Способ измерения прогибов балок

Изобретение относится к способу измерения прогиба металлических, деревянных и других по материалу балок при поперечном изгибе от эксплуатационной нагрузки и других причин в процессе эксплуатации балки. Способ неразрушающего измерения прогиба балок заключается в том, что на поверхностях верхнего и нижнего поясов балки в месте наибольшего прогиба Δ0 наклеивают тензорезисторы с одинаковыми характеристиками непосредственно на подготовленную поверхность верхнего и нижнего поясов балки. Рабочие и компенсационные тензорезисторы наклеивают в количестве от 3 до 5 штук в каждом поясе на участке длиной от 15 до 25 см с наибольшим прогибом Δ0. Рабочие тензорезисторы крепят вдоль главных напряжений σ вдоль балки, а компенсационные - между рабочими тензорезисторами поперек балки, защищают их от различных воздействий эпоксидной смолой, монтируют мостовые схемы для каждой пары тензорезисторов (рабочих и компенсационных) и соединяют провода от них с тензостанцией; измеряют начальное сопротивление R0 рабочих тензорезисторов, при этом прогиб балки Δ(t) в любой момент времени t определяют по формуле:

Δ(t)=Δ0+r·(|ΔR1(t)|+|ΔR2(t)|),

где Δ0 - начальный наибольший прогиб балки в момент времени t=0, измеренный с помощью высокоточной геодезической рейки и нивелира до наклейки тензорезисторов; r - постоянный коэффициент, зависящий от расчетных схем и размеров балки. Техническим результатом изобретения является повышение точности измерений. 4 ил., 1 табл.

 

Изобретение относится к области неразрушающего контроля и мониторинга прогиба балок. Объект изобретения предназначен для строительных конструкций, находящихся в стадии эксплуатации.

Причины возрастания прогиба балки

1) деградация материалов;

2) дефекты и образование неисправностей (трещины, коррозия, гниение в древесине и т.д.);

3) увеличение нагрузки.

Прогибы балок зданий и сооружений можно измерить различными способами.

Известен [1, с.52] способ измерения прогиба балок в различное время их эксплуатации, заключающийся в том, что с помощью двух планок с делениями, одна из которых закреплена неподвижно в бетонном или железобетонном основании, а другая планка закреплена на балке, и по их взаимному смещению судят о прогибе балки. Полный прогиб складывается из прогиба от собственного веса балки и существующей на ней нагрузки. Полный прогиб измеряют с помощью высокоточной рейки и нивелира.

Данный способ обладает рядом недостатков:

- малая точность измерений прогиба балки;

- необходимость устройства опорного железобетонного основания;

- заполняется пространство под балкой, что нарушает технологический процесс;

- нет дистанционного управления; затруднен мониторинг прогиба балки.

Известен [1, с.54] способ измерения прогибов балки прогибомерами систем Максимова и ЦНИИСК, заключающийся в том, что к испытываемой конструкции в месте, где требуется измерить прогиб, прикрепляют стальную проволоку диаметром 0,25 мм так, чтобы она дважды обматывала барабан прогибомера со шкалой, и к концу ее подвешивают груз весом 1,5 кг. При прогибе конструкции проволока вращает барабан, соединенный со стрелкой, которая движется по циферблату. На циферблате имеется также счетчик оборотов с ценой деления 0,1 см. Прибор крепится к неподвижному предмету специальной металлической струбциной.

Недостатками этого способа являются потребность неподвижной опоры (предмета) для крепления прибора, который вместе с проволокой закрывает пространство под балкой на время измерения прогиба балки; отсутствие дистанционного управления измерениями прогиба; требуется присутствие работника на этапе измерений; затруднен мониторинг прогиба; на результаты измерений оказывает влияние температура и другие природные явления (ветер, дождь, снег и т.д.); неточность измерений, вызванная изменением места наибольшего прогиба балки, вызванного изменением свойств материала балки с течением времени, положением нагрузки и т.д.

Наиболее близким к заявленному способу измерений прогибов балок и плит является известный [1, с.59] способ измерения прогибов (перемещений) электромеханическим прибором со штоком, упругим элементом и тензорезисторами, наклеенными на упругие элементы, заключающийся в том, что прибор устанавливают на неподвижную опору под балкой в месте наибольшего прогиба, шток упирают в балку непосредственно или через дополнительную связь, балка прогибается под нагрузкой в результате деградации материала и других причин в течение времени, прогибы регистрируют косвенно через электрические сопротивления тензорезисторов ΔR, по которым через переводной коэффициент определяется прогиб балки.

Недостатками этого способа является низкая точность измерения прогиба балки, вызванная тем, что измерение производится без учета возможного изменения места наибольшего прогиба по длине балки, которое вызвано различными непредвиденными причинами; необходимость опорного устройства для крепления прибора и связи с балкой прибора, что приводит к ограничению использования пространства под балкой или над балкой на время измерений; необходимость устройства защиты прибора от различных природных воздействий и его охраны, особенно в зимнее время при непрерывном измерении, что затрудняет мониторинг прогиба балки.

Целью предлагаемого способа определения прогиба балок является повышение точности измерений наибольших прогибов балок; проведение мониторинга прогиба балки; измерение прогибов с дистанционным управлением без нарушения технологических процессов над балкой и под балкой в период измерения прогибов в любых условиях окружающей среды.

Способ заключается в следующем.

Существующими средствами измерения, например, с помощью высокоточной геодезической рейки и нивелира, устанавливают значение наибольшего начального прогиба балки Δ0 в любой момент времени эксплуатации балки и тем самым устанавливают места наибольшего прогиба балки.

Определяют значение постоянного коэффициента r, значение которого определяют по формулам в зависимости от расчетной схемы балки методами строительной механики из [2], который входит в расчетную формулу прогиба балки.

На фиг.1 показана условная схема подключения тензорезисторов на балке, где 1 - провода, 2 - рабочие тензорезисторы, 3 - компенсационные тензорезисторы, 4 - балка, 5 - тензостанция. Проводами 1 соединятся рабочие 2 и компенсационные 3 тензорезисторы, размещенные на обоих поясах балки 4 на участке в месте наибольшего прогиба на подготовленную поверхность, при этом рабочие крепятся вдоль главных напряжений σ, а компенсационные - перпендикулярно им в промежутках между рабочими тензорезисторами. Все провода 1 соединены с измерительным прибором электрического (омического) сопротивления в виде многоканальной тензостанции 5.

Подготовка к работе включает в себя следующие действия. Изолируют тензорезисторы эпоксидной смолой, монтируют известные из работы [2] мостовые схемы для каждой пары рабочих 2 и компенсационных тензорезисторов 3 в одном сечении балки R1 и R2, подключают провода 1 с тензостанцией 5 и определяют R0 - начальное электрическое (омическое) сопротивление всех рабочих тензорезисторов. Тензорезисторы наклеивают на участках поясов балки длиной 15-20 см по одному тензорезистору на каждые 5 см длины пояса, как показано на фиг.1, при базе тензорезисторов 10-30 мм, так как на этой длине может попадать сечение балки с наибольшим прогибом. Число рабочих тензорезисторов принимают от 3 до 5 в том и другом поясе балки исходя из вероятности смещения наибольшего прогиба балки от тех или иных причин в процессе эксплуатации балки в пределах 15-20 см длины балки, так как на длине 15-20 см можно разместить от 3 до 5 рабочих и компенсационных тензорезисторов с базой (длиной) 10-30 мм и шириной (компенсационных) 10 мм.

Весь процесс измерения происходит следующим образом:

1) при увеличении прогиба изменяется омическое сопротивление тензорезисторов, и по соединительным проводам вся информация об этом поступает на тензостанцию;

2) полный прогиб определяют по формуле

Δ(t)=Δ0+r·(|ΔR1(t)|+|ΔR2(t)|),

где Δ0 - начальный прогиб в момент начала наблюдений при t=0, измеренный нивелиром и высокоточной геодезической рейкой;

r - постоянный коэффициент, зависящий от расчетной схемы балки.

Известно из [1], что ε 1 = | Δ R 1 | k R 0 и ε 2 = | Δ R 2 | k R 0 ,

где k - коэффициент тензочувствительности тензорезисторов, тогда имеем эпюру ΔR подобной эпюре ε, как показано на фиг.2 и фиг.3, на которых изображены однопролетные балки с сосредоточенной нагрузкой в середине и равномерно распределенной нагрузкой по всей длине пролета, где ε1 и ε2 - деформации, ΔR1 и ΔR2 - омические (электрические) сопротивления, Δ - наибольший прогиб, L - длина пролета, F - сосредоточенная сила, h - высота сечения, b - ширина сечения.

Из эпюры ΔR имеем y c h y c = | Δ R 1 | | Δ R 2 | при и ΔR2 по абсолютному значению. Отсюда y c = h | Δ R 1 | | Δ R 1 | + | Δ R 2 | , где ус - расстояние от нейтральной оси балки до верхнего или нижнего края балки с симметричным поперечным сечением балки, как показано на фиг.2 и фиг.3. Известно из работы [2], что для однопролетной балки с сосредоточенной нагрузкой в середине пролета наибольший прогиб Δ = F l 3 48 E J . С учетом J=W·yc и значением yc имеем:

- для однопролетной балки с шарнирными опорами и сосредоточенной силой в середине пролета балки по фиг.2 имеем

Δ = F l 3 48 E J = м W ( l 2 12 E y c ) = σ E ( l 2 12 y c ) = ε 1 ( l 2 ( | Δ R 1 | + | Δ R 2 | ) 12 h | Δ R 1 | ) = = | Δ R 1 | k R 0 ( l 2 ( | Δ R 1 | + | Δ R 2 | ) 12 h | Δ R 1 | ) = l 2 12 h k R 0 ( | Δ R 1 | + | Δ R 2 | ) = r ( | Δ R 1 | + | Δ R 2 | )

где для балки любого симметричного поперечного сечения высотой h имеем r = l 2 12 h R 0 k , k - коэффициент тензочувствительности тензорезисторов, Е - модуль упругости материала;

- для однопролетной балки с шарнирными опорами и равномерно распределенной нагрузкой по всей длине пролета по фиг.3 и имеем

Δ = 5 g l 4 384 R J = g l 2 8 I / y c 5 l 2 48 E y c = σ 5 l 2 48 E y c = σ E ( 5 l 2 48 E y c ) = ε ( 5 l 2 48 y c ) = | Δ R 1 | k R 0 ( 5 l 2 48 E y c ) = | Δ R 1 5 l 2 ( | Δ R 1 | + | Δ R 2 | ) 48 k R 0 h | Δ R 1 | = 5 l 2 48 k R 0 h ( | Δ R 1 | + | Δ R 2 | ) = r ( | Δ R 1 | + | Δ R 2 | )

где r = 5 l 2 48 k R 0 h , |ΔR1(t)| и |ΔR2(t) - приращение электрических (омических) сопротивлений тензорезисторов в момент времени t, взятых по абсолютной величине, в омах. Для других расчетных схем находят значение r методами строительной механики;

3) проводят предварительный контроль достоверной работы мостовой схемы из тензорезисторов путем сравнения средних значений измерений от контрольной нагрузки F0, полученных прямыми механическими измерениями прогиба Δ1=Δ(F0), например геодезической высокоточной рейкой и нивелиром и по результатам измерений омических сопротивлений (ΔR1 и ΔR2) по формуле

Δ2=r·(|ΔR1|+|ΔR2|),

должно соблюдаться равенство Δ12, с отличием не более 5%;

4) дальнейшие измерения прогиба балки в любой момент времени t осуществляют только по показаниям измерения сопротивления тензорезисторов по расчетной формуле

Δ(t)=Δ0+r·(|ΔR1(t)|+|ΔR2(t)|),

для значений r, зависящих от расчетных схем балок.

На основании результатов измерений f и Δ, приведенных в сводной таблице, построены графики зависимости прогибов f и Δ от нагрузки, представленные на фиг.4, где показаны результаты лабораторных испытаний балки с измерением прогибов индикатором часового типа и измерением сопротивлений ΔR1 и ΔR2.

Испытание балки с определением прогиба f(F), измеренного индикатором часового типа, и прогиба Δ, измеренного с помощью тензорезисторов
F, H f·103, м |ΔR1|+|ΔR2|, Ом Δинд·103, м
1 2 3 4
16 0,54 (12,3+14,1)=26,4 0,55
24 0,81 (21,41+18,43)=39,84 0,83
32 1,08 (25,4+24,52)=49,92 1,04
40 1,35 (30,44+33,4)=63,84 1,33
48 1,63 (40,1+39,1)=79,2 1,65
56 1,9 (46,1+44,14)=90,24 1,88
64 2,2 (55+53)=108 2,25
72 2,48 (59+61)=120 2,5

Список использованной литературы

1. Землянский А.А. Обследование и испытание зданий и сооружений: учебное пособие. - М: Изд-во АСВ, 2001. - 240 с., с ил.

2. Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. Изд-во «Наукова Думка», Киев, 1975. - 703 с.

Способ неразрушающего измерения прогиба балок в строительных конструкциях на стадии эксплуатации, заключающийся в том, что на поверхностях верхнего и нижнего поясов балки в месте наибольшего прогиба Δ0, устанавливаемого с помощью высокоточной геодезической рейки и нивелира, наклеивают тензорезисторы с одинаковыми характеристиками непосредственно на подготовленную поверхность верхнего и нижнего поясов балки, отличающийся тем, что рабочие и компенсационные тензорезисторы наклеивают в количестве от 3 до 5 штук в каждом поясе на участке длиной от 15 до 25 см с наибольшим прогибом Δ0, при этом рабочие тензорезисторы крепят вдоль главных напряжений σ вдоль балки, а компенсационные - между рабочими тензорезисторами поперек балки; защищают их от различных воздействий эпоксидной смолой, монтируют мостовые схемы для каждой пары тензорезисторов (рабочих и компенсационных) и соединяют провода от них с тензостанцией; измеряют начальное сопротивление R0 рабочих тензорезисторов, при этом прогиб балки Δ(t) в любой момент времени t определяют по формуле:
Δ(t)=Δ0+r·(|ΔR1(t)|+|ΔR2(t)|),
где Δ0 - начальный наибольший прогиб балки в момент времени t=0, измеренный с помощью высокоточной геодезической рейки и нивелира до наклейки тензорезисторов; r - постоянный коэффициент, зависящий от расчетных схем и размеров балки, определяемый методами строительной механики:
для балки с равномерно распределенной нагрузкой:
;
для балки с сосредоточенной нагрузкой в середине пролета:
,
где k - коэффициент тензочувствительности, l - длина пролета балки, h - высота балки;
|ΔR1(t)| и |ΔR2(t)| - наибольшие приращения электрических (омических) сопротивлений из всех рабочих тензорезисторов, измеренных с помощью многоканальной тензостанции, вызванных изменением прогиба балки, различными причинами, измеряемые постоянно или периодически в отдельные моменты времени или в процессе эксплуатации балки при мониторинге прогиба балки.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности.

Изобретение относится к измерительной технике и может быть использовано для измерения деформаций немагнитных материалов. Способ измерения деформаций из немагнитных материалов характеризуется тем, что на поверхности или внутри объекта размещают постоянные дипольные источники магнитного поля, например на основе магнитов из сплава неодим-железо-бор, при этом для вычисления параметров линейной (вдоль прямой линии) деформации используют как минимум два магнита не лежащие в одной точке, для вычисления параметров плоской деформации - минимум три магнита, не лежащие на одной прямой, для вычисления параметров объемной деформации - минимум четыре магнита, не лежащие в одной плоскости.

Изобретение относится к измерительной технике, а именно к способам измерения деформаций и напряжений на поверхности деталей машин, подвергающихся циклическому нагружению.

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки Rн>500кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до).

Изобретение относится к измерительной технике. Способ заключается в том, что определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до).

Изобретение относится к измерительной технике. Способ заключается в том, что определяют ТКЧ мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до).

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов конструкции скважины и подземного оборудования как в магнитных, так и в немагнитных первом, втором и последующих металлических барьерах.

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки Rн>500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи и при температуре t+, и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и нелинейность ТКЧ мостовой цепи .

Изобретение относится к измерительной технике и может быть использовано в прочностных испытаниях для определения напряженного состояния конструкций и в качестве чувствительного элемента в датчиках механических величин (силы, давления, веса, перемещения и т.д.).

Изобретение относится к измерительной технике, в частности к тензометрии. Технический результат заключается в расширении области практического применения стенда и тензоэлемента, обеспечении мобильности стенда.

Изобретение относится к измерительной технике. Устройство для измерения динамических деформаций содержит измерительные тензорезисторы, опорные резисторы, усилитель, электронно-вычислительную машину с программным обеспечением, источник постоянного напряжения, эталонный резистор, коммутатор, блок управления, аналоговую программируемую многофункциональную плату с программным обеспечением, подключенную к ЭВМ. Программируемая плата может быть подключена к ЭВМ интерфейсом USB или путем установки в слот расширения PCI или PCIExpress, а устройство может быть снабжено устройством сопряжения, при этом подключение источника питания к первому аналоговому входу платы, второго вывода усилителя к аналоговому выходу платы, входа блока управления к цифровому выходу платы, выхода усилителя к аналоговому входу платы производится через соответствующие входы и выходы устройства сопряжения, связанного интерфейсом с совместимым разъемом указанной платы. Технический результат - расширение диапазона измеряемых величин и линейности выходной характеристики, повышение надежности функционирования устройства. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности. В диагональ питания мостовой цепи устанавливают термозависимый технологический резистор Rαm, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαm устанавливают перемычку. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. На основе проведенных измерений вычисляют ТКЧ тензорезисторов мостовой цепи α ∂  изм + и α ∂  изм − при температурах t+ и t- соответственно, а также нелинейность ТКЧ тензорезисторов мостовой цепи ( Δ α ∂  изм = α ∂  изм + − α ∂  изм − ) . Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Ri=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе проведенных измерений вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Ri и снимают перемычку с резистора Rαm. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе выполненных измерений вычисляют ТКС технологического термозависимого резистора Rαm при температурах t+ и t-. Если ТКЧ тензорезисторов мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора R∂ с использованием полученных значений ТКЧ тензорезисторов мостовой цепи, ТКС входного сопротивления и ТКС технологического термозависимого резистора. Технологический термозависимый резистор Rαm заменяют резистором Rα путем частичного задействования. Шунтируют резистор Rα термонезависимым резистором R∂. Технический результат заключается в повышении точности компенсации мультипликативной температурной погрешности с учетом отрицательной нелинейности температурной характеристики выходного сигнала датчика с использованием широко распространенной измерительной аппаратуры. 1 з.п. ф-лы

Изобретение относится к измерительной технике. Сущность: в выходную диагональ мостовой цепи устанавливают термозависимый технологический резистор Rαm, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαm устанавливают перемычку. Измеряют выходное сопротивление мостовой цепи Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. Повторяют измерения после подключения датчика к низкоомной нагрузке R н ' = R в ы х . На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКЧ мостовой цепи α д   и з м + , и α д   и з м − и ТКС выходного сопротивления при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи ( Δ α д   и з м = α д   и з м + − α д   и з м − ). Снимают перемычку с резистора Rαm. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКС термозависимого резистора Rαm при температурах t+ и t-. Если ТКЧ мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора R∂. Технологический термозависимый резистор Rαm заменяют резистором Rα путем частичного задействования резистора Rαm. Шунтируют резистор Rα термонезависимым резистором R∂. Технический результат: повышение точности компенсации. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности. В диагональ питания мостовой цепи устанавливают термозависимый технологический резистор Rαт, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαт устанавливают перемычку. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. На основе проведенных измерений вычисляют ТКЧ тензорезисторов мостовой цепи α д   и з м + и α д   и з м − при температурах t+ и t- соответственно, а также нелинейность ТКЧ тензорезисторов мостовой цепи ( Δ α д   и з м = α д   и з м + − α д   и з м − ) . Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Ri=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе проведенных измерений вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Ri и снимают перемычку с резистора Rαт. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе выполненных измерений вычисляют ТКС технологического термозависимого резистора Rαт при температурах t+ и t-. Если ТКЧ тензорезисторов мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора Rш с использованием полученных значений ТКЧ тензорезисторов мостовой цепи, ТКС входного сопротивления и ТКС резистора Rαт. Резистор Rαт заменяют резистором Rα путем частичного задействования. Шунтируют входное сопротивление мостовой цепи термонезависимым резистором Rш. Технический результат заключается в повышении точности компенсации мультипликативной температурной характеристики выходного сигнала датчика. 1 з.п. ф-лы.

Изобретение относится к измерительной технике. Сущность: в выходную диагональ мостовой цепи устанавливают термозависимый технологический резистор Rαт, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαт устанавливают перемычку. Измеряют выходное сопротивление мостовой цепи Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. Повторяют измерения после подключения датчика к низкоомной нагрузке R н ' = R в ы х . На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКЧ мостовой цепи α д  изм + и α д  изм − и ТКС выходного сопротивления при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи ( Δ α д  изм = α д  изм + − α д  изм − ). Снимают перемычку с резистора Rαт. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКС термозависимого резистора Rαт при температурах t+ и t-. Если ТКЧ мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора Rш. Технологический термозависимый резистор Rαт заменяют резистором Rα путем частичного задействования резистора Rαт. Шунтируют выходное сопротивление мостовой цепи термонезависимым резистором Rш. Технический результат: повышение точности компенсации. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано для измерения деформаций в условиях однородных деформационных полей в процессе прочностных испытаний. Сущность: датчик включает в себя носитель 1 из тонкой металлической фольги. В носителе 1 посредством прямоугольных отверстий 2 образованы две тонкие нити 3 и площадка 4 между ними. На носитель 1 осаждена в вакууме тонкая разделительная диэлектрическая пленка 5, которая повторяет форму носителя 1. На диэлектрическую пленку 5 осаждены тензочувствительные элементы 6, 7 из моносульфида самария, которые соединены в мост Уитстона, и металлические контактные площадки 8, которые являются входными и выходными контактами датчика. В носителе 1 могут быть дополнительно выполнены две сквозные прорези, каждая из которых начинается от середины соответствующего крайнего прямоугольного отверстия 2 и перпендикулярна ему, образуя площадки, на которых выполнены металлические контактные площадки. Технический результат: увеличение выходного сигнала, температурная независимость. 1 з.п. ф-лы, 4 ил.

Способ определения напряжений в конструкции без снятия статических нагрузок может быть использован для оценки прочности конструкции и прогнозирования ее несущей способности. Измерения поверхностных деформаций ε производят в контролируемых точках на конструкции, находящейся в напряженно-деформированном состоянии. Контролируемые точки выбирают таким образом, что они имеют возможность дополнительного нагружения независимо от конструкции. В контролируемых точках создают с помощью известной внешней силы P дополнительные напряжения, совпадающие по направлению с измеряемыми, ступенчато увеличивают деформацию на Δε, измеряют изменение внешней силы ΔPi. Нагружение увеличивают до тех пор, пока K = | Δ P i + 1 Δ P i − 1 | * Δ ε не увеличится до значения, соответствующего нормированному отклонению от закона Гука механической характеристики материала конструкции. Деформацию конструкции определяют, вычитая из известного значения деформации для заранее известной механической характеристики материала конструкции измеренную дополнительную деформацию. Техническим результатом изобретения является упрощение процесса измерения и ненарушение целостности исследуемой конструкции. 2 з.п. ф-лы, 3 ил.

Использование: для определения параметров высокоскоростного движения метательных тел, например измерения перегрузок, скорости соударения, и для исследования параметров динамического деформирования металлических материалов в авиационной и космической технике. Сущность изобретения заключается в том, что при регистрации электромагнитного поля, возникающего при динамическом деформировании тел, полезный сигнал регистрируют, используя исследуемый образец, подключенный через коаксиальное соединение к устройству измерения, при этом исследуемый образец является первичным физическим преобразователем ударного воздействия в полезный сигнал. Технический результат: обеспечение возможности прямого измерения без больших инструментальных и статистических погрешностей. 2 н.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике. Датчик подключают к нагрузке Rн>500 кОм, измеряют начальный разбаланс и выходной сигнал при нормальной температуре t0, а также температурах t+ и t-, соответствующих верхнему и нижнему пределу рабочего диапазона температур. Вычисляют ТКЧ мостовой цепи α ∂ o + и α ∂ o − при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи ( Δ α ∂ o = α ∂ o + − α ∂ o − ) . Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Rm=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал при температурах t0, t+ и t-. Вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Rm. Если α ∂ o + и Δα∂o принадлежат области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то вычисляют номинал резистора Ri. В диагональ питания мостовой цепи включают термонезависимый резистор Ri с вычисленным номиналом. Измеряют выходное сопротивление мостовой цепи датчика Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Термозависимый технологический резистор Rαm, номинал которого больше возможных значений компенсационного термозависимого резистора Rα, устанавливают в выходную диагональ мостовой цепи. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. Повторяют измерения после шунтирования резистора Rαm термонезависимым резистором Rш1=1,25·Rαm. Повторяют измерения после замены резистора Rш1 термонезависимым резистором Rш2=0,25·Rαm. Вычисляют ТКЧ мостовой цепи после преобразования нелинейности ТКЧ мостовой цепи α ∂ o ' + и α ∂ o ' − , а также ТКС выходного сопротивления и ТКС резистора Rαm при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи Δ α ∂ o ' = α ∂ o ' + − α ∂ o u ' − . Если α ∂ o ' + и Δ α ∂ o ' принадлежат области компенсации мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора R∂. Технологический термозависимый резистор Rαm заменяют резистором Rα путем частичного задействования резистора Rαm. Шунтируют резистор Rα термонезависимым резистором R∂. Технический результат заключается в повышении точности компенсации мультипликативной температурной погрешности. 1 з.п. ф-лы, 1 табл.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности. Датчик подключают к нагрузке Rн>500 кОм, измеряют начальный разбаланс и выходной сигнал при нормальной температуре t0, а также температурах t+ и t-, соответствующих верхнему и нижнему пределу рабочего диапазона температур. Вычисляют ТКЧ мостовой цепи , и при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи. Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Rmвх=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. Вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Rmвх. Термозависимый технологический резистор Rαmвх, номинал которого больше значений компенсационного термозависимого резистора Raex, устанавливают в диагональ питания. Измеряют начальный разбаланс и выходной сигнал при температурах t0, t+ и t-. Вычисляют ТКС технологического термозависимого резистора Rαmвх при температурах t+ и t-. Если и принадлежат области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то вычисляют номинал резистора Rαвх. Технологический термозависимый резистор Rαmвх заменяют резистором Rαвх путем частичного задействования резистора Rαmвх. Измеряют выходное сопротивление мостовой цепи датчика Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Термозависимый технологический резистор Rαmвых, номинал которого больше возможных значений компенсационного термозависимого резистора Rαвых, устанавливают в выходную диагональ мостовой цепи соответственно. При температурах t0, t+ и t- измеряют значения как начального разбаланса, так и значения выходного сигнала датчика при номинальном значении измеряемого параметра. В выходную диагональ последовательно с нагрузкой включают термонезависимый резистор Rm1=Rвых, повторяют измерения значений начального разбаланса и выходного сигнала датчика. Резистор Rm1 заменяют резистором Rm2=2·Rвых, повторяют измерения значений начального разбаланса и выходного сигнала датчика. Отключают резистор Rm2, вычисляют значения ТКС выходного сопротивления, резистора, ТКЧ мостовой цепи после преобразования нелинейности ТКЧ мостовой цепи и , а также нелинейность ТКЧ мостовой цепи . Если и принадлежат области компенсации мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи, то вычисляют номинал термозависимого резистора Rαвых и термонезависимого резистора R∂. Технологический термозависимый резистор Rαmвых заменяют резистором Rαвых путем частичного задействования резистора Rαmвых. Шунтируют резистор Rαвых термонезависимым резистором R∂. Технический результат заключается в повышении точности компенсации мультипликативной температурной погрешности. 1 з.п. ф-лы, 1 табл.
Наверх