Струйный насадок водометного движителя

Изобретение относится к судостроению, а именно к водометным движителям судов, лодок и других плавучих средств. Струйный насадок водометного движителя содержит наружный корпус с установленным в нем центральным телом, которое выполнено в виде тела вращения и образует совместно с наружным корпусом кольцевой канал подачи жидкости с выходным соплом и канал подвода газа. Центральное тело выполнено с центральным осевым каналом, связанным своим входом с каналом подвода газа. Выходное сечение сопла охватывает выходное сечение центрального осевого канала, а осевая линия выходного сопла расположена по отношению к оси центрального осевого канала под углом 20°÷90°. Достигается увеличение тяги за счет высокочастотного автоколебательного режима течения выходного потока, при одновременном упрощении конструкции струйного насадка. 3 ил.

 

Изобретение относится к судостроению, а именно к водометным движителям судов, лодок и других плавучих средств.

Известен насадок водометного движителя, содержащий наружный корпус с соосно установленным в нем центральным телом, выполненным в виде тела вращения и образующим совместно с наружным корпусом кольцевой канал подачи жидкости, выходное регулируемое сопло, за счет смещения которого посредством шестеренного механизма происходит изменение объема кольцевого канала подачи жидкости, и газовые инжекторы, впрыскивающие выхлопной газ двигателя или предварительно сжатый воздух непосредственно в жидкость для изменения основных характеристик истекающей струи (скорость, плотность, мощность), а также совместно с изменением объема канала подачи жидкости для изменения кинетической энергии струи (Заявка WO 2008/009303, опубл. 24.01.2008).

Известное решение за счет изменения объема выходного канала жидкости и впрыскивания в жидкостную струю газа способствует улучшению гидродинамики выходной струи водометного движителя, а также позволяет управлять направлением тяги и изменением скорости движения судна.

Вместе с тем, конструкция насадка является достаточно сложной и требует наличия специальных механизмов, обеспечивающих перемещение выходного сопла в осевом направлении. Кроме того, данное устройство хотя и позволяет несколько увеличить тягу водометного движителя, однако это увеличение весьма незначительно.

Задачей, на решение которой направлено заявленное изобретение, является увеличение тяги водометного движителя за счет создания высокочастотного автоколебательного режима течения выходного потока при одновременном упрощении конструкции струйного насадка.

Технический результат достигается тем, что в струйном насадке водометного движителя, содержащем наружный корпус с установленным в нем центральным телом, выполненным в виде тела вращения и образующим совместно с наружным корпусом кольцевой канал подачи жидкости с выходным соплом, и канал подвода газа, центральное тело выполнено с центральным осевым каналом, связанным на входе с каналом подвода газа, причем выходное сечение сопла охватывает выходное сечение центрального осевого канала, а осевая линия выходного сопла расположена по отношению к оси центрального осевого канала под углом 20°÷90°.

Наличие в центральном теле центрального осевого канала, связанного своим входом с каналом подвода газа, выходное сечение которого охватывается выходным сечением сопла, позволяет создать на выходе из сопла систему из воздушной (газовой) и водяной (жидкостной) струй. Воздушная струя вызывает нестационарное течение воды, при котором существенно возрастает объем эжектируемой воздушной струей жидкости (КПД эжекции возрастает). Создается высокочастотный автоколебательный режим течения выходного потока, обеспечивающий повышение тяги движителя.

Организация автоколебательного режима на выходе из сопла возможна за счет расположения оси центрального канала под углом к осевой линии выходного сопла. Это обеспечивает смыкание водяной струи после обтекания ею центрального тела и одновременное раздвигание ее воздушной струей с образованием воздушных пузырей, которые, «схлопываясь», эжектируют за собой жидкость. Нестационарное движение жидкости обеспечивается при расположении оси центрального осевого канала по отношению к осевой линии выходного сопла под углом не менее 20°. Экспериментально установлено, что при угле меньше 20° течение жидкости является стационарным без эффекта повышения тяги. При угле свыше 90° жидкость из сопла выбрасывается не на выход из движителя, а в центральный канал.

Сущность изобретения поясняется графически, где на фиг.1 приведена конструктивная схема струйного насадка водометного движителя с коническим кольцевым соплом; на фиг.2 - сечение A-A фиг.1; на фиг.3 представлен график зависимости отношения тяги движителя в случае использования подачи воздуха к тяге движителя без использования подачи воздуха F/F0 от отношения расхода воздуха к расходу жидкости Q2/Q1.

Струйный насадок состоит из наружного корпуса 1 с коаксиально установленным в нем центральном телом 2 в виде тела вращения, выполненным с центральным осевым каналом 3 подачи газа, ось которого совпадает с осью центрального тела 2. Центральный осевой канал 3 на входе соединен с каналом подвода газа 4. Наружный корпус 1 и поверхность центрального тела 2 образуют кольцевой канал 5 подачи жидкости (воды), который заканчивается выходным кольцевым коническим соплом 6, охватывающим выходное отверстие центрального канала 3 подачи газа. Угол конусности выходного сопла 6, то есть угол α между осью кольцевого сходящегося конического канала сопла 6 и осью центрального канала 3 находится в диапазоне 20°≤α≤90°.

Угол конусности внутренней стенки сопла 6 может быть отличен от угла конусности его наружной стенки.

Стенки сопла 6 могут быть выполнены в виде отрезков прямых или в виде отрезков различных гладких кривых. В последнем случае угол конусности сопла 5 определяется как угол между касательной, проведенной к криволинейной стенке в конечной (выходной) точке контура и осью канала подачи газа.

Жидкость подается в канал 5, в котором после обтекания центрального тела 2, за счет расположения кольцевого конического канала сопла 6 под углом к центральной оси насадка, водная струя смыкается. В этом месте возникает область неустойчивого равновесия, в которой любое минимальное возмущение вызовет нестационарные колебания относительно стационарного течения. Вместе с тем, поскольку вода почти несжимаема (скорость звука очень велика), то уравнения гидродинамики являются квазистационарными, и при стационарных граничных условиях течение воды всегда получается стационарным. Для обеспечения нестационарного течения воды по центральному каналу 3 подводится воздух. Поскольку течение воздуха не стационарно, границы раздела воды и воздуха становятся нестационарными, что, в свою очередь, вызывает нестационарное течение воды, при котором КПД эжекции присоединяемой окружающей среды (в данном случае воды) существенно возрастает. Воздух, подаваемый по каналу 3, раздвигает сомкнувшуюся водную струю, накапливается в ней, образуя воздушный пузырь, который, схлопываясь, увлекает за собой (эжектирует) дополнительную массу воды. Наполнение водной струи воздухом носит пульсирующий характер. Таким образом, заявленная конструкция реализует автоколебательный режим течения выходного потока.

Увеличение тяги водометного движителя при использовании насадка заявленной схемы было подтверждено экспериментально. Для эксперимента в качестве исследуемой модели был использован струйный насадок с углом α=60°. Результаты эксперимента, а именно зависимость F/F0=f(Q2/Q1), где F - сила тяги в случае Q1≠0, Q2=0; F0 - сила тяги в случае Q1≠0, Q2≠0; Q1 - расход воды; Q2 - расход воздуха, представлены на фиг.3. Эксперимент проводился для двух конкретно заданных значений Q2 (значения 1 и 2). На представленном графике ряд 1 соответствует 1-му значению Q2, ряд 2 соответствует второму значению Q2. Обе кривые, соответствующие ряду 1 и ряду 2, имеют две ветви, верхняя из которых получена при увеличении расхода воды (Q1), а нижняя при его уменьшении.

Эксперименты показали, что подача воздуха по центральному каналу 3 может привести к увеличению тяги водометного движителя в 1,2-1,8 раз по сравнению с тягой, реализуемой при отсутствии подачи воздуха.

Предлагаемое устройство струйного насадка, имея простую цельную конструкцию и обладая высокими эксплуатационными характеристиками, позволяет значительно увеличить тягу водометного движителя.

Струйный насадок водометного движителя, содержащий наружный корпус с установленным в нем центральным телом, выполненным в виде тела вращения и образующим совместно с наружным корпусом кольцевой канал подачи жидкости с выходным соплом, и канал подвода газа, отличающийся тем, что центральное тело выполнено с центральным осевым каналом, связанным на входе с каналом подвода газа, причем выходное сечение сопла охватывает выходное сечение центрального осевого канала, а осевая линия выходного сопла расположена по отношению к оси центрального осевого канала под углом 20°÷90°.



 

Похожие патенты:

Изобретение относится к судостроению, а именно к конструкциям водометных движителей с полнонапорными водозаборниками, в первую очередь, судам на подводных крыльях.

Изобретение относится к судостроению, а именно к водометным движителям судов и других плавсредств. .

Изобретение относится к судостроению и касается конструирования водоводов водометных движителей. .

Изобретение относится к судостроению и, в частности к водометным движителям высокоскоростных судов. .

Изобретение относится к судостроению и авиационной технике и может использоваться при создании активных крыльев судов и летательных аппаратов, создающих активную струйную тягу.

Изобретение относится к судостроению, а именно к водометным движителям судов и других плавсредств. .
Изобретение относится к машиностроению и может быть использовано для создания водометов, например водометных судовых движителей. .

Изобретение относится к судостроению, а именно к водометным движителям маломерных судов. .

Изобретение относится к судостроению, а именно к водометным движителям судов и других плавсредств. .

Изобретение относится к судостроению и касается разработки водометных движителей с реверсивно-рулевым комплексом (ВДРК). .

Изобретение относится к энергетике и предназначено для распыливания жидкостей и суспензий, например водоугольного топлива (ВУТ). В пневматической форсунке кольцевое щелевое газовое сопло установлено на срезе диффузора и имеет коническую форму с углом конусности от 60 до 150 градусов.

Изобретение относится к области распыления жидкостей и может быть использовано в химической, металлургической, лакокрасочной промышленности. .

Изобретение относится к распылительным соплам, которые смешивают жидкость и газ в мелкокапельном факеле распыла, например нефть и пар в установке для каталитического крекинга.

Изобретение относится к противопожарной технике и может быть использовано в промышленных и гражданских объектах с повышенной пожарной опасностью для локализации очагов возгорания.

Изобретение относится к устройству для очистки для установленной на транспортном средстве камеры. Воздушный канал (12) и две линии путей (11a) и (11b) для очищающей жидкости предоставляются в форсунке (7), и кроме того, воздушный канал (12) разделяется на две линии дальних концевых участков (14a) и (14b). После этого дальний концевой участок пути (11a) для очищающей жидкости, и дальний концевой участок (14a) воздушного канала (12) принудительно объединяются, и дальний концевой участок пути (11b) для очищающей жидкости, и дальний концевой участок (14b) воздушного канала (12) принудительно объединяются. Таким образом, если сжатый воздух подается в воздушный канал (12), результирующий воздушный поток вызывает отрицательное давление на стороне нисходящего направления. Это позволяет получать очищающую жидкость в виде аэрозоли и всасывать ее, и смешивать очищающую жидкость в виде аэрозоли со сжатым воздухом, за счет чего можно очищать поверхность (1a) линзы камеры. Обеспечивается образование очищающей жидкости в виде аэрозоли, что позволяет уменьшить используемое количество очищающей жидкости. 3 з.п. ф-лы, 9 ил.
Наверх