Состав для приготовления строительного раствора и мелкозернистой бетонной смеси

Изобретение относится к области строительного материаловедения и может быть использовано при приготовлении строительных растворов и мелкозернистых бетонных смесей. Технический результат заключается в повышении прочности строительных растворов и мелкозернистых бетонных смесей. Состав для приготовления строительного раствора и мелкозернистой бетонной смеси включает, мас.%: базальт со средним размером 360±98 - 30-40%; кремнеземсодержащая порода со средним размером 266±69 - остальное. 2 ил., 2 табл.

 

Изобретение относится к области строительного материаловедения и может быть использовано при приготовлении строительных растворов и мелкозернистых бетонных смесей.

Существующие в настоящее время добавки в составы строительных растворов и бетонных смесей имеют в большинстве своем химическую природу, обладают высокой трудоемкостью при приготовлении, для них требуется наличие специальных компонентов.

Известен состав для приготовления смеси на основе цемента, сыпучего материала мелких фракций (средний диаметр гранул составляет 1/5-1/10 среднего диаметра гранул цемента) и волокон усиления [RU, патент 2036886, C04B 40/00, 1995]. Данный состав требует введение пластифицирующих добавок и минеральных волокон или стекловолокна, которые улучшают механические свойства композиционного состава, однако не способствуют повышению класса прочности бетонного композита.

Известен состав для приготовления строительного раствора с использованием добавки - наномодификатора строительных материалов, включающий смесь, содержащую углеродный наноматериал (УНМ), вводимый в виде трубок «Таунит», наполнитель (полиэтиленгликоль ПЭГ-1500) и пластификатор (поливинилпирролидон) и дополнительно содержащий гидрокарбонат натрия и лимонную кислоту. Добавка наномодификатора обеспечивает стабильное увеличение прочностных характеристик (на сжатие и на изгиб) на 20-26%. Однако данный состав отличает наличие дорогостоящих компонентов, его многокомпонентность, а способ приготовления добавки характеризуется большими энергетическими затратами и дополнительными процессами прессования и таблетирования добавки.

Наиболее близким техническим решением к предлагаемому составу является состав бетонной смеси, приготовленный с предварительным измельчением кварцевого песка в мельнице, удалением пылевидных и глинистых частиц и автоклавной обработкой мелкого заполнителя насыщенным водяным паром при температуре 120-210°C в течение 1-8 часов. Технический результат - повышение прочности, долговечности, морозостойкости и коррозионной стойкости бетона, предназначенного для особо ответственных сооружений. [RU, патент 2223241, C04B 28/02, 20:04, 111:20, 2004]. Недостатком такого состава является трудоемкость его приготовления, увеличение продолжительности подготовительных работ перед производством бетонной смеси, отсутствие экспериментальных данных по расчету необходимого количества заполнителя, подвергающегося автоклавной обработке.

Задачей предлагаемого изобретения является повышение прочности строительных растворов и мелкозернистых бетонных смесей.

Поставленная задача достигается тем, что в состав строительного раствора и бетонной смеси вводят композит базальта и кремнеземсодержащей породы в высокодисперсном состоянии при следующем соотношении компонентов, мас.%:

базальт со средним размером 360±98 нм - 30-40;

кремнеземсодержащая порода со средним размером 266±69 - остальное.

Для создания композиционной смеси исходные образцы базальта и кремнеземсодержащей породы высушиваются и доводятся до постоянной массы при температуре 105°C. Измельчение исходных материалов проводится на планетарной шаровой мельнице Retsch РМ100: осуществляется одностадийный сухой помол исходного материала в трехчасовом режиме с остановкой мельницы каждые 30 минут (число оборотов - 420 об/мин, количество размольных тел - 100 стальных шариков). Размер частиц полученных фракций определяется на анализаторе размера субмикронных частиц Delsa Nano Series Zeta Potential and Submicron Particle Size Analyzers. Средний размер высокодисперсных образцов базальта составил 360±98 нм, кремнеземсодержащей породы - 266±69 нм. Смешивание компонентов для получения композиционной смеси проводится механическим путем. Равномерность смешения исходных компонентов достигается многостадийным последовательным смешением пропорциональных объемов материала базальта и кремнеземсодержащей породы.

Была проведена серия экспериментов по созданию композитов, характеризующихся составом: от 100% базальта до 100% кремнеземсодержащей породы с градацией в 10%.

Значения удельной площади поверхности композитов определяется на установке Autosorb-iQ-MP методом сорбции азота. Критическое поверхностное натяжение и постоянная Гамакера исследуемых материалов определяются по методике, реализующей метод Г.А. Зисмана, на предварительно уплотненных пробах при помощи установки KRUSS EasyDrop. Для этого используются экспериментально полученные значения угла смачивания поверхности проб водным раствором этанола с различным объемным содержанием воды (0-50%). Критическое поверхностное натяжение и постоянная Гамакера рассчитываются посредством построения графических зависимостей cosθ=f(σж) и cosθ - 1=f(1/σж), соответственно. Расчет величины изменения изобарно-изотермического потенциала ΔGS проводится по уравнению:

Величина энергии поверхности Es определяется общей площадью поверхности диспергированного образца и рассчитывается по следующему выражению:

Полученные экспериментальные данные и рассчитанные энергетические характеристики опытных образцов представлены в табл.1.

Изобретение иллюстрируется чертежами, где на фиг.1 приведена функциональная зависимость A*=f(C) (С - содержание массовой доли песка в композите), а на фиг.2 приведена функциональная зависимость ΔGs=f(C). Экспериментальные результаты показывают, что композит, характеризующийся составом 40% базальта - 60% кремнеземсодержащей породы, имеет максимальное значение А*. Данный факт может свидетельствовать о самопроизвольном сцеплении частиц системы за счет сил физической природы. Отмеченный композит также имеет экстремальное значение ΔGS, то есть он наиболее устойчив к трансформационным превращениям.

Примеры реализации изобретения, подтверждающие повышение прочностных характеристик образцов из цементного раствора, в котором песчаный заполнитель заменен на композиционную смесь предлагаемого состава, представлены в таблице 2. Были выполнены серии испытаний по определению прочности на изгиб и на сжатие по методике ГОСТ 310.4-81 образцов-балочек, изготовленных из цементного раствора состава 1:3 по массе (1 часть цемента и 3 части композиционной смеси). В примере 4 в качестве заполнителя использовался песок мелкий.

Приведенные примеры реализации изобретения 1-4 подтверждают повышение прочностных характеристик строительного раствора при применении заявляемого состава композита. Наиболее предпочтительнее смесь, состоящая из 40% базальта и 60% песка, так как в этом случае наряду с высокой прочностью на сжатие достигается максимальное значение прочности на изгиб.

Состав для приготовления строительного раствора и мелкозернистой бетонной смеси, включающий вяжущее, мелкий заполнитель и воду, отличающийся тем, что в качестве мелкого заполнителя применена композиционная смесь в высокодисперсном состоянии при следующем соотношении компонентов, мас.%:
базальт со средним размером 360±98 нм - 30-40;
кремнеземсодержащая порода со средним размером 266±69 - остальное.



 

Похожие патенты:

Изобретение относится к способу изготовления быстросхватывающейся облегченной цементирующей композиции с улучшенной прочностью на сжатие для строительных изделий, таких как панели.
Изобретение относится к строительным материалам, а также к области производства искусственных теплоизоляционных материалов. .
Изобретение относится к строительным растворам и может быть использовано для изготовления штукатурных покрытий, в качестве раствора в кирпичных кладках и в соединительных прослойках плиточных покрытий.

Изобретение относится к огнеупорной промышленности и может быть использовано для производства огнеупорного бетона, предназначенного для футеровки различных тепловых агрегатов, например укрытий главных и транспортных желобов доменного производства, арматурного слоя промежуточных ковшей, ремонта подвесных сводов методических печей.

Изобретение относится к области производства строительных материалов. .
Изобретение относится к строительным материалам, а именно к области производства пористых заполнителей для легких бетонов и теплоизоляционных засыпок. .

Изобретение относится к составам покрытий на основе полимочевины, содержащим полые микросферы, и к способам нанесения покрытий на любые поверхности в области строительства, машиностроения, приборостроения, авиации, космоса, железнодорожного транспорта и других отраслях промышленно-бытового назначения.
Изобретение относится к области строительных материалов для кладочных растворов и штукатурных работ. .
Изобретение относится к теплоизоляционному покрытию для поверхностей любой формы, требующих тепловой защиты, применяемому в различных отраслях промышленности, а также в качестве звукоизоляционного, гидроизоляционного, антикоррозионного, прокладочного и герметизирующего материала.

Изобретение относится к производству бетона, содержащего в своем составе стекольный заполнитель (стеклобой) и ингибитор коррозии бетона, способствующий подавлению процессов расширения бетона в результате протекания реакции между щелочами бетона и кремнеземом наполнителя.

Изобретение относится к способу и к композиции, используемым в операциях цементирования, в том числе к способу цементирования, который может включать обеспечение отверждаемой композиции, содержащей волластонит, пемзу, известь и воду, причем в упомянутой композиции волластонит может присутствовать в количественном диапазоне от примерно 25% до примерно 75% от общей массы волластонита и пемзы, а пемза может присутствовать в количественном диапазоне от примерно 25% до примерно 75% от общей массы волластонита и пемзы. Формы осуществления способа могут дополнительно включать предоставление возможности этой отверждаемой композиции затвердеть. Изобретение развито в зависимых пунктах формулы изобретения. 2 н. и 15 з.п. ф-лы, 4 табл., 4 пр.

Изобретение относится к производству дорожно-строительных материалов; которые могут быть использованы в строительстве пешеходных, автомобильных дорог, преимущественно сельских, разных площадок и т.п. Масса для дорожного покрытия содержит, мас. %: каменноугольный деготь 4,0-6,0; известь 1,5-2,0; андезитовая мука 4,5-6,0; кварцевый песок 86,0-90,0. Технический результат – уменьшение пористости. 1 табл.

Изобретение относится к производству строительных материалов и может быть использовано при изготовлении цемента с добавкой различного назначения. Способ получения цемента с добавкой, включающий обжиг серпентинита, его измельчение до фракции менее 30 мкм и последующее введение в качестве минеральной добавки в количестве 2-30 масс. % в портландцемент или в смесь портландцементного клинкера и гипса на стадии их помола, причем перед обжигом серпентинит орошают водным раствором соли натрия, или калия, или кальция или водным раствором смеси указанных солей при общем содержании соли - 0,02-1,0% от массы серпентинита. Технический результат - повышение прочности. 2 пр., 2 табл.

Вяжущее // 2631270
Изобретение относится к составам вяжущих, которые могут быть использованы в производстве бетонных изделий. Вяжущее содержит, мас.%: портландцемент 74,0-78,0; молотый до прохождения через сито 008 гранулированный никелевый шлак 18,0-20,0; молотый до прохождения через сито 008 бой силикатного кирпича 4,0-6,0. Технический результат - снижение расхода цемента.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из смеси для модифицированного бетона в гражданском, промышленном и транспортном строительстве Технический результат - получение смеси для модифицированного бетона марки по подвижности П2 с минимальным расходом цемента. Смесь для модифицированного бетона, содержащая портландцемент, песок, золь нанокремнезема, белую сажу, суперпластификатор и воду, отличающаяся тем, что в качестве суперпластификатора взята добавка Линамикс ПК, при следующем соотношении компонентов мас.%: песок 66,3-67,8, портландцемент 22-22,5, вода 5,8-6,1, Линамикс ПК 3,38-3,45, микрокремнезем 0,225-3, золь нанокремнезема 0,084-0,351, белая сажа 0,045-0,158. 4 табл.

Изобретение относится к производству искусственных пористых заполнителей для бетонов. Сырьевая смесь для производства искусственного пористого заполнителя содержит, мас.%: легкоплавкую глину 95,0-99,5, измельченный и просеянный через сито №2,5 кианит 0,5-5,0. Технический результат – упрощение технологии производства пористого заполнителя. 1 табл.
Наверх