Способ определения концентрации носителей заряда в полупроводниках и устройство для его осуществления


H01L21/00 - Способы и устройства для изготовления или обработки полупроводниковых приборов или приборов на твердом теле или их частей (способы и устройства, специально предназначенные для изготовления и обработки приборов, относящихся к группам H01L 31/00- H01L 49/00, или их частей, см. эти группы; одноступенчатые способы изготовления, содержащиеся в других подклассах, см. соответствующие подклассы, например C23C,C30B; фотомеханическое изготовление текстурированных поверхностей или поверхностей с рисунком, материалы или оригиналы для этой цели; устройства, специально предназначенные для этой цели вообще G03F)[2]

Владельцы патента RU 2534382:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" (RU)

Группа изобретений относится к области электронной техники, микро- и наноэлектроники и может быть использована для локального определения концентрации свободных носителей заряда в отдельно взятых полупроводниковых нанообъектах и наноструктурах, а также для контроля качества материалов, применяемых в полупроводниковом приборостроении. Способ определения концентрации носителей заряда в полупроводниках заключается в пропускании через переход, смещенный как в обратном, так и в прямом направлениях, высокочастотного тока, получении информации о концентрации носителей заряда на глубине области обеднения из произведения амплитуды тока второй гармоники и напряжения первой гармоники, обратно пропорционального концентрации носителей заряда, обнаружении исследуемого объекта путем сканирования в атомно-силовом микроскопе с проводящим зондом, формировании барьерного контакта к исследуемому нанообъекту зондом микроскопа. Устройство, реализующее способ, содержит 28 элементов. Изобретение обеспечивает локальное определение концентрации свободных носителей заряда в полупроводниковых микро- и наноструктурах. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к способам неразрушающего контроля параметров полупроводников и полупроводниковых нанообъектов и может быть использовано для локального определения концентрации свободных носителей заряда в отдельно взятых полупроводниковых нанообъектах и наноструктурах, а также для контроля качества материалов, применяемых в полупроводниковом приборостроении.

Известен способ определения концентрации свободных носителей заряда в полупроводниках [1] и устройство [2] для его осуществления, заключающиеся в том, что в полупроводнике создают барьерный контакт ртутным зондом, либо p+-n - переход, пропускают высокочастотный ток через переход, смещенный в обратном направлении, измеряют амплитуду напряжения первой гармоники тестирующего сигнала, пропорциональную глубине области обеднения, замыкают накоротко переход по току второй гармоники, формируемой нелинейностью характеристики перехода при постоянной амплитуде тока первой гармоники, получают информацию о концентрации носителей заряда на глубине области обеднения из произведения амплитуды тока второй гармоники и напряжения первой гармоники, обратно пропорционального концентрации носителей заряда n(x) на глубине области обеднения x.

Недостатком этого способа является ограничение минимальной глубины, на которой можно измерять концентрацию, размером области обеднения, обусловленной контактной разностью потенциалов. Вторым недостатком является влияние второй гармоники, которая появляется при детектировании сигналов первой гармоники, на точность измерений.

Наиболее близким к предлагаемому способу и устройству является взятый за прототип способ и устройство, построенное на основе метода двух гармоник [3], заключающиеся в том, что в полупроводнике создают барьерный контакт ртутным зондом, либо p+-n - переход, пропускают высокочастотный ток через переход, смещенный как в обратном, так и в прямом направлении, измеряют амплитуду напряжения первой гармоники тестирующего сигнала, пропорциональную глубине области обеднения, замыкают накоротко переход по току второй гармоники, формируемой нелинейностью характеристики перехода при постоянной амплитуде тока первой гармоники, компенсируют положительным смещением, поданным на переход, влияние контактной разности потенциала, вводят блоки преобразования частоты и следящую обратную связь, детектируют и усиливают сигналы на промежуточной частоте, получают информацию о концентрации носителей заряда на глубине области обеднения из произведения амплитуды тока второй гармоники и напряжения первой гармоники, обратно пропорционального концентрации носителей заряда на глубине области обеднения.

Недостатки этого способа и устройства.

В устройстве используется барьерный контакт, размеры которого, как правило, превышают 100 мкм, это не позволяет создать контакт к нанообъектам, имеющим размеры порядка десятков-сотен нм. Способ не позволяет обнаружить нанообъект в структуре и не применим для исследования отдельно взятых наноструктур, имеющих размеры порядка 0,1-100 нм.

Прототипом ячейки устройства может служить криостат фирмы JANIS, в котором используется иглоподобные зонды из вольфрама с радиусом закругления 0,1-200 мкм, трехмерное пространственное разрешение для модели "Model CCR4-MMP5K Closed Refrigerater Probe Station" составляет не менее 5 мкм [4], что не применимо для исследования отдельно взятых нанообъектов, имеющих размеры порядка 0,1-100 нм, так как такие ячейки устройства не позволяют создать барьерный контакт к отдельно взятому полупроводниковому нанообъекту. Техническим результатом предложенного способа и устройства является осуществление возможности определения концентрации носителей заряда в отдельных нанообъектах и в квантовых наноструктурах пониженной размерности.

Указанный результат достигается тем, что по способу определения концентрации носителей заряда в полупроводниках и устройству для его осуществления, заключающимся в том, что в полупроводнике через переход, смещенный как в обратном, так и в прямом направлениях пропускают высокочастотный ток, измеряют амплитуду напряжения первой гармоники тестирующего сигнала, пропорциональную глубине области обеднения, замыкают накоротко переход по току второй гармоники формируемой нелинейностью характеристики перехода, при постоянной амплитуде тока первой гармоники, компенсируют положительным смещением, поданным на переход, влияние контактной разности потенциала, вводят блоки преобразования частоты и следующую обратную связь, детектируют и усиливают сигналы на промежуточной частоте, получают информацию о концентрации носителей заряда на глубине области обеднения из произведения амплитуды тока второй гармоники и напряжения первой гармоники обратно пропорционального концентрации носителей заряда. Согласно изобретению вводится сканирующий зондовый микроскоп, в качестве которого выступает атомно-силовой с проводящим зондом, для обнаружения исследуемого полупроводникового нанообъекта путем сканирования и формирования барьерного контакта к исследуемому нанообъекту зондом микроскопа на глубине области обеднения.

Сканирующий зондовый микроскоп необходим для обнаружения исследуемого объекта путем сканирования и для формирования барьерного контакта к исследуемому объекту зондом. Современные зонды для атомно-силовых микроскопов имеют радиус закругления 1-100 нм, что достаточно для контакта к нанообъектам.

Сравнительный анализ с прототипами показывает, что заявляемый способ и устройство позволяют проводить контроль параметров полупроводниковых нанообъектов, что отличает его от прототипов.

Таким образом, заявляемый способ соответствует критерию изобретения «новизна», так как в известных источниках не обнаружен предложенный способ определения концентрации носителей заряда в полупроводниках и устройства для его осуществления.

Следовательно, предлагаемое техническое решение обладает существенными отличиями, а последовательность операций при определении концентрации носителей заряда отличается от существующих.

Данный способ предлагается для применения научным лабораториям, предприятиям и организациям, занимающимся исследованиями в области микро- и наноэлектроники.

Для осуществления способа предлагается устройство, в котором исследуемый объект подключен последовательно к зонду сканирующего микроскопа, в качестве которого выступает атомно-силовой микроскоп, с возможностью обнаружения нанообъектов и формирования контактного барьера к нанообъектам и наноструктурам пониженной размерности.

Сущность изобретения и возможные варианты реализации предложенного способа и устройства поясняется следующим графическим материалом, представленным на чертеже, на которой представлена блок-схема устройства для определения концентрации носителей заряда в полупроводниках.

Устройство содержит следующие основные блоки: источник тока первой гармоники 1, приемник напряжения первой гармоники 2, приемники тока первой и второй гармоник 3 и 4.

Источник тока 1 представляет собой высокочастотный генератор 5 с регулируемым усилителем, который содержит кварцевый генератор, например на частоту 5064 кГц. Максимальная глубина регулирования напряжения первой гармоники составляет, например 86 дБ.

Устройство функционирует следующим образом.

Сигнал с выхода генератора 5 через индуктивную связь поступает в двухконтурный фильтр сосредоточенной селекции 6, выполненный по схеме с емкостными связями, далее через усилитель мощности 7 подается на атомно-силовой микроскоп 8 и полупроводниковый нанообъект 9. На выходе усилителя мощности 7 установлен заградительный Т-фильтр, настроенный на частоту второй гармоники, и параллельный контур, настроенный на частоту первой гармоники. Выходной контур связан с Т-фильтром автотрансформаторной, а с исследуемым нанообъектом 9 трансформаторной связями. На выходе усилителя мощности 7 формируется сигнал амплитудой, например от сотен микровольт до одного вольта с подавлением второй гармоники, например до 129 дБ во всем диапазоне регулирования.

Сигнал с выхода генератора 5 через индуктивную связь поступает в приемник напряжения первой гармоники 2 и в блоке преобразования частоты и усиления сигнала промежуточной частоты 10 преобразуется в сигнал разностной частоты, затем усиливается, детектируется линейным детектором 11 и усиливается масштабирующим усилителем 12. С выхода 12 сигнал в зависимости от режимов регистрации поступает либо непосредственно на выход X прибора, либо на аналоговый делитель 13 канала X, преобразующий напряжение, обратно пропорциональное емкости исследуемого нанообъекта 9, в напряжение, пропорциональное емкости исследуемого нанообъекта 9.

В цепь заземления исследуемого нанообъекта 9 последовательно включены приемники тока второй 4 и первой 3 гармоник. Приемник тока второй гармоники 4 состоит из фильтра сосредоточенной селекции 14, настроенного на частоту 2ω, блока преобразования частоты второй гармоники 15 и усилителя промежуточной частоты с регулируемым коэффициентом усиления 16. Сигнал промежуточной частоты, например 128 кГц, с выхода приемника 4 поступает в блок перемножения и линейного детектирования 17, на второй вход которого с выхода приемника 3 подается напряжение, пропорциональное амплитуде напряжения источника тока первой гармоники 1. Приемник тока первой гармоники 3 состоит из фильтра сосредоточенной селекции 18 настроенного на частоту ω, блока преобразования частоты 19, усилителя промежуточной частоты с регулируемым коэффициентом усиления 20, на выходе которого включен детектор сравнения 21.

Частоты кварцев в блоках преобразования частоты 19 и 10 подобраны не кратными частоте кварца высокочастотного генератора 5 и друг другу, при этом разность между частотой гетеродина различных каналов находится в диапазоне, например 250 - 700 кГц.

В зависимости от режима работы устройства по координате Y сигнал с выхода блока перемножения и линейного детектирования 17 поступает в блок функционального преобразования, например логарифмирования, 22, а затем на выход Y и измерительный прибор, или в блок аналогового деления 23, который преобразует сигнал, обратно пропорциональный концентрации n(x), в сигнал, пропорциональный n(x), и на выход Y. Блок детектирования и сравнения 21 сравнивает амплитуду с детектора приемника тока первой гармоники 3 с опорным сигналом, вырабатывает сигнал ошибки и подает его на управляющий вход регулируемого усилителя в блоке 5. Усилитель постоянного тока имеет коэффициент усиления, например 105. Стабилизация по току первой гармоники лучше, например, чем 0,1%.

Резистор R преобразует протекающий через исследуемый нанообъект 9 ток утечки в напряжение. Через последовательно соединенные усилитель постоянного тока 24, блок выделения модуля сигнала 25, пороговый элемент 26 и регулируемый усилитель 27 резистор R связан с управляющим входом двуполярного источника напряжения смещения 28. Так, осуществляется отрицательная обратная связь по току утечки независимо от его полярности. Пороговый элемент представляет собой компаратор. Стабилизация постоянной составляющей тока через исследуемый нанообъект 9 осуществляется с помощью обратной связи независимо от режима работы регулируемого усилителя 27.

Преобразование частоты в более низкую частоту, например 128 кГц, позволяет сузить полосу пропускания измерительных каналов, например до 80 Гц, и улучшить отношение сигнал/шум в каналах. Преобразование частоты особенно необходимо в случае исследования приконтактной зоны полупроводниковой структуры, когда уменьшаются значения измеряемых величин - напряжения первой гармоники и тока второй гармоники, поскольку положительное смещение может сократить глубину области обеднения, Технико-экономический результат заключается в осуществлении локального определения концентрации свободных носителей заряда в полупроводниковых нанообъектах и наноструктурах и развитии новых методов диагностики наноструктур и материалов на их основе.

Литература

[1] Copeland J.A. Technique for directly plotting the inverse doping profile of semiconductor wafers // IEEE Trans. Electron Devices. 1969. ED-16. P.445.

[2] Орлов O.M., Принц В.Я., Скок Э.М. Прибор для автоматического измерения профиля концентрации мелких уровней // ПТЭ. 1979. №4. С.258.

[3] Корнилович А.А., Уваров Е.И. Прибор для автоматического локального измерения профилей концентрации носителей заряда в полупроводниковых структурах // ПТЭ. 1999. №4. С.134.

[4] http://www.janis.com

1. Способ определения концентрации носителей заряда в полупроводниках, заключающийся в том, что через полупроводниковый образец с электрическим выпрямляющим переходом пропускают высокочастотный ток, подают на образец прямое и обратное напряжение смещения, измеряют амплитуды напряжения первой гармоники тестирующего сигнала, пропорциональной глубине области обеднения, замыкают накоротко переход по току второй гармоники, формируемой нелинейностью характеристики перехода при постоянной амплитуде тока первой гармоники, компенсируют положительным смещением, поданным на переход, влияние контактной разности потенциалов, определяют концентрацию носителей заряда на глубине области обеднения из произведения амплитуды тока второй гармоники и напряжения первой гармоники, обратно пропорционального концентрации носителей заряда на глубине области обеднения, отличающийся тем, что производят обнаружение полупроводниковых нанообъектов путем сканирования в зондовом микроскопе, в качестве которого выступает атомно-силовой микроскоп, затем формируют барьерный контакт к исследуемому нанообъекту зондом.

2. Устройство для определения концентрации носителей заряда в полупроводниках, содержащее средства для формирования и регистрации параметров тока двух гармоник, отличающееся тем, что в устройство введен сканирующий зондовый микроскоп, в качестве которого выступает атомно-силовой микроскоп, с возможностью изменения температуры исследуемого образца.



 

Похожие патенты:

Изобретение относится к технологии получения изделий оптоэлектроники и солнечной энергетики, а именно к раствору для гидрохимического осаждения полупроводниковых пленок сульфида индия(III).

Изобретение относится к области вычислительной техники, а именно к области цифровой обработки сигналов. Технический результат - снижение энергопотребления на единицу производительности и повышение производительности процессора.

Изобретение относится к устройству для перемещения подложек согласно технологии производства микропроцессорной техники без образования частиц в миниатюрных рабочих средах в условиях чистого помещения.

Изобретение относится к способам получения тонкослойных детекторов заряженных частиц, основанных на явлениях термостимулированной и/или оптически стимулированной люминесценции.
Изобретение относится к области нанесения на подложки металлических покрытий, а именно к нанесению электропроводящего слоя на полимерную или бумажную подложку при изготовлении антенн, работающих в диапазоне ультравысокой частоты.

Изобретение относится к области нанотехнологии и может быть использовано для получения атомно-тонких монокристаллических пленок различных слоистых материалов. Технический результат - упрощение технологии изготовления атомно-тонких монокристаллических пленок.

Изобретение относится к области релаксационной электрохимии и может быть использовано в различных областях техники. Сущность изобретения заключается в том, что осуществляют воздействие на полупроводниковую или диэлектрическую конденсированную среду электромагнитным импульсом с образованием круговой или эллиптически поляризованной электромагнитной волны, отличающийся тем, что частоту круговой поляризации электрической компоненты поля совмещают с частотой электрострикции звуковой стоячей волны, образующейся на поверхности кластера вещества, создающей на поверхности кластера круговой токовый пробой, приводящий к изменению свойств полупроводниковых и диэлектрических конденсированных веществ, релаксирующих во времени после прекращения электромагнитного воздействия (эхо-сигнал).

Изобретение относится к способу монтажа микроэлектронных компонентов, в частности способу монтажа микроэлектронных компонентов для одномоментного монтажа на основной плате множества микроэлектронных компонентов, обладающих разной высотой.

Изобретение относится к способу производства пластины держателя для электростатического держателя приемлемой продуктивности, который лишен неудовлетворительного высвобождения полупроводниковой пластины, которая является подложкой, которая должна быть обработана, с начального момента предоставления электростатического держателя для нового использования.
Изобретение относится к устройствам для удержания полупроводниковых пластин во время транспортировки в процессе изготовления. .

Изобретение относится к способу образования прозрачного легированного слоя, содержащего оксид цинка, на полимерной подложке для оптоэлектронных устройств и прозрачному легированному слою. Способ включает контакт полимерной подложки по меньшей мере с одним прекурсором, содержащим легирующую добавку и цинк, и действие ультрафиолетового света во время процесса химического осаждения из газовой фазы для разложения по меньшей мере одного прекурсора и нанесения слоя на полимерную подложку. Полимерную подложку выбирают из группы, состоящей из фторполимерных смол, сложных полиэфиров, полиакрилатов, полиамидов, полиимидов и поликарбонатов. Стадию контактирования осуществляют при приблизительно атмосферном давлении. Технический результат - разработка способа химического осаждения из газовой фазы для нанесения легированных пленок оксида цинка на полимерные подложки для использования в оптоэлектронике. 2 н. и 10 з.п. ф-лы, 1 табл., 8 ил., 2 пр.

Использование: для создания материалов с новыми свойствами и способа обработки поверхности твердого материала с получением на этой поверхности структур с чешуйками субмикронной толщины и микронными размерами и/или с субмикронными трещинами и щелями между упомянутыми чешуйками и/или участками поверхности с характерными субмикронными перепадами по высоте рельефа. Сущность изобретения заключается в том, что способ основан на облучении перемещающимся лазерным пучком поверхности в зонах поверхности материала с коэффициентом поглощения не менее 3·104 см-1 на лазерной длине волны, при этом для облучения каждой зоны используют серию лазерных импульсов с длительностью импульса не более 30 нс, а плотность энергии F лазерного пучка в облучаемой зоне задают в диапазоне F=0,005-1,0 Дж/см2 с обеспечением растрескивания приповерхностного слоя материала без его плавления и с образованием на поверхности материала субмикронных трещин, щелей и чешуек с размерами от 0,05 мкм до 0,8 мкм. Технический результат: упрощение способа получения микро- и наноструктур для широкого класса материалов. 11 з.п. ф-лы, 1 табл., 7 ил.

Изобретение относится к области микроэлектроники, в частности к созданию тонкопленочных элементов матрицы неохлаждаемого типа в тепловых приемниках излучения (болометров) высокой чувствительности. Способ получения чувствительного элемента матрицы теплового приемника на основе оксида ванадия представляет собой нанесение металлической пленки ванадия и электродов методами магнетронного распыления и последующей лифт-офф литографии на диэлектрическую подложку. Затем через металлическую пленку ванадия пропускают электрический ток высокой плотности, под действием которого она нагревается и термически окисляется. После нагрева структуры и образования оксида VOx ток отключают, и происходит остывание сформированного тонкопленочного элемента. Изобретение позволяет значительно упростить способ изготовления чувствительного элемента матрицы теплового приемника. 1 з.п. ф-лы, 1 ил.

Изобретение относится к полупроводниковой технике и может быть использовано в производстве детекторов электромагнитных излучений различной длины. Сущность изобретения заключается в том, что наносят слой полупроводникового материала требуемой толщины на керамическую, стеклянную или полимерную непроводящую пластину. Затем разрезают данную пластину на полосы требуемой ширины и соединяют полученные полосы с образованием слоистой плоскости, в которой чередуются полосы керамики, стекла или полимера и полосы полупроводникового материала, далее разрезают полученную плоскость на полосы в направлении, перпендикулярном расположению первоначальных полос керамики, стекла или полимера и полупроводникового материала, вставляют в места разрезов полосы керамики, стекла или полимера и снова соединяют все полосы между собой. К полученной матричной поверхности с одной стороны присоединяют общий потенциальный электрод, а с другой стороны производят монтаж индивидуальных электродов к каждой из полупроводниковых ячеек матрицы. Технический результат - возможность технологичного изготовления детектирующих матриц любого необходимого размера. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области силовой электроники. Кассета для сплавления элементов конструкции полупроводниковых диодов содержит основание, выполненное из пластины углерода, в котором по образующей окружности термокомпенсатора изготовлены п-образные полости глубиной h=(1-2) диаметра керамических стержней. В полости установлены керамические стержни диаметром 4-7 миллиметров, выступающие над поверхностью углеродной пластины на высоту Н>(10-20)% высоты элементов полупроводниковых диодов, собранных в единую конструкцию. Изобретение обеспечивает снижение загрязнения рабочей поверхности кассеты при одновременном образовании свободного истечения паров легколетучих материалов во внешнюю среду. 1 ил.

Использование: для производства полупроводниковых приборов, в частности в технологии изготовления биполярных транзисторов с низкой плотностью дефектов. Сущность изобретения заключается в том, что способ изготовления полупроводникового прибора включает нанесение эпитаксиального слоя, формирование областей эмиттера, коллектора и базы, которую формируют легированием углеродом концентрацией 2,1-2,4·1019 см-3 с последующим отжигом при температуре 500-550°C в течение 50-60 с. Технический результат: обеспечение возможности снижения плотности дефектов, улучшения параметров, повышения качества и увеличения процента выхода годных. 1 табл.
Использование: для изготовления полупроводниковых приборов и интегральных схем. Сущность изобретения заключается в том, что способ обработки обратной стороны кремниевых подложек на основе полировальной подушки включает обработку поверхности кремниевых подложек, поверхность подложки подвергается обработке полировальной подушкой, пропитанной суспензией, в два этапа: 1. Алмазная суспензия марки 3 до 13 класса чистоты поверхности, толщина удаляемого слоя 28±2 мкм, скорость удаления 0,8±0,1 мкм/мин; 2. Алмазная суспензия марки 1 до 14 класса чистоты поверхности, толщина удаляемого слоя 6±1 мкм, скорость удаления 1,0±0,1 мкм/мин, где глубина нарушенного слоя составляет 0,6 мкм. Технический результат: обеспечение чистой поверхности кремниевых подложек без сколов и царапин и повреждений обрабатываемой поверхности.

Изобретение относится к технологии присоединения элемента интегральной схемы (чип) к поверхности, которая содержит проводящие рисунки. Технический результат - создание способа и устройства для быстрого, плавного и надежного подключения чипа к печатной проводящей поверхности за счет точечного характера передачи тепла и приложения давления к поверхности в точках контакта. Достигается это тем, что сначала чип (201) нагревают до первой температуры, более низкой, чем температура, которую чип может выдерживать без повреждения под действием тепла. Нагретый чип прижимают к печатной проводящей поверхности с первым прижимающим усилием. Совместного воздействия первой температуры и первого прижимающего усилия достаточно для того, чтобы, по меньшей мере, частично расплавить материал печатной проводящей поверхности и/или соответствующей точки контакта на чипе (205, 206). 2 н. и 13 з.п. ф-лы, 13 ил.

Изобретение относится к производству LTCC (Low Temperature Cofired Ceramics - низкотемпературная совместно обжигаемая керамика) толстопленочных многослойных коммутационных плат и может быть использовано при формировании рисунка функциональных слоев на сырой керамической подложке. Технический результат - повышение производительности и точности изготовления LTCC плат, а также сокращение технологического цикла и стоимости изготовления LTCC плат. Достигается тем, что предварительно на поверхность сырой керамической подложки наносят сплошным слоем токопроводящую или резистивную пасту и подсушивают ее, затем удаляют подсушенную пасту в пробельных местах рисунка слоя платы с помощью лазерного луча, который перемещают по поверхности керамической подложки по программе в соответствии с топологическим рисунком. При этом подбирают мощность излучения лазера таким образом, чтобы удалялась только нанесенная паста и не деформировалась подложка из сырой LTCC керамики. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области силовой электроники и может быть использовано при сплавлении элементов силовых полупроводниковых приборов. Кассета для сплавления элементов конструкции полупроводниковых диодов содержит основание, выполненное из пластины углерода, в котором внедрены керамические стержни, на последних установлена пластина, в которой по внешней образующей окружности керамических стержней изготавливают п-образные полости глубиной (1,5-2,5) диаметра керамических стержней. В той же пластине по внутренней образующей керамических стержней выполнена п-образная полость диаметром, равным или превышающим на 10% диаметр термокомпенсатора. В области дна полости выполняют сквозное отверстие, боковая поверхность которого наклонена относительно нормали к поверхности пластины на угол 3-5 градусов для обеспечения качественного набора элементов полупроводникового прибора в кассету. Причем размер диаметра сквозного отверстия в области поверхности потолка п-образной полости равен внутреннему диаметру, проведенному по образующей керамических стержней. Технический результат – повышение производительности закладки и выемки элементов полупроводниковых диодов, облегчение процесса набора элементов структуры полупроводникового диода в ручном и в автоматизированном режимах. 3 ил.
Наверх