Способ определения меди в природных и питьевых водах

Изобретение относится к способу определения меди в природных и питьевых водах. Способ включает концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной спектроскопии. При этом концентрирование меди проводят на сшитом N-2-сульфоэтилхитозане со степенью замещения 0.5 со скоростью пропускания пробы через патрон 1.0-2.0 мл/мин. Элюирование осуществляют раствором азотной кислоты с концентрацией 0.1 моль/л. Раствор азотной кислоты пропускают через патрон со скоростью 1.0-2.0 мл/мин. Способ позволяет повысить эффективность концентрирования меди и экспрессность определения меди в природных и питьевых водах. 2 табл., 1 пр.

 

Изобретение относится к аналитической химии, в частности к сорбционно-спектроскопическим способам определения ионов меди(II) в элюате с предварительным их концентрированием из природных и питьевых вод на комплексообразующем сорбенте, и может быть использовано в лабораториях санитарно-эпидемиологических исследований и сертификации, в практике химико-токсикологических лабораторий.

Известен способ определения микроконцентрации меди (патент РФ №2013766, МПК G01N 21/63, опубл. 30.05.1994 г.), включающий сорбционное концентрирование меди на полиакрилонитрильном волокне, содержащем α-аминометиленфосфоновые группировки с последующим фотометрическим определением аналита в элюате.

Основным недостатком данного способа является большая трудоемкость фотометрического анализа элюата по сравнению с атомно-спектроскопическим.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является способ сорбционно-атомно-абсорбционного определения меди в водопроводных (питьевых) и природных водах с предварительным концентрированием на волокнистом хитозан-углеродном сорбенте, помещенном в полиэтиленовую колонку, путем пропускания анализируемой пробы через колонку с последующим элюированим катионов меди и их определение методом атомно-абсорбционной спектроскопии (Земскова Л.А., Войт А.В., Емелина Т.Б. и др. Применение волокнистого хитозан-углеродного сорбента для предварительного концентрирования меди (II) при анализе природных вод // Заводская лаборатория. Диагностика материалов. 2009. Т.75. №10, с.17-19).

Недостатком данного способа является длительность анализа - десорбция меди с поверхности сорбента занимает 1 час. Для десорбции аналита с поверхности сорбента используется достаточно концентрированный раствор элюента (HNO, (1:2)). Отмечается, что одновременно с медью происходит концентрирование железа.

Кроме того, вышеуказанный способ не позволяет значительно упростить состав элюата по сравнению с исходной пробой.

Задачей изобретения является повышение эффективности концентрирования меди за счет использования селективного сорбционного материала, обладающего экологичностью, а также повышение экспрессности определения меди в природных и питьевых водах.

Поставленная задача решается за счет того, что в способе определения меди в природных и питьевых водах, включающем концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной спектроскопии, концентрирование меди проводят на сшитом N-2-сульфоэтилхитозане со степенью замещения 0.5 со скоростью пропускания пробы через патрон 1.0-2.0 мл/мин, а элюирование осуществляют раствором азотной кислоты с концентрацией 0.1 моль/л, при этом раствор азотной кислоты пропускают через патрон со скоростью 1.0-2.0 мл/мин, в полученном элюате определяют содержание меди методами атомной спектроскопии.

Использование для извлечения меди в качестве сорбционного материала сшитого N-2-сульфоэтилхитозана со степенью замещения 0.5, полученного на основе природного биополимера, делает способ экологически более безопасным, чем некоторые известные.

Экспериментально установлено, что при динамическом извлечении ряда ионов щелочноземельных и переходных металлов (кальция (II), магния (II), стронция (II), бария (II), меди (II), кобальта (II), цинка (II), марганца (II), никеля (II), свинца (II), кадмия (II)), находящихся в растворе в эквимолярных количествах, степень извлечения мешающих ионов металлов при рН 6.0 (аммиачно-ацетатный буферный раствор) и скорости пропускания раствора 1 мл/мин не превышает 10%. Таким образом, заявляемый способ позволяет повысить эффективность концентрирования меди и определения меди за счет использования предлагаемого селективного сорбционного материала, обладающего улучшенными селективными характеристиками.

Кроме того, десорбция меди проводится путем пропускания раствора азотной кислоты через патрон, заполненный сорбционным материалом, со скоростью 1-2 мл/мин, что позволяет повысить экспрессность определения меди в природных и питьевых водах.

Заявленный способ определения меди в природных и питьевых водах иллюстрируется следующим примером.

Сшитый N-2-сульфоэтилхитозан со степенью замещения 0.5 получают путем взаимодействия хитозана с 2-бромэтансульфонатом натрия, экстракции охлажденной реакционной массы этиловым спиртом, последующей обработки раствором глутарового альдегида в кислой среде, промывания и сушки (Пестов А.В., Петрова Ю.С., Бухарова А.В., Неудачина Л.К., Корякова О.В., Маточкина Е.Г., Кодесс М.П., Ятлук Ю.Г. Синтез в геле и сорбционные свойства N-2-сульфоэтилхитозана // Журнал прикладной химии. 2013. Т.86, №2, с.290-293).

К 200.0 мл отфильтрованной от механических примесей анализируемой воды добавляют 3 мл концентрированной азотной кислоты и несколько капель концентрированной перекиси водорода. Пробу кипятят в течение 20 минут для разрушения комплексов ионов металлов с органическими примесями. Добавляют 10 мл 10% раствора гидроксиламина солянокислого для предотвращения выпадения в осадок гидроксида железа (III). Доводят значение кислотности среды раствора на иономере аммиачно-ацетатным буферным раствором до рН 6.0. Затем полученный раствор пропускают со скоростью 1-2 мл/мин через концентрирующий патрон, содержащий 0.1 г сшитого N-2-сульфоэтилхитозана, предварительно промытого деионизованной водой. Сорбированные ионы металлов элюируют пропусканием через патрон 10.0 мл 0.1 моль/л раствора азотной кислоты со скоростью 1-2 мл/мин. Определение концентраций элементов проводят методами атомно-эмиссионной или атомно-абсорбционной спектроскопии при оптимальных условиях анализа рассматриваемых элементов (табл.1). Правильность предложенного способа определения ионов меди в водах подтверждается методом «введено-найдено» (табл.2).

Таблица 1
Результаты концентрирования металлов, содержащихся в природных и питьевых водах методом атомно-абсорбционной спектроскопии с электротермической атомизацией
Металл Найдено металла в пробе воды, мкг Найдено металла в элюате, мкг Степень извлечения металла, %
Анализ водопроводной воды, г.Екатеринбург
Cu 8.97±.18 8.66±0.46 96.5
Ni 5.70±0.81 0.22±0.05 3.9
Со 1.14±0.01 0.02±0.01 1.8
Zn 62.93±4.85 4.06±0.11 6.5
Cd 1.27±0.06 0.00 0.0
Pb 2.35±0.01 0.21±0.01 8.9
Mn 18.32±1.37 0.26±0.01 1.4
Fe 260.05±3.88 11.27±0.17 4.3
Mg 38405.49±763.30 32.17±1.12 0.1
Ca 17738.99±1322.09 23.66±0.24 0.1
Sr 17.46±0.78 10.08±0.02 0.5
Ba 2.33±0.05 0.09±0.01 3.9
Анализ воды из р. Исеть, г.Екатеринбург
Cu 2.49±0.09 2.42±0.04 97.2
Ni 2.01±0.15 0.16±0.01 8.0
Co 0.33±0.08 0.02±0.01 6.1
Zn 31.82±3.64 3.01±0.13 9.5
Cd 1.16±0.06 0.00 0.0
Pb 2.50±0.02 0.18±0.01 7.2
Mn 84.84±4.43 0.46±0.02 0.5
Fe 25.38±0.32 3.79±0.11 14.9
Mg 60233.62±1646.04 14.32±0.18 0.02
Ca 2074.03±113.36 24.1 1±0.42 1.2
Sr 22.29±0.11 0.18±0.01 0.8
Ba 2.91±0.18 0.07±0.01 2.4
Таблица 2
Результаты определения меди в водах г.Екатеринбурга методом атомно-абсорбционной спектроскопии с пламенной атомизацией с предварительным концентрированием сшитым N-2-сульфоэтилхитозаном
Введено меди, мкг/л Найдено меди в водопроводной воде г.Екатеринбурга Введено меди, мкг/л Найдено меди в воде р. Исеть, г.Екатеринбург
0 43.3±2.3 0 12.1±0.2
30 74.5±2.5 10 21.1±0.7
60 101.1±3.3 20 31.6±0.1

Из полученных данных (табл.1) видно, что содержащиеся в питьевых и природных водах ионы металлов извлекаются сшитым N-2-сульфоэтилхитозаном со степенью замещения 0.5 не более чем на 10% (исключение составляет железо, степень извлечения 15%). Медь при этом извлекается на 100%, что подтверждается методом «введено-найдено» (табл.2). Таким образом, использование сшитого N-2-сульфоэтилхитозана со степенью замещения 0.5 для предварительного концентрирования ионов меди из природных и питьевых вод позволяет значительно упростить состав элюата по сравнению с исходной пробой, что позволяет увеличить эффективность концентрирования аналита. Кроме этого, проведение десорбции путем пропускания через патрон с сорбентом 0.1 моль/л раствора азотной кислоты позволяет сделать способ более экспрессным по сравнению с прототипом.

Способ определения меди в природных и питьевых водах, включающий концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной спектроскопии, отличающийся тем, что концентрирование меди проводят на сшитом N-2-сульфоэтилхитозане со степенью замещения 0.5 со скоростью пропускания пробы через патрон 1.0-2.0 мл/мин, а элюирование осуществляют раствором азотной кислоты с концентрацией 0.1 моль/л, при этом раствор азотной кислоты пропускают через патрон со скоростью 1.0-2.0 мл/мин.



 

Похожие патенты:

Группа изобретений относится к области биотехнологии и направлена на идентификацию микроорганизмов в тестируемом образце. В одном варианте способ идентификации неизвестного микроорганизма включает получение тестируемого образца, который может содержать неизвестный микроорганизм.
Изобретение относится к области аналитической химии порошковых материалов, в частности к способам определения массовой доли кислорода в порошках металлов методом атомно-эмиссионной спектроскопии.

Изобретение относится к лазерному газовому анализу и может быть использовано для бесконтактного и дистанционного определения концентрации молекулярного кислорода в воздушной атмосфере или произвольной смеси газов.

Изобретение относится к области измерительной техники и может быть использовано при измерении температуры поверхности в области лазерного воздействия. Спектральные линии регистрации теплового излучения поверхности пирометром и спектральные полосы регистрации теплового излучения поверхности видеокамерой и спектральные линии излучения источников подсветки располагаются в спектральной полосе пропускания гальвосканера по обе стороны спектральной линии лазерного излучения в ее непосредственной близости.
Изобретение относится к области аналитической химии, а именно к люминесцентному способу определения самария. Способ включает перевод его в люминесцирующее соединение с органическим реагентом.
Изобретение относится к области аналитической химии, а именно к способу люминесцентного определения тербия. Способ включает перевод тербия в люминесцирующее соединение с органическим реагентом.

Изобретение относится к способу измерения в режиме реального времени толщины пленки не содержащего хром покрытия на поверхности полосовой стали. Способ характеризуется тем, что включает следующие стадии: стадия 1: выбирают два растворимых в воде химических вещества, которые содержат элементы P, Ca, Ti, Ba или Sr и не вступают в реакцию с жидкостью для нанесения не содержащего хром покрытия; стадия 2: добавляют два растворимых в воде химических вещества, выбранные на стадии 1, в жидкость для нанесения не содержащего хром покрытия и перемешивают их до гомогенности, после чего изготавливают эталонный образец пленки покрытия; стадия 3: используют излучение, испускаемое прибором определения в автономном режиме толщины пленки, для возбуждения двух растворимых в воде химических веществ для получения характеристических спектров двух растворимых в воде химических веществ и, тем самым, определения толщины пленки покрытия эталонного образца; толщину пленки покрытия, определенную при использовании растворимого в воде химического вещества, которое обладает интенсивным характеристическим спектром, принимают за фактическую толщину пленки, в то время как толщину пленки покрытия, определенную при использовании растворимого в воде химического вещества, которое обладает слабым характеристическим спектром, принимают за измеренную толщину пленки, разницу между фактической толщиной пленки и измеренной толщиной пленки принимают за величину коррекции толщины; многократно проводят операции получения величин коррекции толщины, соответствующие измеренным толщинам пленки, в результате аппроксимации величин коррекции толщины и измеренной толщины пленки получают выражение корреляционной функции между измеренной толщиной пленки и величиной коррекции толщины; стадия 4: добавляют в жидкость для нанесения не содержащего хром покрытия растворимого в воде химического вещества, которое обладает слабым характеристическим спектром, и используют излучение, испускаемое прибором определения в режиме реального времени толщины пленки покрытия, для возбуждения вещества и для получения, таким образом, измеренной толщины пленки, после чего используют выражение корреляционной функции для получения величины коррекции толщины, и, в заключение, исходя из измеренной толщины пленки и величины коррекции толщины получают фактическую толщину пленки покрытия.

Изобретение относится к технологии производства изделий, в которых в той или иной степени используется сшитый полиэтилен, который может быть использован при производстве электрических кабелей, труб для газоводоснабжения и др.

Изобретение относится к измерительному устройству для определения по меньшей мере одного параметра пробы крови, с проточной измерительной ячейкой (1), в которой размещен по меньшей мере один люминесцентно-оптический сенсорный элемент (ST, SO, SG), приводимый в контакт с пробой крови, с по меньшей мере одним источником (4) света для возбуждения люминесцентно-оптического сенсорного элемента и по меньшей мере одним фотодетектором (6) для приема излученного люминесцентно-оптическим сенсорным элементом люминесцентного излучения.

Изобретение относится к области оптоэлектронной техники, микро- и наноэлектроники и может быть использовано для определения профиля распределения концентрации носителей заряда в полупроводниковой квантово-размерной структуре.

Изобретение относится к области химического анализа веществ. В способе анализа химического состава материалов, включающем лазерное испарение или абляцию исследуемых образцов, ионизацию продуктов лазерного испарения или абляции исследуемых образцов и детектирование полученных ионов масс-анализатором, используют дополнительно введенную твердую мишень для генерации лазерной плазмы путем воздействия на нее лазерным излучением, а ионизацию продуктов лазерного испарения или абляции образцов осуществляют с использованием полученной лазерной плазмы. Ионизацию продуктов лазерного испарения или абляции образцов ведут в присутствии дополнительно введенного газа-реагента, в качестве которого используются химические соединения, содержащие гидроксильные, или амино-, или сульфгидрильные группы, и осуществляют излучением лазерной плазмы, энергия квантов которого превышает потенциал ионизации продуктов лазерного испарения или газа-реагента. Лазерное испарение осуществляют посредством пространственного сканирования поверхности анализируемого твердого или жидкого образца лазерным лучом, а исследуемый образец размещают с возможностью его перемещения относительно масс-спектрометра и/или лазерного луча. Технический результат - возможность определения широкого класса химических соединений с высокой чувствительностью в реальном времени. 12 з.п. ф-лы, 6 ил.
Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения лантана, церия, празеодима, неодима в металлических сплавах и порошках. Способ основан на воздействии на поверхность исследуемого образца сфокусированного лазерного излучения с энергией импульса 0,12-0,9 Дж и длительностью импульса 0,02-240 мкс. Проводят анализ свечения лазерной искры, что позволяет выделить спектральные линии паров определяемых элементов и идентифицировать спектральные линии. Для определения каждого из элементов используются экспериментально установленные наиболее чувствительные линии лазерной эмиссии элементов в следующих спектральных диапазонах для: лантана 390-415 нм, церия 400-425 нм, празеодима 410-425 нм, неодима 400-415 нм.
Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности пробы, причем величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы. Изобретение обеспечивает увеличение чувствительности и экспрессности анализа при взаимодействии двух импульсов лазерного излучения на пробу.

Изобретение относится к медицине, области нанотехнологий, в частности к усилению контраста и глубины зондирования при получении терагерцовых изображений раковых опухолей и патологий кожи с использованием наночастиц и лазерного нагрева. Способ включает введение плазмонно-резонансных композитных наночастиц в зондируемую биоткань и облучение зондируемой биоткани лазерным пучком с длиной волны 700-900 нм, совпадающей с максимумом поглощения наночастиц. Проводят облучение зондируемой биоткани последовательностью импульсов электромагнитных волн терагерцового диапазона, измерение коэффициента отражения электромагнитных волн терагерцового диапазона при пространственном сканировании зондируемой биоткани. При этом перед облучением проводят местную аппликацию путем наложения биологически совместимого агента в жидкой форме, обладающего гиперосмотическими свойствами: глицерина, или полиэтиленгликоля, или пропиленгликоля, или раствора глюкозы или фруктозы в спирте. Облучение лазерным пучком осуществляют в режиме последовательности фемтосекундных импульсов с периодом следования не более 10 нс, синхронизованных с последовательностью импульсов электромагнитных волн терагерцового диапазона так, чтобы в зондируемую область оба импульса приходили одновременно. Часть лазерного пучка для облучения зондируемой биоткани может быть использована для создания последовательности импульсов электромагнитных волн терагерцового диапазона. Способ обеспечивает повышение контрастности и глубины зондирования биообъектов, с пространственным разрешением не менее 100 мкм. 1 з.п. ф-лы, 3 ил.

Изобретение относится к количественному анализу образцов с помощью лазерно-индуцированной плазмы. Система для классификации движущихся материалов в реальном времени включает в себя генератор лазерных импульсов, выполненный с возможностью создания по меньшей мере первого и второго лазерных импульсов, которые воздействуют на одно и то же место воздействия на движущихся материалах, причем первый и второй лазерные импульсы отстоят во времени на вплоть до 10 микросекунд, и детектор поглощения, выполненный с возможностью получения спектра поглощения в месте воздействия в течение временного интервала обнаружения, составляющего вплоть до 20 наносекунд, после второго лазерного импульса. Изобретение позволяет повысить эффективность классификации. 2 н. и 46 з.п. ф-лы, 3 ил.

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах. Химически модифицированный планарный оптический сенсор содержит последовательно расположенные подложку на основе диэлектрического химически инертного материала, наноструктурированное покрытие толщиной 1-10 мкм на основе наночастиц благородных металлов, размеры которых составляют 20-90 нм, и прозрачную микропористую пленку хитозана, химически модифицированную π-акцепторным соединением, способным распознавать анализируемое вещество и химически связываться с ним путем формирования комплекса с переносом заряда. Также представлены способ получения указанного оптического сенсора и способ анализа полиароматических гетероциклических серосодержащих соединений с использованием данного сенсора. Достигается повышение чувствительности, селективности и экспрессности анализа. 3 н. и 10 з.п. ф-лы, 4 ил., 4 табл.

Изобретение относится к области спектрального анализа и касается способа и устройства атомно-эмиссионного анализа нанообъектов. Способ включает в себя испарение нанообъектов лазерным пучком и анализ нанообъектов по их свечению. Нанообъекты помещают на поверхность прозрачной подложки. На поверхность с нанообъектами изнутри подложки направляют под регулируемым углом, большим угла полного внутреннего отражения, импульс лазерного излучения с энергией, достаточной для хотя бы частичного испарения нанообъектов. Излучение пара подвергают спектральному анализу. Устройство содержит подложку с нанообъектами на поверхности и излучатель. Излучатель обеспечивает интенсивность излучения, достаточную для испарения нанообъектов, причем по обе стороны подложки или с одной ее стороны в потоке свечения нанообъектов установлен спектроанализатор, содержащий коллиматор, который входной апертурой обращен к нанообъектам. Подложка выполнена из материалов, прозрачных для излучения излучателя и которые могут быть прозрачными для собственного излучения нанообъектов. Технический результат заключается в упрощении способа измерений. 2 н. и 2 з.п. ф-лы, 2 ил.
Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения бериллия в металлических сплавах и порошках. Способ основан на воздействии на поверхность исследуемого образца сфокусированного лазерного излучения с длительностью импульса 240-250 мкс и энергией импульса 1,3-1,4 Дж. Проводимый анализ свечения лазерной искры позволяет выделить спектральные линии паров бериллия и идентифицировать его спектральные линии. Для определения бериллия используются экспериментально установленные наиболее чувствительные линии лазерной эмиссии элемента в спектральном диапазоне 310-321 нм.

Изобретение относится к микрофлюидной системе и может быть использовано для количественного определения отклика живых клеток на определенные молекулы. Микрофлюидная система для управления картой концентраций молекул, пригодных для возбуждения клеток-мишеней, включает: микрофлюидное устройство (1); камеру (8) или дополнительный микрофлюидный канал, содержащий основание (6), предназначенное для приема клетки-мишени; микропористую мембрану (5), покрывающую сеть отверстий (47, 470); одно или несколько средств снабжения для снабжения одного или каждого из микрофлюидных каналов текучей средой, причем по меньшей мере одна из этих текучих сред содержит стимулирующие молекулы клетки-мишени. При этом микрофлюидное устройство содержит nc≥1 микрофлюидных каналов, снабженных по меньшей мере одним входным отверстием (21, 22) для текучей среды и по меньшей мере одним выходным отверстием для текучей среды; а также n0≥2 отверстий (47, 470) в микрофлюидном канале (4, 40) или распределенных по нескольким микрофлюидным каналам. При этом количества nc микрофлюидных каналов и n0 отверстий связаны соотношением , где 1<i<nc, a n0/ci - количество отверстий на канал Ci. Изобретение позволяет повысить точность анализов и сократить время проведения анализа. 14 з.п. ф-лы, 12 ил.

Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении оптических приборов на основе оптических кристаллов, обладающих высокой электропроводностью. Способ осуществляется следующим образом: кристалл с высокой электропроводностью помещают в одно из плеч интерферометра Маха-Цандера, держатели (электроды) электрически изолируют от кристалла и прикладывают к ним переменное импульсное напряжение. При помощи фотоприемника регистрируют изменение интенсивности интерференционной картины и по измеренному изменению интенсивности интерференционной картины рассчитывают электрооптический коэффициент. Техническим результатом является обеспечение измерения электрооптического коэффициента у кристаллов с высокой электропроводностью. 2 ил.
Наверх