Способ нагрева и определения температуры образцов

Изобретение относится к измерительной технике и может быть использовано для нагрева и измерения температуры образцов, прозрачных в инфракрасной области излучения (ИК). Предложен способ определения температуры образцов, прозрачных в ИК-области, подвергаемых воздействию потоками заряженных частиц или электромагнитного излучения, включающий нагрев или охлаждение образцов, измерение температуры образцов с помощью термопар. Образцы помещают в замкнутый корпус, выполненный из материала с высокой теплопроводностью, расположенный в вакуумной камере, откачивают воздух до давления 10-3-10-5 Па, нагревают или охлаждают корпус на заданный интервал температуры. Производят непрерывные предварительные измерения температуры термопарами, расположенными снаружи и внутри корпуса вместе с исследуемыми образцами, до момента стабилизации температуры. Затем производят конечные измерения температуры данными термопарами в момент стабилизации температуры, которая совпадает с температурой исследуемого образца до внешнего воздействия потоками заряженных частиц или электромагнитного излучения. Производят внешнее воздействие, после внешнего воздействия полностью повторяют процедуру измерения температуры образцов. Технический результат - повышение точности определения температуры образцов, прозрачных в ИК-области. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения температуры образцов, прозрачных в ИК- (инфракрасной) области излучения.

Известен способ определения температуры образцов, прозрачных в ИК-области, подвергаемых воздействию потоками заряженных частиц или электромагнитного излучения, включающий нагрев или охлаждение образцов, измерение температуры образцов с помощью термопар, образцы помещают в замкнутый корпус, выполненный из материала с высокой теплопроводностью, расположенный в вакуумной камере, откачивают воздух до давления 10-3-10-5 Па, нагревают или охлаждают корпус на заданный интервал температуры (см. патент RU 2212650, 20.09.2003).

Недостатком способа измерения температуры является зависимость температуры измерительного спая термопар не только от температуры поверхности образца, которую требуется измерить, но и от интенсивности и пространственной структуры ИК-излучения, что делает процесс определения температуры образца неопределенным.

Задачей изобретения является разработка способа определения температуры образцов, прозрачных в ИК-области, исключающего влияние пространственной неоднородности ИК-излучения, разной инерции поглощения ИК-излучения, термопарами с малой инерцией и большим коэффициентом поглощения и исследуемыми образцами с значительной инерцией и малым коэффициентом поглощения.

Указанный технический результат достигается тем, что предложен способ определения температуры образцов, прозрачных в ИК-области, подвергаемых воздействию потоками заряженных частиц или электромагнитного излучения, включающий нагрев или охлаждение образцов, измерение температуры образца с помощью термопар, при этом образцы помещают в замкнутый корпус, выполненный из материала с высокой теплопроводностью (малой тепловой инерцией, устойчивого к воздействию ионизирующих излучений - медь, сталь), расположенный в вакуумной камере, откачивают воздух до давления 10-3-10-5 Па (соответствует высокому вакууму (beeaif.com/node/88), когда длина свободного пробега молекулы воздуха размера вакуумной камеры на несколько порядков, что исключает влияние молекул воздуха на неоднородность и нестабильность температуры внутри температурной ячейки за время стабилизации температуры образцов порядка 5 мин/град), нагревают или охлаждают корпус на заданный интервал температуры, производят непрерывные предварительные измерения температуры термопарами, расположенными снаружи и внутри корпуса вместе с исследуемыми образцами, до момента стабилизации температуры, затем производят конечные измерения температуры данными термопарами в момент стабилизации температуры, которая совпадает с температурой исследуемого образца до внешнего воздействия потоками заряженных частиц или электромагнитного излучения, производят внешнее воздействие, после внешнего воздействия полностью повторяют процедуру измерения температуры образцов. При этом во всей области изменений и измерения температуры после изменений воздействия на исследуемые образцы определяет температуру, задает интервал температуры и контролирует момент наступления теплового равновесия автоматический высокоточный регулятор температуры (ВРТ) (www.ngpedia.ru/id224605p2.html).

Для начального исследования температурного поля внутри и снаружи температурной ячейки (замкнутого корпуса) количество термопар внутри и снаружи может быть достаточно большим, после проведения калибровки данной конкретной температурной ячейки термопары устанавливают в местах минимальных флуктуаций градиента температурного поля, и их количество сокращается до необходимого минимума в пределе до одной внутри корпуса (при известности времени релаксации температурного поля). Плавный разогрев (охлаждение) корпуса гарантирует отсутствие внутри него температурных градиентов, фиксируемых термопарами, длительный температурный режим обеспечивает прогрев (охлаждение) образцов, находящихся внутри него, до температуры самого корпуса.

На чертеже изображена конструкция температурной ячейки, позволяющей осуществлять данный способ.

Ячейка находится в вакуумной камере 1 и состоит из разъемного корпуса 2, основания 3, нагревателя корпуса 4, охладителя корпуса 5, электромагнитного толкателя 6, исследуемых образцов 7, вкладышей для экранирования воздействия 8, отверстия для внешнего воздействия 9, пластины, закрывающей внешнее отверстие и экранирующей от потерь тепла и внешних излучений 10, термопар 11, автоматического высокоточного регулятора температуры (ВРТ) 12, источника внешнего воздействия 13, теплового экрана 14, свободного объема ячейки для приема исследуемых образцов и вкладышей 15, вакуумного насоса 16.

Способ определения температуры образцов осуществляется следующим образом. Предварительно вакуумным насосом 16 откачивается воздух до давления 10-3-10-5 Па, измеряется начальная температура образца через измерение температуры внутри и снаружи корпуса 2 последовательно термопарами 11 до тех пор, пока не установится определенная температура теплового равновесия, которая совпадает с начальной температурой образца до внешнего воздействия, затем после открытия пластины, закрывающей внешнее воздействие 10, через отверстие для внешнего воздействия 9 первый нижний образец 7 подвергается внешнему воздействию, например облучению лазером, после чего закрывается пластина 10 и снова измеряется температура образца через последовательное измерение температуры снаружи и внутри корпуса 2 термопарами 11 до тех пор, пока не установится определенная температура теплового равновесия, которая совпадает с температурой образца после внешнего воздействия. Для исследования различий при изменении степени воздействия и изменении температуры в ячейке предусмотрен механизм смены образцов. С помощью электромагнитного толкателя 6 первый нижний образец 7 и вкладыш 8 смещаются из области внешнего воздействия в свободный объем ячейки для приема исследуемых образцов и вкладышей 15. Далее включается нагреватель 4 или охладитель 5 с целью повышения или понижения температуры на заданный интервал и повторяется процедура измерения начальной температуры образца до внешнего воздействия через измерение температуры снаружи и внутри корпуса 2 термопарами 11 до тех пор, пока не установится определенная температура теплового равновесия, которая совпадает с начальной температурой второго образца 7 до внешнего воздействия, после чего на второй исследуемый образец 7 воздействуют, например, лазерным лучом той же плотности мощности и снова измеряется температура второго образца 7 через последовательное измерение температуры снаружи и внутри корпуса 2 термопарами 11 до тех пор, пока не установится определенная температура теплового равновесия, которая совпадает с температурой второго образца 7 после второго внешнего воздействия при другой начальной температуре. При этом во всей области изменения и измерения температуры, а также изменения воздействия на исследуемые образцы определяет температуру, задает интервал температуры, контролирует момент наступления теплового равновесия и, подает сигналы на исполнительные устройства (ИУ) нагреватель, охладитель автоматический высокоточный регулятор температуры (ВРТ) 12.

Пример

Корпус температурной ячейки был выполнен размерами 15×15×60 мм из меди. Для создания вакуума использовалась стандартная вакуумная установка УВР-32, измерение и контроль температуры осуществлялись высокоточным регулятором температуры ВРТ-2 с погрешностью измерения 0,01°С. Время выхода на режим работы с 20°С до 500°С при полностью загруженной ячейке и достигнутом вакууме 10-3-10-5 Па составило 15 минут. Размеры образцов, изготовленных методом выкалывания из монокристалла KCl, составляли 10×10×2 мм, при этом инерционность полностью загруженной ячейки данными образцами составила 5 мин/град в интервале температур от 200°С до 500°С. Относительная погрешность измерения температуры составила 3%. При применении кристаллов NaCl инерционность составила 5 мин/град в интервале температур от 200°С до 500°С при той же относительной погрешности измерения.

Таким образом, данный способ использования квазизамкнутого объема и теплового поля с неоднородностью меньше погрешности измерения в температурной ячейке позволяет однозначно определять температуру любых исследуемых образцов, в том числе прозрачных в ИК-области с высокой точностью, поскольку исключает преимущественный нагрев термопар за счет ИК-излучения без нагрева образцов, прозрачных для ИК-излучения.

Способ определения температуры образцов, прозрачных в ИК-области, подвергаемых воздействию потоками заряженных частиц или электромагнитного излучения, включающий нагрев или охлаждение образцов, измерение температуры образцов с помощью термопар, образцы помещают в замкнутый корпус, выполненный из материала с высокой теплопроводностью, расположенный в вакуумной камере, откачивают воздух до давления 10-3-10-5 Па, нагревают или охлаждают корпус на заданный интервал температуры, отличающийся тем, что производят непрерывные предварительные измерения температуры термопарами, расположенными снаружи и внутри корпуса вместе с исследуемыми образцами, до момента стабилизации температуры, затем производят конечные измерения температуры данными термопарами в момент стабилизации температуры, которая совпадает с температурой исследуемого образца до внешнего воздействия потоками заряженных частиц или электромагнитного излучения, производят внешнее воздействие, после внешнего воздействия полностью повторяют процедуру измерения температуры образцов.



 

Похожие патенты:

Группа изобретений относится к измерительной технике и может быть использовано для исследования огнезащитной эффективности защитных составов и покрытий для древесины.

Использование: для оценки степени охрупчивания материалов корпусов реакторов ВВЭР-1000 в результате термического старения. Сущность изобретения заключается в том, что выполняют нагрев образцов стали корпуса реактора до температуры от 300°С, дальнейшее их старение при этой температуре в течение определенного времени, последующие испытания образцов на ударный изгиб и анализ результатов испытания с определением величины сдвига критической температуры хрупкости, при этом образцы стали корпуса реактора в процессе старения при температуре эксплуатации корпуса реактора 300-320°С дополнительно подвергают нейтронному облучению флаксом 1011-1013 н/см2·сек в течение 103 часов, после этого производят отжиг при температуре 400-450°С продолжительностью не менее 30 часов, а оценку степени охрупчивания стали определяют по величине сдвига критической температуры хрупкости ΔTk(t) вследствие термического старения за время, составляющее более 5·105 часов, по определенному математическому выражению.

Изобретение относится к способу мониторинга состава дымовых газов, получающихся в результате термического процесса. Способ является в особенности подходящим для использования при мониторинге функционирования парового котла, сжигающего хлорсодержащее топливо, но он также может быть использован и в связи с пиролизом, газификацией и другими такими процессами.

Изобретение относится к космической, авиационной, радиотехнической, приборостроительной и машиностроительной областям и может быть использовано во всех областях народного хозяйства для автоматического управления тепловым состоянием и функциональными параметрами технических устройств.

Изобретение относится к газоизмерительному устройство для измерения присутствия заданного газа в текучей среде. Устройство содержит датчик, имеющий чувствительный элемент и нагревательный элемент, сконфигурированный для нагрева чувствительного элемента до предварительно заданной рабочей температуры, причем чувствительный элемент является восприимчивым к заданному газу таким образом, что, по меньшей мере, одно электрическое свойство чувствительного элемента изменяется в зависимости от присутствия заданного газа, причем электрическое свойство чувствительного элемента измеряется газоизмерительным устройством; и цепь управления, имеющую контроллер нагревательного элемента, связанный с нагревательным элементом и измеряющий его электрическое свойство, причем цепь управления имеет источник энергии подогрева, подающий энергию к нагревательному элементу, причем контроллер нагревательного элемента связан с источником энергии подогрева и регулирует его работу в зависимости от измерения электрического свойства нагревательного элемента; средство импульсной модуляции, соединенное с контроллером нагревательного элемента, источником энергии подогрева для управления величиной энергии, подаваемому к нагревательному элементу.

Изобретение относится к технической физике, а именно к области определения степени сухости и других термодинамических параметров влажного пара, может быть использовано для непрерывного определения степени сухости как на объектах производства, так и на объектах потребления насыщенного и влажного пара.

Изобретение относится к способам определения массового содержания наполнителя в полимерных композиционных материалах и может быть использовано для контроля технологии получения полимерных композитов, а также для контроля качества и однородности полученного материала.

Изобретение относится к измерительной технике, а именно к технике обнаружения локальных дефектов в объектах бытовой техники и может найти применение для выявления потерь тепла в зданиях, выявления дефектов в отопительных приборах и т.п.

Изобретение относится к технологии испытания смазочных материалов и может быть использовано для определения их ресурса. .
Изобретение относится к области исследования качества деталей с гальваническими покрытиями, в частности к оценке степени газосодержания поверхностей деталей с защитными гальваническими покрытиями.

Изобретение относится к испытательному оборудованию и может быть использовано при испытании объектов на температурные воздействия. Стенд содержит приспособление для установки объекта испытаний, источник температурного воздействия с системами подачи и слива воды, установленный под объектом испытаний, вертикальный экран, расположенный по периметру источника температурного воздействия, закрепленный на колоннах и приподнятый над уровнем грунта, выполненный с возможностью изменения расстояния от уровня грунта до его нижнего края, а также систему защиты от спутникового наблюдения за процессом испытаний и объектом испытаний. Указанная система включает горизонтальный экран, закрепленный сверху на колоннах вертикального экрана, состоящий из металлического рамного каркаса, дискретно закрепленных на нем параллельно продольной оси каркаса по ширине, превышающей габаритные размеры объекта, канатов из жаропрочного материала, переплетенных в поперечном направлении в центральной части экрана нихромовыми лентами, полностью закрывающими контур исследуемого объекта. Технический результат - повышение точности результатов испытаний с одновременным обеспечением защиты при проведении испытаний от наблюдения из космоса. 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для автоматического определения концентрации металла в руде. Согласно заявленному способу перед проведением контроля содержания металла в руде по конвейеру пропускают руду без примесей металла. Нагревают площадным источником теплового излучения, ширина которого превышает ширину конвейера. Через время τзад после окончания нагрева измеряют среднее значение температуры по нагретой поверхности руды без содержания металла Т1ср. На основании проведенных измерений формируют градуировочную кривую. Далее на конвейер непрерывно подают руду, содержащую металл, и нагревают. Через время τзад измеряют на каждом кадре i среднее значение температуры Tcpi. Определяют величину Tcpi-T1ср на основании градуировочной кривой. Используя величину (Tcpi-T1ср), определяют процентное содержание металла в руде. Также предложено устройство для реализации указанного способа. Технический результат - повышение достоверности определения содержания металла в руде. 2 н. и 4 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к способам анализа образцов пористых материалов и может быть использовано для количественного исследования ухудшения свойств околоскважинной зоны нефте/газосодержащих пластов из-за проникновения в нее полимеров, содержащихся в буровом растворе. Согласно заявленному предложению высушивают раствор полимера до полного испарения воды. Нагревают полимер, образовавшийся после сушки раствора полимера, и определяют диапазон температур активного разложения полимера при заданном темпе нагрева, а также степень разложения полимера в этом диапазоне температур. Высушивают, проводят термический анализ в диапазоне температур, включающем диапазон температур активного разложения полимера, и вычисляют потерю массы навески образца пористой среды и навески такого же образца пористой среды после прокачки раствора полимера. На основе полученных значений определяют весовую концентрацию полимера, проникшего в пористую среду. Технический результат - повышение точности получаемых данных и экспрессности проведения анализа. 5 з.п. ф-лы, 3 ил.

Изобретение относится к испытательной технике, а именно к устройствам для исследования термической усталости конструкционных материалов, и может быть использовано для экспериментального подтверждения расчетного прогноза малоцикловой прочности конструкционных материалов. Устройство состоит из последовательно соединенных между собой газогенератора и рабочей части с образцом конструкционного материала. Газогенератор имеет сменную смесительную головку. Цилиндрическая камера сгорания газогенератора оснащена запальным устройством и дроссельной шайбой. Рабочая часть состоит из соединенных между собой зажимного фланца с центральным отверстием и фланца с установленным на нем образцом. Центральные продольные оси фланца и образца совпадают. Внутренняя цилиндрическая поверхность зажимного фланца образует с поверхностью образца кольцевую щель, которая через торцевые выходные отверстия, выполненные во фланце вокруг образца, соединена с полостью, заканчивающейся выходным соплом. Технический результат: возможность обеспечить необходимые режимы термосилового нагружения образцов с моделированием натурного термонапряженного состояния исследуемых конструкционных материалов различных агрегатов, работающих в условиях переменных тепловых режимов. 1 ил.

Настоящее изобретение относится к способу повышения термоокислительной стабильности смазочных масел, по которому пробы смазочного масла термостатируют нагреванием в герметичном стакане без перемешивания в течение постоянного времени при атмосферном давлении и фиксированной температуре, которую при каждом термостатировании новой пробы ступенчато повышают в диапазоне температур, определяемых назначением смазочного масла, после нагревания проводят отбор и испытание термостатированных проб на сопротивляемость окислению, при этом отбирают пробу постоянной массы, которую затем нагревают в присутствии воздуха с перемешиванием в течение установленного времени в зависимости от базовой основы смазочного масла при постоянной температуре и постоянной скорости перемешивания, окисленные пробы фотометрируют, определяют коэффициент поглощения светового потока, строят графическую зависимость изменения параметра оценки термоокислительной стабильности от температуры термостатирования, по которой определяют оптимальную температуру термостатирования, обеспечивающую наибольшее сопротивление окислению, отличающемуся тем, что критерием оценки термоокислительной стабильности смазочнного масла принимают ресурс работоспособности термостатированного масла, причем при испытании каждой новой термостатированной пробы на сопротивляемость окислению отбирают пробу окисленного масла через равные промежутки времени, фотометрированием определяют коэффициент поглощения светового потока, строят графические зависимости коэффициента поглощения светового потока от времени окисления термостатированных масел при каждой температуре термостатирования, по которым определяют время достижения коэффициента поглощения светового потока выбранного значения для каждого окисленного термостатированного масла при разных температурах, строят графическую зависимость времени достижения выбранного значения коэффициента поглощения светового потока окисленных термостатированных масел от температуры термостатирования, и по точке этой зависимости с максимальной ординатой, характеризующей ресурс работоспособности, определяют температуру термостатирования, обеспечивающую наибольшее сопротивление окислению. Техническим результатом настоящего изобретения является обеспечение информативности о повышении термоокислительной стабильности смазочных масел и увеличение ресурса их работоспособности. 1 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к технике экспериментального исследования огнезащитной обработки древесины и может быть использовано для определения качества огнезащитной обработки непосредственно на месте выполнения работ по огнезащите деревянных конструкций. Заявлен малогабаритный прибор для экспресс-оценки огнезащитных свойств огнезащитной обработки древесины, состоящий из корпуса, выполненного в виде открытого коробчатого профиля, механизма установки и позиционирования образца, механизма активации газовой горелки, механизма установки газовой горелки. Причем угол наклона механизма установки и позиционирования образца выполнен неизменным относительно вертикальной оси корпуса и дополнительно содержит устройство фиксации точки приложения пламени к образцу с вырезом в верхней части устройства. Все компоненты прибора установлены в полости корпуса. Технический результат - обеспечение достоверности результатов испытаний. 4 ил.

Изобретение относится к области технологии строительного производства и заключается в количественном определении аммиака в бетонных конструкциях, используемых в жилом строительстве. Способ заключается в предварительном увлажнении образца бетона и его последующем нагреве, в котором термоэмиссия проводится при разряжении 700 мм рт.ст. и температуре 80-300°C. Достигается повышение эффективности и ускорение анализа. 1 ил.

Изобретение относится к области исследования материалов строительных конструкций здания с помощью тепловых средств. Способ выявления параметров локального пожара включает проведение технического осмотра строительных конструкций деревянного перекрытия здания, подвергавшихся действию термического градиента в условиях локального пожара; выявление схемы огневого воздействия на составные элементы перекрытия; установление породы и сорта строительной древесины, показателей ее плотности и влажности в естественном состоянии, массивности элементов деревянного перекрытия, нахождение нормативного сопротивления строительной древесины на изгиб и скорости ее выгорания, отличающийся тем, что технический осмотр деревянного перекрытия здания дополняют инструментальными измерениями геометрических размеров площади горения, назначают контрольную ячейку перекрытия в очаге пожара, измеряют площадь поперечного сечения проемов ячейки перекрытия, вычисляют показатель проемности ячейки перекрытия; определяют толщину слоя обугливания поперечного сечения элементов деревянного перекрытия; вычисляют величину горючей загрузки, массовую скорость выгорания строительной сосновой древесины в ячейке перекрытия и коэффициент снижения скорости выгорания сосновой древесины, затем выявляют длительность локального пожара и максимальную температуру локального пожара, которые вычисляют из заданных соотношений. Достигается получение достоверной оценки основных параметров разрушительности прошедшего пожара, а также снижение трудоемкости и сокращение сроков проведения технического осмотра термоповрежденных элементов деревянного перекрытия здания. 1 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к устройству для оценки термомеханической усталости материала, который подвергается воздействию горячего теплового потока. Устройство содержит образец для испытаний, имеющий "горячую" стенку с наружной поверхностью, которая подвергается воздействию теплового потока, и внутренней поверхностью, от которой отходят параллельные полосы, прикрепленные к этой внутренней поверхности и образующие между собой параллельные каналы; промежуточную часть, имеющую параллельные ребра, форма и размеры которых обеспечивают возможность их вставки в указанные каналы между полосами с образованием прохода в области внутренней поверхности горячей стенки для циркуляции охлаждающей жидкости. Проход состоит из множества параллельных сегментов, отделенных друг от друга указанными полосами, а сечение прохода задано путем вставки ребер в указанные параллельные каналы. Устройство также содержит опору, на которой установлены образец и промежуточная часть, имеющая проходы, связанные с концами прохода для циркуляции охлаждающей жидкости; контур циркуляции охлаждающей жидкости, и нагревающие средства. Технический результат: возможность создания условий тестирования моделей, соответствующих реальным промышленным условиям, а также обеспечение возможности воздействовать высокими уровнями теплового потока с относительно простыми средствами нагревателя при одновременном наличии ресурса системы охлаждения, который соответствует "промышленным" системам. 9 з.п. ф-лы, 7 ил.

Изобретение относится к области наноэлектроники и может быть использовано в различных областях наноиндустрии. Заявлен способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве. Для нагрева пленочного образца и измерения его электрического сопротивления образец помещают в кварцевый реактор, содержащий корпус, на внешней поверхности которого бифилярно намотан резистивный нагреватель, а в стенке корпуса, в центральной его части, установлена термопара с возможностью измерения температуры упомянутого образца. Причем образец внутри корпуса устанавливают в С-образных зажимах с плоскими губками, которые выполняют из вольфрамовой проволоки. С-образные зажимы раскрепляют на растяжках, которые выполняют в виде пружин из вольфрамовой проволоки меньшего диаметра. После чего при помощи резистивного подогревателя, размещенного на поверхности корпуса, производят нагрев образца до заданной температуры. Через С-образные зажимы и растяжки на образец подают измерительный ток и определяют напряжение. Необходимое расстояние от поверхности образца до измерительного элемента термопары и его центрирование по отношению к термопаре осуществляют при помощи упомянутых растяжек. Технический результат - повышение точности получаемых данных. 1 ил.
Наверх