Способ определения аномальной дисперсии

Изобретение относится к способам регистрации аномальной дисперсии неоднородного протяженного плазменного столба и может быть использовано в спектроскопии в неоднородных газовых и плазменных средах, в лазерной спектроскопии и в спектральном анализе газообразных веществ. Технический результат - возможность наблюдения аномальной дисперсии в различных газах, причем вблизи узких спектральных линий поглощения в плазменно-пучковых разрядах. Способ определения аномальной дисперсии заключается в том, что на основе поперечного наносекундного плазменно-пучкового разряда с щелевым катодом создают двухслойную неоднородную плазменную среду с двухслойным распределением оптического показателя преломления, через которую наклонно пропускают широкополосное лазерное излучение со спектром вблизи спектральных линий поглощения плазмы, и после разложения с помощью спектрографа спектра лазера, прошедшего плазменный слой, на выходе спектрографа определяют аномальную дисперсию вблизи спектральных линий поглощения плазмы. 3 ил.

 

Изобретение относится к способам регистрации аномальной дисперсии неоднородного протяженного плазменного столба и может быть использовано в спектроскопии в неоднородных газовых и плазменных средах, в лазерной спектроскопии и в спектральном анализе газообразных веществ.

Известны классические способы, позволяющие исследовать области аномальной дисперсии в парообразной или плазменной средах. Для этих целей используется двухлучевая интерференция света в области аномальной дисперсии или распространение света в неоднородном слое паров вещества, например паров натрия. В первом способе, лежащем в основе известного опыта Кундта-Вуда (Бутиков Е.И. Оптика. BHV. - Санкт-Петербург. 2003.), по наблюдению аномальной дисперсии, создается неоднородный слой паров щелочных металлов за счет градиента температур. При распространении широкополосного оптического излучения через такой неоднородный слой вещества, вблизи спектральных линий поглощения наблюдается отклонение световых лучей в соответствии с частотной зависимостью показателя преломления в области аномальной дисперсии.

Известен также способ, где используется интерференция двух световых пучков с использованием интерферометра, в один из плеч которого помещается плазменный столб изучаемого газа (Фриш С.Э. Спектроскопия газоразрядной плазмы. Л., 1970).

Применение этих способов определения аномальной дисперсии ограничено парообразными средами, поскольку в газообразных средах таким способом нельзя создавать неоднородность среды.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил аналог, характеризующийся признаками, тождественными всем существенным признакам заявленного изобретения.

Задача - расширение арсенала средств для определения аномальной дисперсии.

Технический результат - в наблюдении аномальной дисперсии в различных газах, причем вблизи узких спектральных линий поглощения в плазменно-пучковых разрядах.

Сущность предлагаемого изобретения в том, что на основе поперечного наносекундного плазменно-пучкового разряда с щелевым катодом создают двухслойную неоднородную плазменную среду с двухслойным распределением оптического показателя, через которую наклонно пропускают широкополосное лазерное излучение со спектром вблизи спектральных линий поглощения плазмы, и после разложения с помощью спектрографа спектра лазера, прошедшего плазменный слой, на выходе спектрографа определяют аномальную дисперсию вблизи спектральных линий поглощения плазмы.

Технический результат достигается тем, что впервые использована специальная электродная система, состоящая из протяженного плоского анода и цилиндрического щелевого катода, для получения двухслойного неоднородного плазменного столба в качестве протяженной среды для наблюдения аномальной дисперсии вблизи узких спектральных линий поглощения в плазменно-пучковых разрядах.

Схема разрядной камеры представлена на фиг.1а. Разрядная камера представляет собой кварцевую трубку (1) диаметром 5 см и длиной 50 см, в которую помещена электродная система из алюминиевых электродов, расположенных на расстоянии 0,6 см друг от друга. Анод (2) представляет собой плоскую пластину длиной 40 см, шириной 2 см и толщиной 0,5 см. Катод (3) представляет собой цилиндрический стержень длиной 40 см и диаметром 1,2 см, вдоль которого прорезана полость прямоугольной формы шириной 0,2 см и глубиной 0,6 см (фиг.1a). В указанной конструкции разряд наблюдается как между электродами, так и внутри полости щелевого катода. Выбор такой формы поверхности катода, расстояния между электродами, области давлений газа и амплитуд напряжений позволяет получить внутри полости катода двойной слой ионизованного газа с неоднородным распределением оптического показателя преломления. При наклонном распространении широкополосного лазерного излучения через двойной слой ионизованного газа внутри полости катода удается наблюдать отклонение световых пучков в соответствии с частотной зависимостью показателя преломления в области аномальной дисперсии.

Разрядная камера работает следующим образом. Система откачивалась до давления 10-4 Тор и в камеру напускался рабочий газ (инертные газы) в необходимом диапазоне давлений. Затем к аноду и катоду прикладывались импульсы напряжения регулируемой амплитуды до 10 кВ с длительностью переднего фронта до 15 нс. После проникновения плазмы внутрь полости катода эмитированные с боковых поверхностей полости и ускоренные в области катодного падения потенциала электроны отражаются в обратном поле с противоположной стороны и возвращаются в область отрицательного свечения. В результате таких осцилляций электронов в полости катода при определенных давлениях газа и амплитудах импульсов напряжения формируются два слоя ионизованного газа, прижатые к противоположным стенкам щели в катоде. Между этими слоями ионизованного газа формируется область с минимумом оптического показателя преломления вдоль центра щели в катоде и с возрастанием этой величины в сторону стенок полости. Эта область ионизованного газа используется в качестве «плазменной призмы» для наблюдения аномальной дисперсии вблизи узких спектральных линий поглощения. В качестве зондирующего оптического излучения используется широкополосное излучение лазера на красителе с накачкой эксимерным лазером. Использование перестраиваемого лазера на красителе позволяет наблюдать аномальную дисперсию на различных спектральных линиях. Лазерное излучение, выходящее из плазменного столба, разлагается по спектру с помощью спектрографа, на выходе которого установлена ПЗС-камера с цифровой регистрацией светового потока. Отклонение световых пучков в области вблизи спектральной линии поглощения прописывает аномальную дисперсию, соответствующую данной спектральной области поглощения (Фиг.2).

Предлагаемая конструкция разрядной камеры с протяженным щелевым катодом позволяет получить внутри полости катода протяженные двойные слои ионизованного газа, которые могут быть использованы для определения аномальной дисперсии в различных газах, причем с регулируемым максимальным показателем преломления вблизи узких спектральных линий поглощения.

На фиг.3 дано получение внутри полости катода двух протяженных слоев разряда с неоднородным распределением оптического показателя преломления, между которыми создается протяженная плазменная среда со свойствами, близкими к свойствам оптической призмы.

Новый способ определения аномальной дисперсии в ионизованных газах может быть использован для разработки методов спектрального анализа газов с высокими потенциалами ионизации.

Способ определения аномальной дисперсии, заключающийся в том, что на основе поперечного наносекундного плазменно-пучкового разряда с щелевым катодом создают двухслойную неоднородную плазменную среду с двухслойным распределением оптического показателя преломления, через которую наклонно пропускают широкополосное лазерное излучение со спектром вблизи спектральных линий поглощения плазмы, и после разложения с помощью спектрографа спектра лазера, прошедшего плазменный слой, на выходе спектрографа определяют аномальную дисперсию вблизи спектральных линий поглощения плазмы.



 

Похожие патенты:

Изобретение относится к области ускорительной техники и может быть использовано в качестве инжектора пылевых частиц для последующей ускорительной системы. Инжектор заряженных пылевых частиц, содержащий корпус, зарядный электрод, зарядную камеру, внешний составной электрод зарядной камеры, иглу (или набор игл), бункерную камеру.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Каскадный импульсный ускоритель твердых частиц содержит инжектор, индукционные датчики, усилители, цилиндрические электроды, резисторы делителя, колонны разделительных сопротивлений, высоковольтные конденсаторы, неуправляемые разрядники, управляемые разрядники, систему управления, датчик тока, источник высокого напряжения, шину данных, мишень, согласующее устройство, электронно-вычислительную машину.

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями.
Изобретение относится к высоковольтной ускорительной технике и, в частности, к ленточным транспортерам зарядов электростатических ускорителей. В качестве многослойной тканевой основы транспортировочной ленты используют полиэфирно-хлопковую ткань, слои которой соединяют между собой клеем с высокой адгезией, а плакировочные слои ткани выполняют из резиновой смеси на основе бутадиен-нитрильного каучука, включающего мел и каолин.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. .

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для использования при разработке нейтронных и рентгеновских генераторов.

Изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. .

Изобретение относится к микроэлектронике и может быть использовано при производстве интегральных микросхем на активных и пассивных подложках и элементов дифракционной оптики на криволинейных поверхностях.

Изобретение относится к области электрореактивных двигателей, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды. .

Изобретение относится к плазменной технике, а именно к катодам-компенсаторам, работающим на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного пучка, а также в технологических источниках плазмы, предназначенных для ионно-плазменной обработки поверхностей материалов.

Изобретение относится к области плазменной техники и может быть применено при разработке электронно-лучевых устройств и использовано в электронно-лучевой технологии, экспериментальной физике, плазмохимической технологии.

Изобретение относится к плазменной технике, а именно к катодам-компенсаторам на газообразных рабочих телах, и может быть использовано при разработке электрореактивных двигателей для нейтрализации ионного пучка, а также в технологических источниках ускоренных потоков для ионно-плазменной обработки поверхности материалов в вакууме.

Изобретение относится к плазменной технике, а именно к накальным катодам-компенсаторам на газообразных рабочих телах, и может быть использовано при разработке электрореактивных двигателей для нейтрализации ионного пучка, а также в технологических источниках плазмы для ионноплазменной обработки поверхности материалов в вакууме.

Изобретение относится к области сильноточных вакуумных электродуговых устройств. .

Изобретение относится к электроракетным двигателям и можеи использоваться при их конструировании. .

Изобретение относится к плазменной эмиссионной электронике, в частности к конструкции плазменных ионных и электронных эмиттеров непрерывного действия с большой поверхностью на основе объемного разряда с холодными электродами, и может быть использовано для термической обработки в вакууме: при спекании изделий из металлических порошков, пайке, закалке, а также в технологических процессах, например, обезгаживания деталей с последующей активизацией и нанесением покрытий, когда требуется комбинация электронных и ионных пучков, решаемая в едином цикле путем переключения полярности ускоряющего частицы напряжения.

Изобретение относится к области оптической спектроскопии и может быть применено при разработке новых методов нестационарной оптической спектроскопии, позволяющих исследовать свойства неоднородной плазмы в области аномальной дисперсии. Технический результат изобретения - получение внутри плазменного волновода регулярной пространственной структуры оптического показателя преломления в спектральной области аномальной дисперсии вблизи длины волны, соответствующей узкой спектральной линии поглощения в плазме высокоскоростных волн ионизации. Лазерное излучение наносекундной длительности пропускают через плазменный волновод под углом к оптической оси волновода, где в узкой спектральной области аномальной дисперсии вблизи фиксированной спектральной линии поглощения плазмы создается распределение оптического показателя преломления с цилиндрическим профилем с максимумом показателя преломления вдоль границы и минимумом вдоль центра трубки. 6 ил.
Наверх