08-0,12%).

Содержание кремния, как легирующего компонента, в количестве 1,0-1,5 масс.% в составе заявляемой стали обеспечивает повышение активности углерода и одновременно - снижение активности железа. В результате, при изотермической выдержке несколько выше температуры начала мартенситного превращения становится возможным получение весьма перспективной структуры бескарбидного бейнита, обладающего высоким уровнем характеристик механических свойств.

Введение меньшего, по сравнению с заявляемым составом, количества углерода и легирующих элементов, в том числе и кремния не позволяет обеспечить достаточно высокой устойчивости переохлажденного аустенита. К результате получается структура верхнего карбидного бейнита и, как следствие - пониженный уровень свойств (см. табл. п.7).

Введение большего, по сравнению с заявляемым составом, количества углерода и легирующих элементов, в том числе и кремния, хотя и обеспечивает получение структуры мартенсита, или бескарбидного бейнита, но приводит к охрупчиванию стали (см. табл. п.8).

Из данных таблицы видно, что, по сравнению с прототипом, заявляемый состав обладает более высокой прокаливаемостью (критический диаметр составляет 110-160 и 420-490 мм у прототипа (пп.1-3 таблицы) и заявляемого состава (пп.4-6) соответственно); несколько более высокой прочностью (предел прочности равен 1300-1360 и 1300-1500 МПа у прототипа и заявляемого состава соответственно), а также - более высокой ударной вязкостью (KCU - 73-85 и 106-108 Дж/см2 и KCV - 24-27 и 30-35 Дж/см2 у прототипа и заявляемого состава соответственно). При этом КСТ и КСТ* динамическая вязкость равна 12-15 Дж/см2.

Кроме того, заявляемый состав стали, по сравнению с прототипом, экономно-легирован, так как карбидообразующие - хром и марганец используются в значительно меньших концентрациях, а некарбидообразующий компонент кремний, являющийся дешевым, в больших концентрациях; системно-легирован, так как в нем карбидообразующие выстроены в ряд с уменьшением концентрации от хрома и марганца, взятых в соотношении 1:1, к ванадию во избежание образования спецкарбидов, ухудшающих свойства стали.

Таким образом, использование предлагаемого состава стали позволит:

1. Повысить прокаливаемость крупногабаритных изделий до 420-490 мм за счет достижения высокой устойчивости переохлажденного аустенита.

2. Гарантированно избежать образования спецкарбидов, нейтрализовать процесс карбидообразования к бейнитной области превращения переохлажденного аустенита, и неожиданно получить структуру «бескарбидный бейнит». Причем получают структуру бескарбидного бейнита в больших сечениях (до 360-370 мм) при использовании обычного термического оборудования (отпадает необходимость в соляных и селитровых печах-ваннах).

3. Увеличить ударную вязкость и трещиностойкость.

4. Упростить термообработку - закалку после аустенитизации и прокатного нагрева заготовки проводят на воздухе, а не в жидких средах, как в прототипе, что экономит закалочный материал (масло, селитру и т.д.), улучшает экологию термического производства.

Благодаря высоким прочностным свойствам, высокой ударной вязкости и высокой прокаливаемости предлагаемая сталь может быть использована в изделиях новой техники при изготовлении высоконагруженных изделий сложной конфигурации и большого сечения.

Заявляемый состав способен заменить стали - хромоникельмолибденовые типа 12Х2Г2НМФТ, особенно, с повышенным содержанием никеля (3-5%) при сохранении такого же высокого уровня прочности, ударной вязкости, трещиностойкости, повышая устойчивость переохлажденного аустенита в бейнитной области при сохранении устойчивости в перлитной области и значительно снижая стоимость сталей за счет, прежде всего, наличия дешевого кремния и отсутствия дорогостоящего никеля.

Таблица
№ п/п Содержание химических элементов, % масс. Механические свойства и прокаливаемость
C Mn Cr Mo V Si σB, МПа KCU, Дж/см2 KCV, Дж/см D, мм
Прототип
1 0,1 3,2 3,2 0,5 0,3 0,17 1300 85 27 160
2 0,15 3,6 3,6 0,8 0,1 0,25 1330 83 25 130
3 0,2 4,0 4,0 1,0 0,5 0,36 1360 73 24 110
Заявляемый состав
4 0,10 2,0 2,0 0,4 0,08 1,0 1300 108 35 490
5 0,15 2,5 2,5 0,5 0,10 1,2 1380 107 31 450
6 0,20 2,7 2,7 0,55 0,12 1,3 1500 106 30 420
7 0,09 <2,0 <2,0 0,4 0,08 <1,0 1220 92 23 75
8 0,21 >3,0 >3,0 >0,6 >0,12 >1,5 1470 64 16 110

Крупногабаритное изделие из стали с повышенной прокаливаемостью, содержащей углерод, марганец, хром, кремний, молибден, ванадий и железо, отличающееся тем, что сталь содержит компоненты в следующем соотношении, мас.%:

Углерод 0,10-0,20
Марганец 2,0-3,0
Хром 2,0-3,0
Кремний 1,0-1,5
Молибден 0,4-0,6
Ванадий 0,08-0,12
Железо остальное

при этом изделие после нагрева под закалку до температуры 930°С, выдержки в течение 1 часа и охлаждения на воздухе имеет структуру нижнего бескарбидного бейнита.



 

Похожие патенты:

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси.

Высокопрочный с низким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с низким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с низким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с низким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2530199
Изобретение относится к области металлургии, а именно к высокопрочному оцинкованному погружением стальному листу, используемому в автомобилестроении. Лист выполнен из стали, содержащей в мас.%: 0,03-0,20 С, 1,0 или менее Si, от более 1,5 до 3,0 Mn, 0,10 или менее P, 0,05 или менее S, 0,10 или менее Al, 0,010 или менее N, 0,5 или менее Cr и 0,01-0,50 Мо и остальное Fe с неизбежными примесями.
Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане. Для повышения прочностных свойств проката до уровня судостали категории GL-A36, GL-D36, GL-E36 и др.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении электросварных труб для строительства газопроводов и нефтепроводов в северных районах и сейсмических зонах.
Изобретение относится к обработке металлов давлением, в частности к производству горячекатаного широкополосного рулонного проката. Для повышения потребительских свойств и прочностных свойств проката последний производят из стали, содержащей, мас.%: 0,07 углерода, 0,03 кремния, 0,4÷1,6 марганца, 0,03 хрома, 0,03 никеля, 0,012 серы, 0,014 фосфора, 0,047 алюминия, 0,04 меди, 0,018 титана, 0,007 азота, 0,02÷0,09 ниобия, 0,003 ванадия, которую подвергают прокатке, ускоренному охлаждению и смотке полос в рулон, при этом при толщине полосы до 5 мм включительно используют сталь с фактическим содержанием марганца и ниобия, при толщине проката от 5,01 мм до 12 мм включительно - сталь с содержание марганца большим в 1,5 раза и содержанием ниобия в 1,2 раза большим, чем при производстве проката толщиной до 5 мм, при толщине проката от 12,01 мм до 16 мм включительно - сталь с содержанием марганца большим в 1,9 раза и содержанием ниобия в 1,5 раза большим, чем при производстве проката толщиной до 5 мм, при этом температуру конца прокатки выдерживают ниже температуры Ar3÷(Ar3-30)°C, температуру смотки обеспечивают ниже Ar1 на 100÷150°C, вычисляя величины Ar3 и Ar1 по формулам: Ar3=879,2-94,24[C]-21,13[Si]-25,56[Mn]+47,71[Cr]+16,44[Ni]; Ar1=729,2-9,24[C]+12,13[Si]-15,56[Mn]+17,71[Cr]-46,44[Ni].

Изобретение относится к области металлургии, а именно к изготовлению шестерней для приводных поездных систем, используемых для передачи высокого крутящего момента.
Изобретение относится к металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов и штрипсов с применением контролируемой прокатки.

Изобретение относится к прокатному производству, в частности производству листового проката для изготовления электросварных труб. .
Изобретение относится к области металлургии, конкретно к листопрокатному производству, и может быть использовано при получении высокопрочных холоднокатаных листов для глубокой вытяжки.

Изобретение относится к области металлургии, а именно к штампуемой стали, используемой для изготовления автомобильных деталей и конструктивных деталей машин. .
Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления инструментов горячего деформирования цветных металлов и сплавов. Сталь содержит в мас.%: углерод 0,6-0,7, кремний 0,4-0,7, марганец 1,9-2,1, хром 2,8-3,2, ванадий 0,5-0,6, бор 0,001-0,003, титан 0,15-0,3, железо - остальное. Суммарное содержание хрома, марганца, кремния, ванадия, бора и титана составляет 5,35-6,2 мас.%. Повышается ударная вязкость, стойкость к трещинам и износостойкость. 1 табл.

Изобретение относится к способу изготовления конструктивных элементов из стали, способной к самозакаливанию на воздухе. Сталь состоит из элементов, мас.%: С ≤ 0,20, Al ≤ 0,08, Si ≤ 1,00, Mn 1,20 до ≤ 2,50, Р ≤ 0,020, S ≤ 0,015, N ≤ 0,0150, Cr 0,30 до ≤ 1,5, Мо 0,10 до ≤ 0,80, Ti 0,010 до ≤ 0,050, V 0,03 до ≤ 0,20, В 0,0015 до ≤ 0,0060, железо и неизбежные примеси - остальное. Заготовку из горячекатаной или холоднокатаной листовой стали или стальной трубы нагревают до температуры ϑзаготовки= от 800 до 1050°С и пластически деформируют в штампе в конструктивный элемент. После извлечения из штампа деталь охлаждают на воздухе, причем после извлечения из штампа конструктивный элемент имеет температуру ϑизвлечения выше 200°С и ниже 800°С, а во время охлаждения на воздухе обеспечивается закалка. Достигаются требуемые механические свойства в пластически деформируемом элементе без необходимости проведения операции заключительного обжига. 2 н. и 7 з.п. ф-лы, 2 ил.

Изобретение относится к области металлургии, а именно к стали для изготовления высокопрочных колес для рельсового транспорта. Сталь содержит, в мас.%: С от 0,65 до 0,84%, Si от 0,02 до 1,00%, Mn от 0,50 до 1,90%, Cr от 0,02 до 0,50%, V от 0,02 до 0,20%, S: 0,04% или менее, при необходимости от 0 до 0,2% Мо, Fe и примеси - остальное. В качестве примесей сталь содержит: Р 0,05 мас.% или менее, Cu 0,20 мас.% или менее и Ni 0,20 мас.% или менее. Для компонентов стали выполняются следующие соотношения: Fn1=34≤2,7+29,5×C+2,9×Si+6,9×Mn+10,8×Cr+30,3×Mo+44,3×V=34÷43, и Fn2=exp(0,76)×exp(0,05×C)×exp(1,35×Si)×exp(0,38×Mn)×exp(0,77×Cr)×exp(3,0×Mo)×exp(4,6×V)≤25. Сталь обладает высокой износостойкостью, усталостной прочностью в зоне контакта качения и устойчивостью к скалыванию, что обеспечивает длительный срок службы колеса. 1 з.п. ф-лы, 16 ил., 4 табл.

Изобретение относится к металлургии, более точно к прокатному производству, и может быть использовано при производстве толстолистового проката классов прочности К52-К60, Х52-Х70, L385-L485 для изготовления электросварных труб магистральных трубопроводов. Способ включает получение толстолистового проката из стали, содержащей, мас.%: углерод 0,03-0,11, кремний 0,15-0,45, марганец 1,40-1,95; хром 0,01-0,30, никель 0,01-0,30, медь 0,01-0,30, молибден 0,01-0,30, алюминий 0,02-0,05, ниобий 0,03-0,07, ванадий 0,001-0,10, титан 0,010-0,035, сера 0,0005-0,003, фосфор 0,002-0,015, азот 0,001-0,009, железо и неизбежные примеси остальное, причем углеродный эквивалент СЭ составляет: СЭ=0,0005σв+0,09±0,04, где σв - нормированное значение временного сопротивления разрыву, Н/мм2. Кратность подката для окончательной стадии прокатки определяется из соотношения: Нп/Нгп=(0,0080σт+0,1)±0,5, где σт - нормированное значение предела текучести проката, Н/мм2; Нп - толщина подката для чистовой стадии прокатки, мм; Нгп - толщина готового проката, мм. Технологическую схему прокатки выбирают в зависимости от значения расчетного коэффициента К, определяемого по формуле К=σв×Н, где Н - номинальная толщина готового проката, мм. При значении К менее 11000±2000 Н/мм применяют контролируемую прокатку с охлаждением на воздухе, а при значении К более 11000±2000 Н/мм - контролируемую прокатку с ускоренным охлаждением. Технический результат заключается в получении толстолистового проката классов прочности К52-К60, Х52-Х70, L385-L485 для изготовления электросварных труб магистральных трубопроводов с повышенными механическими характеристиками. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области металлургии и может быть применено для получения штрипсов с категорией прочности К60 (Х70), используемых при строительстве магистральных нефтегазопроводов. Для обеспечения хладостойкости проката при температурах до -20°C, улучшения свариваемости и получения проката толщиной 8-20 мм с феррито-бейнитной микроструктурой выплавляют сталь, содержащую, мас.%: С 0,03-0,010, Mn 1,2-1,8, Si 0,1-0,5, Nb 0,01-0,10, V 0,05-0,10, Ti 0,005-0,04, Мо не более 0,04, Cr не более,30, Ni не более 0,30, Cu не более 0,30%>, Al 0,01-0,05, N 0,007-0,012, S не более 0,005, P не более 0,015, Fe - остальное, при этом суммарное содержание V+Nb+Ti≤0,15, Сэ≤0,41 и осуществляют непрерывную разливку стали в сляб. Полученный сляб нагревают до 1190-1280°С и проводят черновую прокатку в области рекристаллизации аустенита с относительным обжатием 45-85%, затем раскат охлаждают со скоростью охлаждения 0,7÷1,8°C/с до температуры начала чистовой прокатки 980÷900°C, осуществляют чистовую прокатку в области отсутствия рекристаллизации с суммарной деформацией 60-80% и с завершением деформации в нижней части γ-области при температуре конца чистовой прокатки Ткп=Ar3+(30÷80)°C, производят ускоренное охлаждение в две стадии, при этом на первой стадии полосу охлаждают со скоростью 4-12°C/с до температуры 530-670°C, а охлаждение полосы на второй стадии производят со скоростью 4,0-0,5°C/с до температуры смотки полосы в рулоны. 2 табл.

Изобретение относится к области металлургии, а именно к стальному листу, используемому для горячей штамповки. Лист выполнен из стали, имеющей следующий химический состав, мас.%: C: 0,05-0,40, Si: 0,001-0,02, Mn: 0,1-3, Al: 0,0002-0,005, Ti: 0,0005-0,01, O: 0,003-0,03, один или оба из Cr и Mo в сумме 0,005-2, остальное Fe и неизбежные примеси. Средний диаметр частиц композитных оксидов на основе Fe-Mn, распределенных в стальном листе, составляет от 0,1 до 15 мкм. Обеспечиваются высокие прочность и сопротивление замедленному разрушению детали после горячей штамповки. 3 н. и 6 з.п. ф-лы, 8 ил., 8 табл., 2 пр.

Изобретение относится к области металлургии, а именно к высокопрочному холоднокатаному стальному листу. Лист выполнен из стали, имеющей химический состав, состоящий из, мас.%: C: от более 0,020 до менее 0,30; Si: от более 0,10 до максимум 3,00; Mn: от более 1,00 до максимум 3,50; P: максимум 0,10; S: максимум 0,010; раств. Al: по меньшей мере 0 и максимум 2,00; N: максимум 0,010; остальное - Fe и неизбежные примеси. Лист имеет металлургическую структуру, в которой основная фаза представляет собой продукт низкотемпературного превращения, а вторичная фаза содержит остаточный аустенит. Объемная доля остаточного аустенита составляет от более чем 4,0% до менее чем 25,0% относительно всей структуры, а средний размер его зерен составляет менее 0,80 мкм. Численная плотность зерен остаточного аустенита, размер которых составляет 1,2 мкм или более, составляет 3,0×10-2 зерен/мкм2 или менее. Обеспечиваются высокие пластичность, способность к деформационному упрочнению и способность к отбортовке-вытяжке, а также прочность на растяжение 780 МПа или более. 8 з.п. ф-лы, 4 ил., 3 табл., 1 пр.
Изобретение относится к области металлургии, а именно к облегченной конструкционной стали для изготовления емкости для содержания топлива автомобиля. Сталь имеет следующий химический состав, вес.%: C 0,04-2, Mn 14-30, Al 1,5-12, Si 0,3-3, Cr 0,12-6, дополнительно один или несколько из следующих элементов: Ti, V, Nb, В, Zr, Mo, Ni, Cu, W, Co, P и N с содержанием каждый до 5% и в сумме до 10%, остальное - железо и неизбежные примеси. Доля α'-мартенсита до или после деформации составляет не более 3%, а эквивалент α'-мартенсита составляет от 3,4 до 10,5 и определяется по выражению: 0,1*Mn + C + 0,5*Al + 0,05*Si. Обеспечивается при столкновении автомобиля высокая пластичность стали и предупреждается образование вызываемых водородом трещин. 2 н. и 4 з.п. ф-лы.

Изобретение относится к области металлургии, а именно к разработке жаростойкой ферритной стали, используемой в области энергетики для производства паровых котлов солнечных тепловых электростанций. Сталь содержит в мас.%: С: от 0,01 до 0,3, Si: от 0,01 до 2, Mn: от 0,01 до 2, P: максимум 0,10, S: максимум 0,03, Cr: от 7,5 до 14,0, раств. Al: максимум 0,3, N: от 0,005 до 0,15, баланс Fe и загрязняющие примеси. На поверхности стали сформирована оксидная пленка, содержащая, исключая кислород и углерод, от 25 до 97% Fe и от 3 до 75% Cr. Сталь обладает высокой фотоселективной абсорбционной способностью и стойкостью к окислению. 2 н. и 4 з.п. ф-лы, 4 табл., 2 пр.

Изобретение относится к области металлургии, а именно к высокопрочному, горячегальванизированному холоднокатаному стальному листу, используемому в автомобильной промышленности. Лист выполнен из стали, содержащей в вес.%: С более 0,10 и менее 0,25, Si более 0,50 и менее 2,0, Mn более 1,50% и максимум 3,0, Р менее 0,050, S: 0,010 или менее, раств. Al 0,50 или менее, N: 0,010 или менее, необязательно один или более элементов, выбранных из Ti, Nb, V, Cr, Mo, B, Ca, Mg, REM и Bi. Структура листа содержит основную фазу, содержащую мартенсит и/или бейнит и/или бейнитный феррит, и вторичную фазу, содержащую остаточный аустенит. Объемная доля остаточного аустенита составляет от более 4,0 до менее 25,0% относительно всей структуры, средний размер зерен составляет менее 0,80 мкм, а численная плотность зерен остаточного аустенита, размер которых равен 1,2 мкм или более, составляет 3,0×10-2 зерен/мкм2 или менее. Лист имеет прочность на растяжение 750 МПа или более, обладает высокой пластичностью, способностью к деформационному упрочнению и отбортовке-вытяжке. 3 н. и 4 з.п. ф-лы, 3 табл., 1 пр.
Наверх