Способ крип-отжига титанового листового проката

Изобретение относится к обработке металлов давлением и предназначено для правки листового проката в процессе отжига под постоянной нагрузкой, преимущественно крупногабаритных листов и плит из титановых сплавов. Способ крип-отжига титанового листового проката включает установку садки, состоящую из одного или нескольких листовых изделий, на стальную подогреваемую плиту установки вакуумной правки, создание разряжения в рабочем пространстве установки при одновременном равномерном нагружении внешней наружной поверхности садки, нагрев до температуры отжига, выдержку и охлаждение. Охлаждение проводят с промежуточной ступенью при температуре на ступени 220±20°С с выдержкой от 1 до 5 часов. Обеспечивается стабильность форм поверхности листового проката из титановых сплавов. 1 з.п. ф-лы.

 

Изобретение относится к обработке металлов давлением и предназначено для правки листового проката в процессе отжига под постоянной нагрузкой (крип-отжиг) преимущественно крупногабаритных листов и плит из титановых сплавов, применяемых, например, в авиации, кораблестроении, машиностроении и химической промышленности.

Высокие требования по геометрии при производстве листовых полуфабрикатов, в частности требования к неплоскостности, реализуются в изобретении, используя эффект ползучести (крипа) - медленное нарастание во времени пластической деформации материала при силовых воздействиях меньших, чем те, которые могут вызвать остаточную деформацию при испытаниях обычной длительности. Ползучесть сопровождается релаксацией напряжений. Она свойственна практически всем конструкционным материалам во всем диапазоне температур.

Оптимальным является совмещения отжига с крип-правкой, который проводится либо в колпаковых электрических печах под нагрузкой, создаваемой стальными плитами, либо в установке вакуумной крип-правки. Это радикально снижает время технологической операции правки. Также процесс крип-отжига позволяет за счет медленного охлаждения избежать возникновения больших внутренних напряжений, что очень важно для избежания искривления плит при их последующей механической обработке.

Как известно, титан существует в двух стабильных аллотропических модификациях - высокотемпературной с объемно-центрированной кубической решеткой β и низкотемпературной гексагональной α. В сплавах титана в зависимости от легирования могут присутствовать обе фазы уже при комнатной температуре. В процессе нагрева от комнатной температуры до температуры полиморфного превращения Тпп происходит увеличение количества β-фазы до 100%. При охлаждении от температуры полиморфного превращения Тпп до комнатной температуры в сплаве происходит обратное изменение соотношения этих фаз. Крип-отжиг, как правило, производится при температуре около 800°С. В зависимости от типа сплава процентное содержание β - фазы при данной температуре может составлять от 10% до 100%.

Указанные структурные превращения сопровождаются объемными изменениями титанового сплава. Кроме того, в процессе охлаждения особенно в температурном интервале 300-400°С при превращении β→α аблюдается появление промежуточной нестабильной ω-фазы. Если полиморфное превращение β↔α сопровождается небольшим по величине объемным эффектом, который, по оценкам различных авторов, составляет около 0,15%, то при превращении β→ω объемный эффект составляет порядка 0,9-1,2%. При этом надо учитывать, что даже незначительные локализованные изменения объема металла приводят к возникновению внутренних напряжений, которые могут суммироваться случайным образом в процессе охлаждения и вызывать возвратные деформации, приводящие к искажению наружных геометрических форм изделия.

Величина деформации в определенный момент времени является величиной постоянной и представляет сумму, состоящую из деформации возврата (упругой деформации) и деформации ползучести. Деформация ползучести все время увеличивается, а суммарная деформация остается постоянной; отсюда следует, что уменьшается первое слагаемое -деформация возврата, которая связана с напряжением по закону Гука (напряжение, возникающее в теле при его деформации, прямо пропорциональна величине этой деформации). Это означает, что рост деформации ползучести приводит к уменьшению напряжения. В частности при крип-отжиге титанового листового проката, в процессе охлаждения необходимо создать условия, при которых происходит релаксация внутренних напряжений за счет увеличения деформации ползучести и уменьшения деформации возврата.

Известен способ крип-отжига титанового листового проката, включающий установку садки, состоящей из одного или нескольких листовых изделий, на стальную подогреваемую плиту, создание разряжения в рабочем пространстве при одновременном равномерном нагружении верхней наружной поверхности садки, нагрев до температуры отжига, выдержку и принудительное охлаждение в условиях разряжения (Патент РФ №2357827, МПК B21D 1/00, публ. 10.06.2009) - прототип.

Использование данного изобретения позволяет провести высококачественную правку листов на стадии отжига, которая позволяет исключить или свести к минимуму механическую обработку поверхности листовых изделий из титановых сплавов.

Существенным недостатком известного способа является то, что в нем не учитываются фазовые превращения при охлаждении, свойственные титановым сплавам, результатом которых являются объемные изменения металла и возникновения внутренних напряжений. В технологии не предусмотрены необходимые временные и температурные режимы охлаждения, позволяющие в достаточной мере трансформировать возникающую возвратную деформацию в деформацию релаксации. Поэтому процесс не стабилен и в процессе крип-правки, по данному способу, наблюдались отдельные случаи превышение величины поля допуска листового полуфабриката по неплоскостности в 2 и более раза.

Задачей, на решение которой направлено предлагаемое изобретение, является обеспечение стабильности форм поверхности листового проката из титановых сплавов.

Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в регламентации тепловых и временных режимов крип-отжига на стадии охлаждения, при которых отношение деформации ползучести к деформации возврата увеличится, а внутреннее напряжение в изделиях листового проката снижается до величин, гарантирующих получение продукции с неплоскостностью, находящейся в пределах допуска.

Указанный технический результат достигается тем, что в способе крип-отжига титанового листового проката, включающего установку садки, состоящую из одного или нескольких листовых изделий, на стальную подогреваемую плиту, создание разряжения в рабочем пространстве при одновременном равномерном нагружении внешней наружной поверхности садки, нагрев до температуры отжига, выдержку и охлаждение, охлаждение производится с промежуточной ступенью при температуре на ступени 220±20°С с выдержкой от 1 до 5 часов.

Погрешности формы изделий листового проката могут быть уменьшены дополнительным введением промежуточных ступеней охлаждения с интервалом температур 150-400°С между ступенями, начиная с температуры отжига, и выдержкой на каждой ступени от 1 до 5 часов.

В процессе нагрева листового проката до температуры отжига в районе 800°С и более в структуре происходят фазовые изменения - в зависимости от типа сплава процентное содержание β - фазы при данной температуре может составлять от 10% до 100%. Соответственно локальные изменения размеров зерен, связанных с полиморфными превращениями β↔α и β↔ω, могут составлять 0,15-1,2%. Вследствие этого возникающие напряжения могут суммироваться случайным образом и вызвать деформацию, состоящей из возвратной деформации и деформации ползучести. Значительная возвратная деформация после снятия нагрузки может вызвать изменения формы изделий, превышающие допустимые. Введение промежуточной ступени охлаждения с выдержкой от 1 до 5 часов при температуре 220±20°С позволяет трансформировать возвратную деформацию в деформацию ползучести, что гарантирует сохранения формы изделия, подвергнутого крип-отжигу. При данном температурном режиме фазовые изменения становятся незначительными и не создают значительных напряжений, при этом накопленная величина ползучести металла, при данной температуре и выдержке позволяет уменьшить величину возвратной деформации до приемлемого уровня.

При значительной составляющей β-фазы в сплаве, а также в зависимости от геометрических размеров изделия необходимо вводить дополнительные ступени охлаждения с интервалом температур 150-400°С между ступенями, начиная с температуры отжига, и выдержкой на каждой ступени от 1 до 5 часов

Температурные интервалы между ступенями, а также их температура подбирается опытным путем.

Промышленная применимость изобретения подтверждается конкретным примером его выполнения.

Проводился крип-отжиг (совмещенный с крип-правкой) плит сплава 6AL4V размером готового изделия 6,858×1828,8x3251,2 (размер на операции 7,3×1835×3700). Садка состояла из 4-х плит.

Результаты контроля неплоскостности до крип-отжига:

Плита №1 максимальная неплоскостность 16,0 мм;

Плита №2 максимальная неплоскостность 19,5 мм;

Плита №3 максимальная неплоскостность 7,0 мм;

Плита №4 максимальная неплоскостность 15,0 мм.

Крип-отжиг выполнялся на установке вакуумной правки плит и листов, габаритные размеры подкладной плиты 1880x3900 мм. Температура крип-отжига 720°С, выдержка 10 часов, охлаждение с печью в течение 48 часов до температуры 200±10°С, с выдержкой в течение 5 часов. Далее металл охлаждался до 120°С в течение 40 часов.

Результаты контроля неплоскостности после крип-отжига:

Плита №1 максимальная неплоскостность 5,0 мм;

Плита №2 максимальная неплоскостность 3,5 мм;

Плита №3 максимальная неплоскостность 4,0 мм;

Плита №4 максимальная неплоскостность 5,0 мм.

Неплоскостность была сосредоточена на концах плит. После подрезки плит в размер по длине неплоскостность не превышала 1,8 мм. Данная неплоскостность оказалась достаточной для дальнейшего шлифования плит на оборудовании заказчика.

1. Способ крип-отжига титанового листового проката, включающий установку садки, состоящую из одного или нескольких листовых изделий, на стальную подогреваемую плиту установки вакуумной правки, создание разряжения в рабочем пространстве установки при одновременном равномерном нагружении внешней наружной поверхности садки, нагрев до температуры отжига, выдержку и охлаждение, отличающийся тем, что охлаждение проводят с промежуточной ступенью при температуре на ступени 220±20°С с выдержкой от 1 до 5 часов.

2. Способ по п.1, отличающийся тем, что дополнительно вводят промежуточные ступени охлаждения с интервалом температур 150-400°С, начиная с температуры отжига, с выдержкой от 1 до 5 часов.



 

Похожие патенты:

Изобретение относится к области обработки давлением и может быть использовано для получения нанокристаллических заготовок металлов и сплавов с улучшенными физико-механическими свойствами.
Изобретение относится к цветной металлургии, в частности к изготовлению заготовок из титановой губки. Способ изготовления заготовок из титана включает размещение частиц титановой губки в камере пресса, компактирование частиц губки до получения заготовки, ее прессование, удаление загрязнений с поверхности прессованной заготовки, покрытие ее смазкой и последующую прокатку.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе алюминида титана Ti3Al, и может быть использовано для изготовления деталей газотурбинных двигателей, силовых установок и агрегатов авиационного, топливно-энергетического и морского назначения.

Изобретение относится к обработке металлов давлением, а именно к способам изготовления тонких листов из псевдо-альфа титановых сплавов. Способ изготовления тонких листов из псевдо-альфа титановых сплавов включает деформацию слитка в сляб, механическую обработку сляба, многопроходную прокатку сляба на подкат, резку подката на листовые заготовки, их сборку в пакет и его прокатку и адъюстажные операции.
Изобретение относится к обработке металлов и может быть использовано при изготовлении поковок дисков горячим деформированием слитков из сплава на основе алюминида титана, основанного на орторомбической фазе Ti2NbAl.

Изобретение относится к области металлургии, в частности к сплавам на основе гамма-алюминида титана и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°C, в частности лопаток газотурбинных двигателей.
Изобретение относится к способу изготовления сварных изделий, преимущественно сварных каркасов искусственных клапанов сердца ИКС. Способ изготовления каркасов искусственных клапанов сердца из технически чистого титана включает сборку и сварку деформированной волочением проволоки и пластины и термическую обработку.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении термомеханической детали турбомашины из бета- или альфа/бета-титанового сплава.

Изобретение относится к области металлургии, а именно к получению труб из технически чистого титана с радиальной структурой. Для получения трубы из технически чистого титана с радиальной текстурой изготавливают заготовки в виде колец, деформируют с уменьшением толщины их стенок и увеличением их диаметра, а затем сваривают торцами встык с получением трубы.

Изобретение относится к способам термической обработки литых заготовок из заэвтектоидных интерметаллидных сплавов на основе фаз γ-TiAl и α2-Ti3Al. Способ термической обработки литых заготовок из заэвтектоидных интерметаллидных сплавов на основе фаз γ-TiAl+α2-Ti3Al, затвердевающих полностью через β-фазу, содержащих легирующие элементы, по крайней мере, бор и элементы, стабилизирующие β-фазу, включает охлаждение заготовок от температур β-фазовой области.

Изобретение относится к обработке металлов давлением и предназначено для правки листового проката крип-отжигом, преимущественно крупногабаритных листов и плит из титановых сплавов.

Изобретение относится к области обработки металлов давлением, в частности к правке листового металла. .
Изобретение относится к области металлообработки, в частности, к холодной обработке металлов. .

Изобретение относится к прокатному производству, а именно к машинам и способам правки дисковых пил из листового материала. .

Изобретение относится к способу правки консольных пластин диафрагменной пружины, а также к фрикционному сцеплению с такой диафрагменной пружиной. .

Изобретение относится к области ремонта железнодорожного подвижного состава, в частности к восстановлению корпусов автосцепок с погнутыми хвостовиками. .

Изобретение относится к области прокатного оборудования, а более конкретно к роликовым машинам для правки листового проката. .

Изобретение относится к прокатному производству, а более конкретно к правке проката на роликоправильных машинах путем многократного изгиба. .

Изобретение относится к области металлургии и машиностроения и может найти применение при изготовлении закаленных тонколистовых деталей. Способ включает установку заготовки в полость штампа, электронагрев её в штампе и одновременное с нагревом растяжение изделия, последующее охлаждение в штампе, при этом растяжение осуществляют до напряжений, превышающих предел текучести материала изделия. Получаемое в результате такого способа обработки структурное состояние металла заготовки позволяет значительно повысить весь комплекс прочностных свойств металла, таких как пределы упругости, текучести и прочности, обеспечив одновременно больший запас прочности и пластичности. Наряду с названными свойствами в значительной степени повышается ударная вязкость при комнатной и низкой температурах, понижаются порог хладноломкости и чувствительность к отпускной хрупкости. 1 ил.
Наверх