Частотно-импульсный измеритель скорости изменения температуры

Изобретение относится к области температурных измерений и может быть использовано для определения скорости изменения температуры среды. Частотно-импульсный измеритель скорости изменения температуры содержит дифференциальную термопару 1 из термопар 2 и 3 с различными постоянными времени, усилитель 4, электронный ключ 5 с запоминающей емкостью 6 на выходе. Блок выделения модуля 7 и генератор управляемой частоты 8 соединен с выходом устройства и через блок задержки 9 подключен к управляющему входу электронного ключа 5, а также через генератор 8, стандартизатор импульсов 10 и инвертор 11 связаны через селектируемые пиковые детекторы 12 и 13 с электродами термопары 2. Выход стандартизатора 10 связан через детектор 13, а выход инвертора - через детектор 12. Выход ключа 5 с емкостью 6 соединен через компаратор 14 со знаковым выходом устройства, управляющим входом детектора 12 и через логическую схему «НЕ» 15 с управляющим входом детектора 13. Технический результат - обеспечение высокой точности и быстродействия при определении скорости изменения температуры. 1 ил.

 

Предлагаемое изобретение относится к области температурных измерений.

Известен измеритель скорости изменения температуры, содержащий термодатчик, например термопару, последовательно соединенные регулируемое дифференцирующее звено, выполненное по мостовой схеме, модулятор, разделительный трансформатор, индикаторный блок и нормирующий преобразователь (Авт. свид. СССР №378732, G01K 7/02. Бюл. №19, опубл. 18.04.1973).

Недостатком этого устройства является сравнительно низкое быстродействие и значительная погрешность измерения.

Известен также измеритель скорости изменения температуры, принятый за прототип, (Авт. свид. СССР №403972, G01K 7/22, опубл. 28.10.1973, Бюл. №43), содержащий термопару, горячим спаем через усилитель постоянного тока подключенную к затворам сдвоенного МОП-транзистора, один из которых коммутируется ключом и к которым также подключены запоминающие конденсаторы, а в стоковые цепи МОП-транзисторов включены нагрузочные сопротивления, между которыми подключен индикатор скорости изменения температуры.

Недостатком этого измерителя является сравнительно низкое быстродействие и точность работы.

Техническая сущность предлагаемого изобретения состоит во введении в устройство отрицательной обратной связи для компенсации изменения температуры термопары.

Техническим результатом предлагаемого изобретения является повышение быстродействия и точности работы устройства.

Технический результат достигается тем, что частотно-импульсный измеритель скорости изменения температуры, содержащий термопару, усилитель, запоминающую емкость и электронный ключ, дополнительно снабжен второй термопарой, блоком выделения модуля, генератором управляемой частоты, блоком задержки, стандартизатором импульсов по длительности и амплитуде, инвертором, двумя селектируемыми пиковыми детекторами, компаратором и логической схемой «НЕ», при этом вторая термопара встречно включена с первой с подключением дифференциальной термопары к входу усилителя, выход которого через последовательно соединенные электронный ключ с запоминающей емкостью на выходе, блок выделения модуля и генератор управляемой частоты соединен с выходом измерителя и через блок задержки подключен к управляющему входу электронного ключа, а также через последовательно соединенные генератор управляемой частоты, стандартизатор импульсов по длительности и амплитуде и инвертор связаны через первый и второй селектируемые пиковые детекторы с электродами второй термопары, при этом выход стандартизатора связан через второй пиковый селектируемый детектор, а выход инвертора - через первый пиковый селектируемый детектор, причем выход электронного ключа с запоминающей емкостью на выходе соединен через последовательно включенный компаратор со знаковым выходом измерителя, управляющим входом первого селектируемого пикового детектора и через логическую схему «НЕ» с управляющим входом второго селектируемого пикового детектора.

Структурная схема частотно-импульсного измерителя скорости изменения температуры приведена на фиг.1.

Измеритель содержит дифференциальную термопару 1 из двух встречно включенных термопар 2 и 3 с различными постоянными времени, связанную с входом усилителя 4, выход которого через последовательно соединенные электронный ключ 5 с запоминающей емкостью 6 на выходе, блок выделения модуля (БВМ) 7 и генератор управляемой частоты (ГУЧ) 8 соединен с выходом измерителя и через блок задержки (БЗ) 9 подключен к управляющему входу электронного ключа 5, а также цепь отрицательной обратной связи через последовательно соединенные выход генератора управляемой частоты 8, стандартизатор импульсов по длительности и амплитуде (САД) 10 и инвертор 11, связанные через селектируемые пиковые детекторы (СПД) 12 и 13 с электродами термопары 2 и входом усилителя 4, при этом выход САД 10 связан через СПД 13, а выход инвертора 11 - через СПД 12, причем выход электронного ключа 5 с запоминающей емкостью 6 соединен через последовательно включенный компаратор 14 со знаковым выходом измерителя, управляющим входом СПД 12 и через логическую схему «НЕ» 15 с управляющим входом СПД 13.

Назначение вновь введенных элементов: термопары 2, блока выделения модуля 7, генератора управляемой частоты 8, блока задержки 9, стандартизатора импульсов по длительности и амплитуде 10, инвертора 11, селектируемых пиковых детекторов 12 и 13, компаратора 14, логической схемы «НЕ» 15 попятно из их названий.

Частотно-импульсный измеритель скорости изменения температуры работает следующим образом.

С точки зрения динамики переходных процессов термопары 2 и 3 являются апериодическими звеньями первого порядка. Постоянная времени T3 термопары 3 больше постоянной времени T2 термопары 2 (T3>T2), а коэффициенты чувствительности K2 и K3 обеих термопар одинаковы K2=K3=K.

При изменяющейся контролируемой температуре ϑ выходной сигнал дифференциальной термопары 1 в форме Лапласа имеет вид

ϑ ( p ) ( K T 2 p + 1 K T 3 p + 1 ) = ϑ ( p ) ( T 3 T 2 ) p ( T 2 p + 1 ) ( T 3 p + 1 ) K ,

где p - оператор Лапласа.

Таким образом, на входе усилителя 4 действует выходной сигнал дифференцирующе-сглаживающего звена второго порядка (дифтермопары).

Выходной сигнал усилителя 4 через замкнутый ключ 5 запоминается емкостью 6 и через БВМ 7 управляет частотой Fвых ГУЧ 8. Импульсы с выхода ГУЧ 8 стандартизируются по длительности и амплитуде САД 10 и инвертируются инвертором 11. В зависимости от знака напряжения (полярности) на запоминающей емкости 6 компаратор, второй вход которого соединен с корпусом (условно не показан), формирует на своем выходе логическую единицу «1» или «0», открывая этим СПД 12 для прохождения импульсов отрицательной полярности или через логическую схему «НЕ» 15 СПД 13 для прохождения импульсов положительной полярности. При этом через горячий спай термопары 2 протекает импульсный ток от САД 10 в одну сторону или от инвертора 11 - в другую. На основании эффекта Пельтье при протекании тока в одну сторону происходит нагрев горячего спая, а в другую - его охлаждение. Значение выходного сигнала компаратора 14 несет информацию о знаке производной температуры по времени s i g n d ϑ d τ , а частота Fвых - о величине этой производной. Время задержки БЗ 9 выбирается из условия замыкания ключа 5 во время паузы между импульсами с выходов САД 10 или инвертора 11. Генератор ГУЧ 8 изменяет свою частоту так, чтобы ликвидировать разность напряжений на выходе дифференциальной термопары 1.

СПД 12 и 13 конструктивно могут быть выполнены подобно электронному ключу 5.

Таким образом, предложенная следящая система автоматического управления обеспечивает высокие точность и быстродействие работы измерителя скорости изменения температуры за счет поддержания равенства температур горячих спаев термопар 2 и 3 при их различных значениях постоянной времени с погрешностью, определяемой статической ошибкой следящей системы (обратно пропорциональной ее коэффициенту усиления).

Частотно-импульсный измеритель скорости изменения температуры, содержащий термопару, усилитель, запоминающую емкость и электронный ключ, отличающийся тем, что он дополнительно снабжен второй термопарой, блоком выделения модуля, генератором управляемой частоты, блоком задержки, стандартизатором импульсов по длительности и амплитуде, инвертором, двумя селектируемыми пиковыми детекторами, компаратором и логической схемой «НЕ», при этом вторая термопара включена по дифференциальной схеме с первой с подключением встречно включенных термопар к входу усилителя, выход которого через последовательно соединенные электронный ключ с запоминающей емкостью на выходе, блок выделения модуля и генератор управляемой частоты соединен с выходом измерителя и через блок задержки подключен к управляющему входу электронного ключа, причем измеритель также содержит цепь отрицательной обратной связи через последовательно соединенные генератор управляемой частоты, стандартизатор импульсов по длительности и амплитуде и инвертор, связанные через первый и второй селектируемые детекторы с электродами второй термопары, при этом выход стандартизатора связан через второй пиковый детектор, а выход инвертора - через первый пиковый детектор, выход электронного ключа с запоминающей емкостью на выходе соединен через последовательно включенный компаратор со знаковым выходом измерителя, управляющим входом первого селектируемого пикового детектора и через логическую схему «НЕ» - с управляющим входом второго селектируемого пикового детектора.



 

Похожие патенты:

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство содержит термопару в металлическом корпусе, рабочий спай которой расположен внутри защитного наконечника, выступающего за пределы корпуса.

Группа изобретений относится к передатчикам параметров процесса, используемым в системах управления технологическими процессами и мониторинга. Передатчик (10) параметров процесса для измерения температуры производственного процесса включает в себя первый электрический соединитель (1), сконфигурированный с возможностью соединения с первым проводом термопары, при этом первый электрический соединитель (1) включает в себя первый электрод (1A) и второй электрод (1B).

Изобретение относится к технике измерения физической температуры объекта с помощью термопары и может быть использовано в области температурных измерений с использованием термопар, в частности, в литейном производстве для определения скоростей охлаждения различных зон слитка при кристаллизации или закалке.

Изобретение относится к измерительной технике и может быть использовано в устройствах для проведения длительного и непрерывного измерения температуры газовой или жидкой среды, в том числе агрессивной, а также при отсутствии возможности периодической поверки или замены измерительной части устройства.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в процессе теплоизмерений. Заявлен цифровой измеритель температуры, содержащий источник 1 опорного напряжения, соединенный своим выходом с переключателем 2, выходы которого соединены через датчик 3 температуры и цифроуправляемое сопротивление (ЦУС) 4 с входами усилителей 5 и 6 постоянного тока.

Изобретение относится к области термического анализа и может быть использовано для определения фазовых переходов извлеченной из стального расплава пробы. Заявлен погружной зонд, имеющий погружной конец измерительной головки, в которой расположены имеющая впускной канал пробоотборная камера и выступающая своим горячим спаем в пробоотборную камеру термопара, которая имеет кабельный ввод для сигнальных кабелей термопары.

Изобретение относится к взрывозащищенным головкам датчиков температуры. Головка состоит из коробки в форме эллиптического цилиндра со скосом сверху под углом к ее оси, совпадающей с осью цилиндра с отверстием.

Изобретение относится к области термометрии и может быть использовано в системах контроля технологических процессов. .

Изобретение относится к измерительной технике и может найти применение в термометрии. .

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения в заданном участке температуры, теплового потока и давления. .

Изобретение относится к области температурных измерений и может быть использовано при наземных испытаниях элементов летательных аппаратов. Устройство для измерения разности температур содержит два встречно включенных термоприемника 1 и 2, находящихся при температурах t1 и t2 в контролируемой среде, усилитель 3, делитель напряжения 4 из последовательно соединенных резисторов 5-9. При этом резистор 7 является реохордом, а резисторы 6 и 8 являются цифровыми управляемыми сопротивлениями. Устройство также содержит измерительный прибор разности температур 10, два постоянных запоминающих устройства 11 и 12, аналого-цифровой преобразователь 13, второй измерительный прибор 14, связанный с дополнительным термопреобразователем 15, помещаемым в среду с температурой t1 или t2. Выходы ПЗУ 11 и 12 связаны с цепями управления цифровых управляемых сопротивлений 6 и 8 для введения коррекции на нелинейность термопар. Технический результат - повышение быстродействия и надежности работы предлагаемого устройства. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано при проведении термометрических измерений. Заявлены термоэлектрическая система, способ гашения колебаний термоэлектрической системы и компрессор, содержащий указанную термоэлектрическую систему. Термоэлектрическая система содержит канал для ввода термопар, выполненный с возможностью введения в конструкцию, через которую протекает среда, удлиненный датчик, установленный частично внутри канала для ввода термопар и выполненный с возможностью измерения температуры, по меньшей мере одно уплотнительное кольцо, расположенное вокруг удлиненного датчика на первом конце и выполненное с возможностью гашения колебаний удлиненного датчика путем осуществления контакта с каналом для ввода термопар, и эластомерный материал, расположенный вокруг удлиненного датчика на втором конце и предназначенный для гашения колебаний удлиненного датчика путем осуществления контакта с каналом для ввода термопар. Причем контакт между уплотнительным кольцом и каналом для ввода термопар является неплотным, так что гасящая колебания текучая среда способна проходить мимо уплотнительного кольца в указанный канал. Технический результат - уменьшение проявления деструктивных явлений в термопарах. 3 н. и 17 з.п. ф-лы, 9 ил.
Изобретение относится к области термометрии и может быть использовано для изготовления термопар. Согласно заявленному способу перед изготовлением термопары готовят два проводника из разных сплавов диаметром 0,3 мм. Далее осуществляют проковку термоэлектродов, которые сплющивают до толщины 9-10 мкм на месте спая и соединяют с помощью точечной сварки. Технический результат - повышение чувствительности термопары и уменьшение инерционности.

Изобретение относится к измерительной технике и может быть использовано в процессе измерения температуры объекта. Заявлен электрический штекерный соединитель для контактирования с ответным штекерным соединителем и для электрического подключения по меньшей мере одного первого и одного второго проводника термоэлемента, включающий по меньшей мере одно проводящее электрический ток первое и второе контактное средство. Причем первый проводник термоэлемента присоединен к первому контактному средству и второй проводник термоэлемента присоединен ко второму контактному средству. Электрический штекерный соединитель также содержит по меньшей мере один первый электрический датчик температуры, который снабжен областью регистрации температуры и по меньшей мере одним первым и вторым электрическим контактом. При этом по меньшей мере одна часть области регистрации температуры первого датчика температуры с помощью стыкового соединения непосредственно соединена с первым контактным средством, а другая часть области регистрации температуры первого датчика температуры посредством стыкового соединения присоединена ко второму контактному средству. Технический результат - повышение точности измерения температуры. 2 н. и 19 з.п. ф-лы, 8 ил.

Изобретение относится к измерительной технике и может быть использовано для проведения температурных измерений. Устройство для измерения температуры содержит мост, собранный на резисторах R1, R2, R3, R4, питаемый от источника стабилизированного напряжения Uстаб (точки b, c). К измерительной диагонали моста (точки a, d) подключены отрицательный электрод термопары и движок (ползунок) потенциометра R5, связанного через входную цепь усилителя 6 с положительным электродом термопары. Выход усилителя 6 через последовательно соединенные генератор управляемой частоты 7 и преобразователь частоты в напряжение 8 подключен к выводам потенциометра R5, первый вывод которого соединен с входом усилителя 6, а выход генератора 7 подключен также к выходу Fвых устройства. Технический результат: повышение быстродействия и надежности устройства. 1 ил.

Изобретение относится к области термометрии и может быть использовано для осуществления мониторинга измерения температуры в труднодоступных местах и в средах. Согласно заявленному способу используют термопару 1 с твердой оболочкой 2 на рабочем спае 3, выполненную из плавкого вещества, с температурой плавления, соответствующей условию: tпл.п.в=(0,0001-0,6)tпл.ис.ср, где tпл.п.в - температура плавления плавкого вещества оболочки, °C; tпл.ис.cp - температура плавления исследуемой среды, °C. При этом в формовочную смесь литейной формы вводят термопару 1 с оболочкой 2 в зону замера температуры чугуна отливки до контакта поверхности оболочки 2 с поверхностью исследуемой среды, а съем информации ведут в процессе монотонного изменения физического состояния исследуемой среды. Технический результат - повышение точности измерения температуры. 1 ил.

Изобретение относится к области измерения температур. Устройство для измерения температуры, содержит две встречно включенные измерительную и дополнительную термопары. Дополнительная термопара снабжена последовательно включенными источником стабилизированного напряжения и делителем напряжения, образованным сопротивлением и реохордом. Обе термопары присоединены к мостовой потенциометрической схеме с усилителем разбаланса, первый и второй выходы которого соединены соответственно с реохордом делителя напряжения и измерительным реохордом мостовой потенциометрической схемы. Устройство также дополнительно содержит последовательно соединенные делитель частоты, двоичный умножитель частоты и реверсивный счетчик импульсов, а также генератор управляемой частоты и четыре цифровых управляемых сопротивления (ЦУС). Первое и второе ЦУС включены последовательно в цепь делителя напряжения второй термопары, а третье и четвертое ЦУС - последовательно с измерительным реохордом мостовой потенциометрической схемы. Кодовые входы первого и третьего ЦУС, а также второго и четвертого ЦУС объединены и соединены соответственно с прямыми и инверсными выходами реверсивного счетчика импульсов, вычитающий вход которого связан с частотно-импульсным выходом устройства и двоичным умножителем частоты. Технический результат - повышение быстродействия и надежности устройства. 1 ил.

Изобретение относится к радиоэлектронике и может быть использовано для измерения температуры и разности температур дистанционным беспроводным способом. Преобразователь содержит генератор, источник питания и чувствительный элемент. Источник питания является чувствительным элементом и содержит термобатарею, соединенную с первым входом преобразователя напряжения, первый выход которого со стабилизированным напряжением подключен к высокочастотному генератору. Второй выход с напряжением, изменяющимся пропорционально величине температурных изменений, - к первому входу низкочастотного генератора, причем низкочастотный генератор является модулятором для высокочастотного генератора, выход которого соединен с антенной. Источник питания дополнительно содержит также дифференциальную термопару, подключенную ко второму входу преобразователя напряжения, третий выход которого связан со вторым входом низкочастотного генератора. Технический результат - расширение функциональных возможностей устройства путем дистанционного беспроводного измерения одновременно температуры и разности температур контролируемого объекта. 1 ил.

Изобретение относится к термометрии и может быть использовано для измерения температуры объекта. Термоэлектрический преобразователь содержит защитный чехол (1), термометрическую вставку, направляющую трубку (2) для временного размещения в ней контрольного средства измерения температуры и клеммную колодку. Термометрическая вставка состоит из двух идентичных по конструкции рабочих термопар (3), расположенных симметрично оси направляющей трубки (2) с совмещением их торцов с торцом защитного чехла (1). Холодные концы однородных термоэлектродов рабочих термопар (3) электрически соединены. В направляющей трубке (2) размещен выемной теплофизический макет (4) эталонной термопары. Предложенный способ включает периодическое размещение контрольного средства измерения температуры в направляющей трубке (2), сличение его показаний с показаниями термометрирующей вставки и извлечение контрольного средства измерения температуры из направляющей трубки (2). Измерение температуры в направляющей трубке (2) выполняют эталонной термопарой. Из направляющей трубки (2) извлекают теплофизический макет (4) эталонной термопары и устанавливают в нее эталонную термопару до совмещения ее торца с торцом защитного чехла (1). После завершения процедуры сличения эталонную термопару извлекают из направляющей трубки (2) и размещают в ней теплофизический макет (4) эталонной термопары. Технический результат - повышение точности термометрирования. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры при правке абразивных кругов инструментами из сверхтвердых материалов с помощью искусственной термопары, установленной на торцевой поверхности кристалла. Способ предполагает осциллографирование выходных сигналов термопары. По ним устанавливают значения температуры, которые затем аппроксимируют функцией, впоследствии экстраполируемой до зоны резания. При этом фиксируют значения температуры, которые соответствуют периоду приработки однокристальных инструментов, оснащенных кристаллами из сверхтвердых материалов, имеющими различную длину. Технический результат - повышение точности и достоверности определения контактной температуры. 1 ил. .
Наверх