Тензорезисторный датчик силы

Изобретение относится к весовой технике, в частности к тензорезисторным датчикам силы, предназначенным для точного измерения сил, в том числе в агрессивных средах. Тензорезисторный датчик силы содержит жесткий центр, силовводяшую оболочку, кольцевой силопреобразователь, ограниченный изнутри цилиндрической поверхностью, имеет в своей нижней части кольцевой выступ, ограниченный изнутри той же цилиндрической поверхностью, опорную оболочку большего диаметра и опорное кольцо, соединенные между собой последовательно и выполненные за одно целое. Силовводящая оболочка выполнена вогнутой и в средней части ограничена снаружи и изнутри цилиндрическими поверхностями и плавно изнутри сопрягается с участками конических поверхностей одинаковой конусности и сужающиеся части конусов направлены к средней части симметрично. Верхнее подрезисторное кольцо ограничено цилиндрическими поверхностями и снаружи имеет два симметричных выступа, ограниченных коническими поверхностями одинаковой конусности, а их сужающиеся части направлены к середине, и запрессовано по этим поверхностям в среднюю часть силовводящей оболочки. Кольцевой выступ кольцевого силопреобразователя также ограничен снаружи конической поверхностью и его сужающаяся часть конуса направлена к кольцевому силопреобразователю, и по ней запрессовано нижнее подрезисторное кольцо и упирается в кольцевой силопреобразователь. Техническим результатом изобретения является повышение надежности и точности измерений. 3ил.

 

Изобретение относится к весовой технике, в частности к тензорезисторным датчикам силы, предназначенным для точного измерений сил, в том числе в агрессивных средах.

Известен датчик растяжения сжатия (А.С. 1744523, МПК G01L 1/22, опубл. 30.06.92. Бюл. №24), содержащий два силовоспринимающих кольца, две силовводящие оболочки разного диаметра и упругий элемент с тензорезисторами, расположенными между силовводящими оболочками, при этом кольца, силовводящие оболочки и упругий элемент выполнены за одно целое и соединены между собой плавно, причем силовводящая оболочка меньшего диаметра выполнена вогнутой, а большего - выпуклой, при этом величина вогнутости и выпуклости оболочек не меньше толщины соответствующих оболочек.

Недостатком такого датчика растяжения сжатия является то, что необходим корпус, чтобы оградить тензорезисторы от внешней среды, так как они установлены на внешней боковой поверхности упругого элемента, а деформация обратно пропорциональна радиусу этой поверхности, что снижает точность измерения. Кроме того, соединение корпуса с упругим элементом воспринимает часть приложенного усилия, которое передается деталям указанного соединения, что также снижает точность измерения. Наличие корпуса требует герметичного соединения его с упругим элементом, и это соединение при воздействии агрессивной среды разрушается, что приводит к отказу датчика силы.

Запрессовка отдельно изготовленной тонкой цилиндрической оболочки с тензорезисторами по внутренней цилиндрической поверхности упругого элемента, как это выполнено в работе (Сергеев С.Т., Дащенко А.Ф., Голованов В.К. К вопросу расчета и проектирования бескорпусных датчиков силы // АН УССР. Прикладная механика. - 1991. том XXYII №11. - С.97-102), позволяет обойтись без корпуса. Однако в результате воздействия сжимающего усилия упругий элемент повернется на некоторый угол, что приведет к повороту запрессованной оболочки. При дальнейшем возрастании усилия наступит такой момент, когда давление на нижнюю часть оболочки будет отсутствовать. Поэтому давление упругого элемента на запрессованную оболочку вызовет усилия, направленные в осевом направлении, что снижает точность измерения и надежность передачи деформации тензорезисторам. Кроме того, при перегрузке кольцо с тензорезисторами может сдвинуться из места запрессовки в осевом направлении, что также снижает надежность передачи деформации тензорезисторам.

Наиболее близким по технической сущности и достигаемому результату является бескорпусный датчик силы (Сергеев С.Т., Дащенко А.Ф., Голованов В.К. Метод расчета бескорпусных датчиков силы. // Вестник машиностроения, - 1992. №1. - С.24-26). Упругий элемент этого датчика состоит из жесткого центра, силовводящей оболочки, кольцевого силопреобразователя, опорной оболочки большего диаметра, опорного кольца, соединенных между собой последовательно и выполненных за одно целое, верхнее подрезисторное кольцо с тензорезисторами по своему наружному диаметру запрессовано со стороны силовводяшей оболочки, а нижнее подрезисторное кольцо с тензорезисторами по своему внутреннему диаметру запрессовано со стороны опорной оболочки. При этом функции корпуса в части защиты его внутренней полости с тензорезисторами от воздействия окружающей среды выполняют жесткий центр, силовводящая оболочка, кольцевой силопреобразователь, опорная оболочка, опорное кольцо, соединенные между собой последовательно и выполненные за одно целое, и дополнительная крышка, установленная жестко в опорном кольце.

Недостатком указанной конструкции, также как и выше, является то, что запрессовка колец с тензорезисторами осуществляется по цилиндрическим поверхностям, ось которых совпадает с осью кольцевого силопреобразователя. Поэтому при приложении измеряемого усилия сжатия или растяжения в кольцах с тензорезисторами изменяется величина сил запрессовки, это изменение вызывает осевые силы, стремящиеся сдвинуть кольца в осевом направлении, что также ухудшает показатели точности измерений. Отметим, что величина запрессовки колец соизмерима с величиной измеряемой деформации, поэтому при допустимой для датчика 10% перегрузке кольца могут сдвинуться в осевом направлении. Следовательно, снижается надежность передачи деформации тензорезисторам. Кроме того, при измерении усилий сжатия верхнее кольцо с тензорезисторами будет сжиматься, что увеличивает напряжение в месте соединения силовводящей оболочки и кольцевого силопреобразователя, а это уменьшает диапазон измерения и, как следствие, уменьшает точность измерения.

В этой связи важнейшей задачей является создание новой конструкции тензорезисторного датчика силы, позволяющей с повышенной надежностью передавать деформацию тензорезисторам и измерять динамические нагрузки с высокой точностью.

Технический результат: измерение динамических нагрузок с повышенной надежностью и с высокой точностью, в том числе и в агрессивных средах.

Поставленный технический результат достигается тем, что тензорезисторный датчик силы, содержащий жесткий центр, силовводяшую оболочку, кольцевой силопреобразователь, ограниченный изнутри цилиндрической поверхностью, имеющий в своей нижней части кольцевой выступ, ограниченный изнутри той же цилиндрической поверхностью, опорную оболочку большего диаметра и опорное кольцо, соединенные между собой последовательно и выполненные за одно целое, верхнее подрезисторное кольцо с тензорезисторами по своему наружному диаметру, запрессованное со стороны силовводяшей оболочки, а нижнее подрезисторное кольцо с тензорезисторами по своему внутреннему диаметру, запрессованное со стороны опорной оболочки, при этом силовводящая оболочка выполнена вогнутой и в средней части ограничена снаружи и изнутри цилиндрическими поверхностями, при этом внутренняя цилиндрическая поверхность вверху и внизу плавно сопрягается с участками конических поверхностей одинаковой конусности, причем сужающиеся части конусов направлены к средней части симметрично, а по их большим основаниям конуса плавно сопрягаются с вогнутой частью силовводящей оболочки, а верхнее подрезисторное кольцо ограничено изнутри и снаружи цилиндрическими поверхностями и снаружи имеет два выступа, расположенных симметрично середине и ограниченных коническими поверхностями одинаковой конусности, при этом сужающиеся части конусов направлены к середине симметрично, запрессовано по этим поверхностям в среднюю часть силовводящей оболочки, а кольцевой выступ кольцевого силопреобразователя ограничен снаружи конической поверхностью одинаковой конусности, причем сужающаяся часть конуса направлена к кольцевому силопреобразователю, а нижнее подрезисторное кольцо, запрессованное по конической поверхности одинаковой конусности, ограничивающей изнутри это кольцо, и его верхняя часть меньшим основанием конуса упирается в кольцевой силопреобразователь.

Кроме того, достижению технического результата способствует и то, что запрессовка отдельно изготовленных подрезисторных колец с тензорезисторами по коническим поверхностям одинаковой конусности исключает возможность их смещения в осевом направлении и позволяет надежно и точно передавать деформацию поверхности упругого элемента тезорезисторам. Это обеспечивается еще и тем, что для верхнего подрезисторного кольца запрессовка осуществляется по двум коническим поверхностям, причем сужающиеся части конусов направлены к средней части симметрично, а нижнее подрезисторное кольцо упирается в кольцевой силопреобразователь.

На фиг.1 изображен тензорезисторный датчик силы и показано осевое сечение, плоскостью проходящей через его ось; на фиг.2 показан выносной элемент А - увеличенное изображение средней части силовводящей оболочки с верхним подрезисторным кольцом; на фиг.3 показан выносной элемент Б - увеличенное изображение кольцевого выступа кольцевого силопреобразователя с нижним подрезисторным кольцом.

Тензорезисторный датчик силы, представленный на фиг.1, фиг.2 и фиг.3, состоит из жесткого центра 1, силовводящей оболочи 2, кольцевого силопреобразователя 3, ограниченного изнутри цилиндрической поверхностью, имеющего в своей нижней части кольцевой выступ 4, ограниченный той же внутренней цилиндрической поверхностью, опорной оболочки 5 большего диаметра и опорного кольца 6, соединенных между собой последовательно и выполненных за одно целое, и запрессованных верхнего 7 и нижнего 8 подрезисторных колец. Причем силовводящая оболочка 2 выполнена вогнутой и в средней части ограничена снаружи и изнутри цилиндрическими поверхностями, при этом внутренняя цилиндрическая поверхность вверху и внизу плавно сопрягается с участками конических поверхностей одинаковой конусности, при этом сужающиеся части конусов направлены к середине симметрично средней части, а по их большим основаниям конусы плавно сопрягаются с вогнутой частью силовводящей оболочки 2. Верхнее подрезисторное кольцо 7 ограничено изнутри и снаружи цилиндрической поверхностью и снаружи имеет два выступа, обозначенных позицией 9, и расположенных симметрично середине и ограниченных коническими поверхностями одинаковой конусности, при этом сужающиеся части конусов направлены к середине симметрично, и верхнее подрезисторное кольцо 7 запрессовано по этим поверхностям в среднюю часть силовводящей оболочки 2. Кольцевой выступ 4 кольцевого силопреобразователя 3 ограничен снаружи конической поверхностью одинаковой конусности, причем сужающаяся часть конуса направлена к кольцевому силопреобразователю 3. Нижнее подрезисторное кольцо 8 запрессовано по конической поверхности одинаковой конусности, ограничивающей его изнутри, и его верхняя часть своим меньшим основанием конуса упирается в кольцевой силопреобразователь 3. Величина одинаковой конусности показана с помощью угла между образующей конуса и осью датчика и равна α. Величина вогнутости силовводящей оболочки равна b, а ее толщина равна а. Тензорезисторы показаны условно и обозначены позициями 10 для верхнего подрезисторного кольца 7 и позицией 11 для нижнего подрезисторного кольца 8. Вогнутость силовводящей оболочки 2 показана с помощью радиусов r, R поверхностей ее ограничивающих, изнутри и снаружи соответственно.

Предлагаемый тензорезисторный датчик силы работает следуюшим образом (фиг.1). Осевая нагрузка P, приложена к жесткому центру 1 и действует со стороны опорного кольца 6, в качестве реакции опоры. В результате средняя вогнутая часть силовводящей оболочки 3 сжимается и влечет сжатие верхнего подрезисторного кольца 7 с тензорезисторами 10. Это обеспечивается тем, что силовводящая оболочка 3 является вогнутой и величина ее вогнутости больше ее толщины, то есть b>a. Нижняя часть силовводящей оболочки 2 и опорная оболочка 5 воздействуют на кольцевой силопреобразователь 3, поворачивают его сечение совместно с кольцевым выступом 4 на некоторый угол, что влечет растяжение нижнего подрезисторного кольца 8 с тензорезисторами 11. Таким образом, верхние тезорезисторы 10 уменьшают свою длину, а нижние 11 увеличивают, и включенные в электрическую схему мостика Уинстона вырабатывают электрический сигнал, пропорциональный приложенной нагрузке P.

Предлагаемый тензорезисторный датчик силы отличается от прототипа тем, что силовводящая оболочка 2 меньшего диаметра выполнена вогнутой и в средней части ограничена снаружи и изнутри цилиндрическими поверхностями, при этом внутренняя цилиндрическая поверхность вверху и внизу плавно сопрягается с участками конических поверхностей одинаковой конусности, при этом сужающреся части конусов направлены к середине симметрично, которые вблизи больших оснований плавно сопрягаются с вогнутой частью силовводящей оболочки. На фиг.1 и фиг.2 показаны радиусы сопряжений R1 и R2 и величина конусности α. Кроме того, верхнее подрезисторное кольцо 7 ограничено изнутри и снаружи цилиндрической поверхностью и снаружи имеет два выступа, отмеченных позицией 9 и расположенных симметрично середине, и ограниченных коническими поверхностями одинаковой конусности, и запрессовано по этим поверхностям в среднюю часть силовводящей оболочки 2. а кольцевой выступ 4 кольцевого силопреобразователя 3 ограничен снаружи конической поверхностью одинаковой конусности, причем сужающаяся часть конуса направлена к кольцевому силопреобразователю 3, а нижнее подрезисторное кольцо 7 запрессовано по конической поверхности одинаковой конусности, ограничивает изнутри это подрезисторное кольцо 7 и его верхняя часть упирается в кольцевой силопреобразователь.

Отметим также существенное отличие от прототипа, заключающееся в использовании вогнутой силовводящей оболочки 2, что позволяет снизить уровень напряжений в месте ее соединения с кольцевым силопреобразователем 3, при этом запрессовка тензорезиторного кольца 7 осуществляется в ее средней части, где радиальная деформация имеет большую величину. Кроме того, в отличие от прототипа выполнение в предлагаемой конструкции конических поверхностей одинаковой конусности обеспечивает постоянный уровень напряжений в месте запрессовки. Следовательно, распределение деформации вдоль образующей конуса оказывается равномерным, что способствует увеличению точности измерения динамических нагрузок. Этот эффект усиливается еще и тем, что благодаря одинаковой конусности силы, действующие на верхнее подрезисторное кольцо 7, направлены к друг другу и имеют одинаковую величину, то есть взаимно уничтожаются. Осевые силы, действующие на нижнее подрезисторное кольцо 8, стремятся его сдвинуть в направлении кольцевого силопреобразователя 3, то есть прижимают нижнее подрезисторное кольцо 8 к кольцевому силопреобразователю 3. Поэтому в отличие от прототипа деформация передается тензорезисторам с повышенной точностью и надежностью. Все это способствует увеличению точности и надежности измерения динамических нагрузок.

Таким образом, изложенное выше, свидетельствует о выполнении при использовании заявленного изобретения следующей совокупности условий.

Разработанное устройство, воплощающее заявленное изобретение при его осуществлении, за счет введения конических поверхностей одинаковой конусности и вогнутой силовводящей оболочки обеспечивает точность и надежность передачи деформации подрезисторным кольцам и поэтому позволяет значительно увеличить, по сравнению с прототипом, точность и надежность измерения динамических нагрузок, в том числе и для измерения в агрессивных средах.

Увеличена точность и надежность измерений за счет снижения напряжений в местах соединения силовводящей оболочки с кольцевым силопреобразователем, что способствует передаче более точных данных и позволяет производить измерения динамических нагрузок, в том числе и в агрессивных средах.

Тензорезисторный датчик силы, содержащий жесткий центр, силовводящую оболочку, кольцевой силопреобразователь, ограниченный изнутри цилиндрической поверхностью, имеющий в своей нижней части кольцевой выступ, ограниченный изнутри той же цилиндрической поверхностью, опорную оболочку большего диаметра и опорное кольцо, соединенные между собой последовательно и выполненные за одно целое, верхнее подрезисторное кольцо с тензорезисторами по своему наружному диаметру, запрессованное со стороны силовводяшей оболочки, а нижнее подрезисторное кольцо с тензорезисторами по своему внутреннему диаметру, запрессованное со стороны опорной оболочки, отличающийся тем, что силовводящая оболочка выполнена вогнутой и в средней части ограничена снаружи и изнутри цилиндрическими поверхностями, при этом внутренняя цилиндрическая поверхность вверху и внизу плавно сопрягается с участками конических поверхностей одинаковой конусности, причем сужающиеся части конусов направлены к средней части симметрично, а по их большим основаниям конусы плавно сопрягаются с вогнутой частью силовводящей оболочки, а верхнее подрезисторное кольцо ограничено изнутри и снаружи цилиндрическими поверхностями и снаружи имеет два выступа, расположенных симметрично середине и ограниченных коническими поверхностями одинаковой конусности, при этом сужающиеся части конусов направлены к середине симметрично, и запрессовано по этим поверхностям в среднюю часть силовводящей оболочки, а кольцевой выступ кольцевого силопреобразователя ограничен снаружи конической поверхностью одинаковой конусности, причем сужающаяся часть конуса направлена к кольцевому силопреобразователю, а нижнее подрезисторное кольцо, запрессованное по конической поверхности одинаковой конусности, ограничивающей изнутри это кольцо, и его верхняя часть меньшим основанием конуса упирается в кольцевой силопреобразователь.



 

Похожие патенты:

Изобретение относится к весовой технике, в частности к упругим элементам датчиков силы, предназначенных для точного измерения силы небольшой величины в широком диапазоне.

Изобретение относится к контрольно-измерительной технике и может быть использовано для постоянного измерения усилий в различных резьбовых соединениях строительных элементов и конструкций.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, и может быть использовано в любой отрасли народного хозяйства, и, в частности, в ракетной технике.

Изобретение относится к измерительной технике, в частности к устройству многокомпонентных тензометрических динамометров с внутренним каналом, и может быть использовано в различных областях техники (например, в робототехнике, экспериментальной гидро- и аэродинамике).

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, нагруженных осевой силой.

Изобретение может быть использовано для измерения малых давлений с повышенной чувствительностью и точностью. Тензорезисторный преобразователь силы содержит упругий элемент, выполненный за одно целое с опорном кольцом.

Изобретение относится к горному делу, в частности к приборам измерения проявления горного давления, а именно к датчикам для измерения натяжения анкера. .

Изобретение относится к области измерительной техники и может быть использовано для измерения усилий в подъемных устройствах. .

Изобретение относится к области машиностроения и транспорта. .

Изобретение относится к области измерительной техники, а именно к многоканальным измерительным устройствам для измерения сил и моментов, действующих на модель летательных аппаратов в аэродинамической трубе.

Изобретение относится к весовой технике, в частности к датчикам силы, для точного измерения небольших усилий в широком диапазоне. Силочувствительный элемент содержит упругое кольцо с тензорезисторами, два жестких кольца меньшего и большего диаметров, радиальные рычаги по своим концам снабжены верхними и нижними балками равной толщины и длины, выполненными в виде трапеций с криволинейными основаниями. При этом ширина меньшего основания каждой нижней балки равна половине ширины также меньшего основания верхней балки. Жесткое кольцо меньшего диаметра соединено с верхними балками для каждого рычага, расположенного внутри упругого кольца. Нижние балки соединены с верхней частью внутри упругого кольца, а внизу снаружи оно соединено с верхними балками для каждого рычага, расположенного вне кольца. Нижние балки соединены с жестким кольцом внутри и все они изготовлены за одно целое. Техническим результатом изобретения является расширение диапазона измерения сил в сторону малых нагрузок с повышенной точностью. 4 ил.

Изобретение относится к датчикам силы. Датчик силы содержит корпус, который выполнен в виде короба, основание которого с внешней стороны снабжено крестообразным хомутом для закрепления корпуса в держателе штатива, а к противоположной стороне хомута закреплено основание, посредством которого датчик силы устанавливается на лабораторном столе, корпус снабжен съемной крышкой, один торец которой выполнен с П-образным окном для выхода порта. Внутри корпуса расположена тензобалка, выполненная S-образной формы, при этом тензобалка на внутренней поверхности основания корпуса закреплена своей нижней полкой, на нижней поверхности средней полки закреплены тензорезисторы, собранные по мостовой схеме, при этом выходы тезорезисторов соединены с электронным блоком, а верхняя полка тензобалки снабжена вертикальным стержнем, проходящим сквозь отверстие в крышке и ось которого расположена на одной оси с осью крестообразного хомута корпуса, причем свободный конец стержня снабжен осевым углублением для установки чаши весов и поперечным отверстием для приложения силы, направленной вверх. Технический результат - обеспечение измерения сил различного действия, приложенных в различных направлениях, а также возможность использования для измерения веса. 3 з.п. ф-лы, 5 ил.

Изобретение относится к буровой технике и предназначено для измерения параметров силового воздействия на буровое долото режуще-скалывающего действия в процессе разрушения им породы. Лабораторная установка для определения нагрузки, действующей на буровое долото, содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом. На измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки Rza на измерительную балку вдоль ее оси, Mza - момента, скручивающего измерительную балку относительно ее оси, Mxa, Mxb - моментов соответственно в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии a, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, Mya, Myb - моментов соответственно в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат. Техническим результатом изобретения является повышение точности измерений. 8 ил.

Изобретение относится к измерительной технике, а именно к тензометрическим средствам измерения. Технический результат: расширение динамического диапазона преобразования напряженно-деформированных состояний сенсорной консоли вследствие воздействия на ее поверхность скоростного напора (динамического давления) газовых или жидкостных потоков. Сущность: тензорезистивный преобразователь содержит сенсорную консоль, работающую на изгиб, выполненную из упругой подложки тонкопленочного эластичного полимера, двух фольговых тензорезисторов, планарно расположенных на противоположных сторонах подложки, продольные оси которых параллельны между собой, или четырех фольговых тензорезисторов, планарно и попарно расположенных на противоположных сторонах подложки, продольные оси которых симметричны относительно ее продольной оси и параллельны между собой. Тензорезисторы включены в смежные плечи полу- или полномостовую схему измерительного моста. Сенсорная консоль ориентирована ортогонально вектору приложенной силы. В преобразователь введены кольцевой сегмент с кривизной поверхности, соответствующей максимально возможному упругому изгибу сенсорной консоли, хонейкомб, и флюгерный элемент. Кольцевой сегмент выполнен с проницаемой поверхностью. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к датчикам давления контактного типа, в частности к тензометрическим средствам измерений консольного типа. Техническим результатом изобретения является расширение динамического диапазона тензорезистивного преобразования напряженно-деформированных состояний при прямом контактном воздействии на упруго-чувствительный элемент скоростного напора газовых или жидкостных потоков в электрический сигнал. Тензорезистивный преобразователь содержит упруго-чувствительный элемент консольного типа, выполненный из тензорезисторов, планарно и попарно расположенных на его противоположных сторонах, и электрических выводов со стороны его заделки, измерительный мост и индикатор, включенный в измерительную диагональ измерительного моста. При этом упруго-чувствительный элемент работает на изгиб ортогонально вектору приложенной силы. Также в преобразователь введены, по меньшей мере, один и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с упруго-чувствительным элементом ширину, но различные длины и расположены на нем последовательно с уменьшением длины в сторону его заделки. Упругие слои планарно жестко связаны между собой и упруго-чувствительным элементом, либо планарно свободны, но собраны воедино в заделке в сэндвич-структуру, обладающей качеством тела равного сопротивления изгибу. 2 з.п. ф-лы, 6 ил.

Изобретение относится к приборостроению, в частности к измерительным устройствам для измерения и регистрации сил взаимодействия между колесом и рельсом. Техническим результатом является повышение точности измерения сил взаимодействия колеса с рельсом за счет уменьшения влияния на измерения вертикальных сил, поперечного смещения колеса относительно рельса и расширения частотного диапазона измеряемых вертикальных и боковых (горизонтальных) сил, возникающих при контакте колеса с рельсом при прохождении по геометрическим, стыковым неровностям пути и волнообразным неровностям на поверхности катания рельса. Устройство для измерения вертикальных и боковых сил взаимодействия между колесом и рельсом содержит железнодорожную колесную пару, тензометрические датчики, размещенные на внутренней и наружной стороне диска колеса по разные стороны от оси на концентричных диаметрах внутренней стороны дисков колес и включенные в полумостовые схемы, тензометрические усилители, програмируемый контроллер, блок передачи сигналов по радиоканалу, связанный с блоком приема сигналов и бортовым компьютером. Тензореристоры на наружной стороне диска колеса диаметрально расположены в створе с тензорезисторами на внутренней стороне, а угол α между соседними диаметрами на внутренней или наружной стороне диска колеса, на которых размещены диаметрально расположенные тензодатчики, составляет от 36° до 60° дуги окружности. 4 з.п. ф-лы, 12 ил.

Изобретение относится к измерительной технике и может быть использовано для регистрации нагрузок, в частности осевого усилия от вращающихся деталей, таких как валы или цапфы турбомашин. Заявленное устройство для замера осевого усилия ротора турбомашины содержит шариковый подшипник, внутреннее кольцо которого установлено на валу, а наружное кольцо в корпусе, а также установленные в корпусе плоское упругое кольцо, на торцевых поверхностях которого выполнены опорные площадки выступов, между которыми установлены тензодатчики и дополнительное упругое кольцо с тензодатчиками, при этом оно содержит два кольцевых элемента, контактирующих между собой по коническим относительно продольной оси вала торцевым поверхностям, которые образуют усеченный конус, большее основание которого расположено со стороны шарикового подшипника, при этом упомянутые кольцевые элементы установлены между близлежащими торцами плоского упругого кольца и наружного кольца шарикового подшипника, причем кольцевой элемент, контактирующий непосредственно с плоским упругим кольцом, выполнен разрезным, а другой кольцевой элемент установлен непосредственно в корпусе, при этом дополнительное упругое кольцо выполнено с коэффициентом жесткости меньшим, чем у плоского упругого кольца, и установлено между внутренней поверхностью корпуса и наружной поверхностью разрезного кольцевого элемента, а в осевом направлении дополнительное упругое кольцо ограничено торцом плоского упругого кольца и радиальным торцом, выполненным на внутренней поверхности корпуса, причем на наружной и внутренней поверхностях дополнительного упругого кольца выполнены опорные площадки выступов, между которыми установлены упомянутые тензодатчики, при этом плоское упругое кольцо, дополнительное упругое кольцо, два кольцевых элемента зафиксированы в корпусе в осевом направлении, а наружное кольцо шарикового подшипника зафиксировано в корпусе от проворота. Технический результат заключается в расширении диапазона замера осевого усилия ротора турбомашины, а также в сокращении времени и затрат на доводку турбомашины. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для весовых измерений в части измерений сигналов с первичных преобразователей силы (тензодатчиков). Аппаратура может применяться в любых отраслях промышленности, требующих прецизионных (0.002% и точнее) измерений массы, силы, момента силы и т.п. Многоканальный измерительный преобразователь сигналов в тензорезисторных мостовых схемах содержит блок генератора синусоидальных сигналов, блоки измерителей по числу каналов. Противофазные сигналы питания тензорезисторной мостовой схемы с выхода блока генератора синусоидальных сигналов через усилители мощности подаются на входы питания каждой тензорезисторной мостовой схемы, в каждом блоке измерителя напряжение со входов питания тензорезисторной мостовой схемы через дополнительные буферные усилители подается на входы опорного индуктивного делителя напряжения, выход которого соединен с первым входом коммутатора, второй вход которого соединен с выходной диагональю тензорезисторной мостовой схемы, а выход через дифференциальный операционный усилитель соединен со входом аналого-цифрового преобразователя (АЦП), режим работы которого задается первым микропроцессором. Вход-выход АЦП соединен с входом-выходом первого микропроцессора, выход которого соединен со входом второго микропроцессора (МП2), осуществляющего цифровое синхронное детектирование, цифровую фильтрацию и расчет коэффициента деления тензорезисторной мостовой схемы, вход-выход второго микропроцессора соединен входом-выходом устройства передачи данных, аналоговый вход МП2 соединен с выходом схемы защиты, входы которой соединены с выходами усилителей мощности, второй выход МП2 соединен с третьим входом схемы защиты, а третий выход МП2 - с третьим входом коммутатора. Тактирующий вход АЦП каждого блока измерителей соединен с выходом блока генератора синусоидальных сигналов, формирующим тактирующие импульсы, а дискретный вход первого микропроцессора каждого блока измерителей соединен с выходом блока генератора синусоидальных сигналов, формирующим сигнал полной фазы напряжения питания тензорезисторных мостовых схем. Технический результат - снижение основной и дополнительных погрешностей измерений. 3 з.п. ф-лы, 1 ил.
Наверх