Модуль дозирования микрокомпонентов

Изобретение относится к оборудованию для многокомпонентного весового дозирования сыпучих продуктов и может быть использовано в комбикормовой, пищевой, химической и других отраслях промышленности. Модуль весового дозирования микрокомпонентов периодического действия, включающий раму, бункеры расходные, питатели шнековые, весовые лотки с датчиками веса, расположенные на общем валу, и систему управления. Причем шнек по длине питателя содержит четыре участка с различным шагом и разной конструкции: первый участок с одинаковым шагом шнека, второй - шагом, увеличенным в два раза по сравнению с первым, третий - с двухзаходными витками шнека и четвертый - без наличия витков шнека. Технический результат - уменьшение неравномерности выхода продукта из питателя, обеспечение постоянства и стабильности подачи материала на выходе питателя и повышение точности дозирования микрокомпонентов. 2 ил.

 

Заявленный модуль весового дозирования микрокомпонентов периодического действия относится к оборудованию для многокомпонентного весового дозирования сыпучих продуктов и может быть использован в комбикормовой, пищевой, химической и др. отраслях промышленности.

Наиболее близким по технической сущности и назначению к заявленному модулем дозирования микрокомпонентов является модуль весового микродозирования (патент РФ №2168706, МПК7 G01F 13/00 от 10.06.2001 г.), включающий раму с установленными на ней: бункерами для загрузки сыпучих продуктов; питателями шнековыми с приводами для подачи продуктов на взвешивание; весовыми лотками и датчиками веса, расположенными на общем валу с приводом, обеспечивающими измерение массы дозируемых компонентов и выгрузки их из весовых лотков посредством поворота вала и системы управления.

Недостатком этого модуля является несовершенство конструкции питателя шнекового, представляющего собой шнек с одинаковым шагом по всей длине питателя, что снижает равномерность и стабильность подачи сыпучих компонентов в весовые лотки и в конечном итоге уменьшает точность дозирования микрокомпонентов.

Целью изобретения является повышение точности дозирования микрокомпонентов.

Поставленная цель достигается тем, что в модуле весового дозирования микрокомпонентов периодического действия, включающем раму, бункеры расходные, питатели шнековые, весовые лотки с датчиками веса, установленные на общем валу, и систему управления, отличающийся тем, что в модуле используются новые питатели шнековые более совершенной конструкции, которые позволят уменьшить неравномерность выхода продукта из питателя, обеспечат постоянство и стабильность подачи материала на выходе питателя и повысят точность дозирования микрокомпонентов.

На фиг.1 изображен модуль дозирования микрокомпонентов, общий вид; на фиг.2 изображен питатель шнековый, общий вид.

Модуль дозирования микрокомпонентов, фиг.1, включает раму, 12 бункеров расходных 1, разделенных на три группы по четыре в каждой, 12 питателей шнековых 2 новой конструкции, разделенных на три группы по четыре в каждой, трое тензовесов, состоящих из трех весовых лотков 3, трех тензорезисторных датчиков, расположенных на общем валу с приводом 4, обеспечивающих измерения массы дозируемых компонентов и выгрузку их из весовых лотков посредством поворота вала в разгрузочный шнек 5.

Питатели шнековые новой конструкции, фиг.2, обеспечивают равномерную подачу компонентов на весовые лотки. Шнек по длине питателя содержит четыре участка с различным шагом и разной конструкции. Первый участок с одинаковым шагом шнека, второй - шагом, увеличенным в два раза по сравнению с первым, третий - с двухзаходными витками шнека и четвертый - без наличия витков шнека. Такая конструкция шнека позволит уменьшить неравномерность выхода продукта из питателя, обеспечит постоянство и стабильность подачи материала на выходе питателя и повысит точность дозирования микрокомпонентов.

Принцип работы модуля дозирования микрокомпонентов заключается в следующем. В системе управления согласно рецепту устанавливаются заданные значения дозируемых компонентов. По программе системы управления в работу одновременно включаются по одному питателю шнековому 2 из трех групп питателей, в которых находятся по четыре питателя. В каждой группе питатели включаются последовательно, начиная с первого и заканчивая четвертым. Каждый питатель из трех групп подает микрокомпоненты на весовые лотки 3 тензовесов. Регулирование подачи продукта на весовые лотки тензовесов производится преобразователем частоты, который изменяет частоту вращения шнека питателя от максимальной до минимальной. После взвешивания компонентов на весовых лотках 3 первые питатели из каждой группы выключаются и в работу включаются вторые, третьи и четвертые питатели. После окончания дозирования всех компонентов в работу включается вал, который поворачивает весовые лотки, и компоненты из них выгружаются в шнек разгрузочный. Процесс дозирования микрокомпонентов завершен, и модуль готов к новому циклу дозирования. Использование в модуле дозирования микрокомпонентов питателей шнековых новой, более совершенной конструкции уменьшило погрешность дозирования микрокомпонентов до ±1 г, что в конечном итоге повысило качество премиксов.

Модуль дозирования микрокомпонентов, включающий раму, бункеры расходные, питатели шнековые, весовые лотки с тензорезисторными датчиками веса, расположенные на общем валу с приводом, и систему управления, отличающийся тем, что рабочий орган питателя шнекового содержит четыре участка: с постоянным шагом шнека, с увеличенным шагом по сравнению с первым в два раза, с двухзаходными витками шнека и без витков в конце питателя.



 

Похожие патенты:

Изобретение относится к области гидротехнических сооружений. Устройство содержит резервуар (1) с выходным патрубком (2), расположенным на дне резервуара, и вертикальным входным патрубком (4), емкость (11) с поплавком (13), шток и сливное отверстие.

Изобретение относится к средствам дозирования и направлено на повышение качества очистки бункеров при выгрузке связных трудносыпучих материалов, а также на обеспечение возможности быстрого и точного дозирования выгрузного материала, что обеспечивается за счет того, что устройство включает вертикальный корпус цилиндрической формы, щелевое дно которого выполнено из концентрических объемных колец, расположенных с кольцевыми зазорами относительно друг друга и жестко связанных между собой балками.

Изобретение относится к области дозирования с внешним управлением для повторяющегося отмеривания и выдачи заданных объемов сыпучих тел из резервуара независимо от веса тел и способа их подачи.

Изобретение относится к дозирующей технике, используется при создании дозаторов для текучей среды и направлено на улучшение показателей их работы, например на уменьшение износа зубцов шестерен и их шума при работе, что обеспечивается за счет того, что комплект шестерен содержит первую и вторую шестерни, идентичные друг другу и выполненные с возможностью взаимодействия при постоянном расстоянии между центрами, так что первая и вторая шестерни зацепляются при всех угловых положениях, и каждая шестерня из комплекта овальных шестерен содержит втулку, содержащую овальное тело, имеющее большую ось и малую ось, проходящие через центр втулки, и профиль стенки для ножек зубцов, который очерчивает большую и малую ось, а также множество зубцов шестерни, отходящих от профиля стенки для ножек зубцов, причем каждый из зубцов шестерни имеет две контактные поверхности с круговыми эвольвентными изогнутыми профилями, круговые эвольвентные изогнутые профили каждого зубца на первой шестерне генерируются от основной окружности, имеющей радиус Rb1, выведенной из модифицированной эллиптической начальной линии зубца, имеющей радиус R1 начальной линии при угловом положении Θ от центра, причем модифицированная эллиптическая начальная линия зубца описывается формулой полярных координат, раскрытой в формуле изобретения.

Установка для определения содержания дисперсной фазы в газовом потоке включает пробоотборный зонд, блок сепарации, содержащий сепаратор, снабженный фильтр-патроном и мерником для отсепарированной жидкости из газа.

Устройство для регулируемого распределения твердых сыпучих материалов включает в себя контейнер для материала (3) с множеством выпускных отверстий (33), множество распределительных элементов (4), множество вибрационных средств (5, 50) и электронные средства управления для приведения в движение каждого вибрационного элемента (5, 50) независимо друг от друга.

Изобретение относится к области измерительной техники в сельском хозяйстве и может быть использовано, в частности, для дозирования пророщенного высушенного измельченного зерна.

Изобретение относится к средствам одоризации природных газов и может быть использовано в газовой, нефтяной и других отраслях промышленности. Изобретение направлено на расширение функциональных возможностей и уменьшение габаритов, что обеспечивается за счет того, что система содержит рабочую емкость и емкость для хранения одоранта, соединенные между собой трубопроводом, систему наддува емкости для хранения одоранта, включающую в себя соединенные между собой трубопроводом редуктор давления и электромагнитный клапан, систему отсоса паров одоранта из емкостей, состоящую из эжектора, систему дозирования одоранта, состоящую из дозатора, причем все системы соединены между собой трубопроводами.

Изобретение относится к области метрологии, а именно к устройствам жидкостей, например нефтепродуктов, и может быть использовано для поддержания заданного уровня жидкостей с различной вязкостью.

Изобретение относится к области метрологии, а именно к автоматическим дозирующим устройствам жидкостей различной плотности, например нефтепродуктов, и направлено на повышение точности дозирования жидкостей, что обеспечивается за счет того, что автоматический дозатор жидкостей содержит расходный бак, выполненный из немагнитного материала, включающий полый корпус с дном и крышкой, снабженный впускным и сливным патрубками, в которых установлены соответственно впускной и сливной электромагнитные клапаны, уровнемер, включающий противовес, кинетически связанный с помощью гибкого соединительного элемента, перекинутого через шарнир с весовым элементом, частично погруженным в жидкость.

Устройство для измерения весового расхода и весового дозирования жидких флотационных реагентов содержит расходный бак, оснащенный датчиком верхнего уровня, тензометрическим датчиком силы, измерительным буйком, который подвешен к тензометрическому датчику силы, входным и выходным клапанами, управляемыми микроконтроллером, оснащенным программным обеспечением и электрическими цепями связи для входных и выходных сигналов. При этом в торцевой части расходного бака выполнено дроссельное отверстие. Сигнал датчика верхнего уровня реагента и сигнал тензометрического датчика силы посредством электрических цепей подключены к входам микроконтроллера, а управляющие выходы микроконтроллера подключены к соответствующим управляющим входам входного и выходного клапана. Микроконтроллер реализует вычисление: удельного веса реагента, уровня реагента в расходном баке, весовой концентрации твердого компонента в жидком реагенте, объемного и весового расхода входного потока реагента, объемного и весового расхода выходного реагента, реализует функции: непрерывного и импульсного весового и объемного дозирования реагента. Технический результат - возможность контроля работы дозирующего оборудования путем сравнения предыдущей и вновь полученной таблицы коэффициентов соответствия. 3 з.п. ф-лы, 1 ил.

Изобретение относится к механике неоднородных сред и может быть использовано в химической промышленности, металлургии, фармакологии, производстве моющих средств, минеральных удобрений, строительных материалов, ядовитых и взрывчатых веществ и т.д. Способ оценки сыпучести порошкообразных веществ основан на последовательном дозировании нескольких небольших порций испытуемого вещества одинакового объема и последующего определения стандартного отклонения порции дозируемого вещества (относительного «разброса навески» вещества), которое является мерой сыпучести вещества, и определяют сыпучесть вещества расчетным путем. Устройство для осуществления данного способа содержит два воронкообразных бункера с отверстием в основании и заслонку, при открытии которой испытуемое вещество из бункера может свободно высыпаться. Указанные воронкообразные бункеры выполнены в виде сквозных отверстий в бункерной пластине, ниже которой с зазором размещена другая, упорная пластина, с двумя сквозными отверстиями, оси которых смещены относительно осей отверстий бункеров. Заслонка выполнена в виде пластины-средника с двумя рядами одинаковых отверстий, к которой снизу закреплена приемная пластина с размещенными на ней приемными емкостями для испытуемого вещества, количество которых равно количеству отверстий в пластине-среднике. Данная пластина-средник перемещается внутри зазора между бункерной и опорной пластинами с помощью электромотора. Предложенная группа изобретений позволяет повысить точность оценки сыпучести при дозировании небольшого количества сыпучих веществ. 2 н.п. ф-лы, 6 табл., 1 ил.

Изобретение относится к оборудованию для дозированной подачи сыпучего материала. В опирающемся на упругую подвеску герметичном бункере на движущемся возвратно-поступательно вертикальном штоке закреплен нижний открывающийся наружу конический клапан. Шток в средней части снабжен движущимся внутри пневмоцилиндра поршнем, способным периодически подавать псевдоожижающий газ в нижнюю часть загруженного в бункер массива сыпучего материала. Привод механизма открывания клапана закреплен на стойке герметизирующей крышки над бункером и взаимодействует со штоком с помощью кривошипно-шатунного механизма, шатун которого шарнирно соединен со штоком через пружинную подвеску. Рыхление верхней части массива сыпучего материала производится возвратно-поступательно перемещаемыми вертикальными грабельными рыхлителями. На кривошипе закреплен дебалансный груз, который при вращении возбуждает вынужденные колебания бункера, способствующие его разгрузке. Технический результат - повышение точности дозирования и надежности конструкции дозатора. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для автоматического определения объемов закачиваемых в скважину по напорной магистрали буровых и тампонажных жидкостей. Способ определения объема расходуемой жидкости при перекачивании из тампонажной емкости в нагнетательную линию насоса включает измерение числа оборотов приводного вала насоса. При этом с начала момента перекачивания жидкости в нагнетательную линию дополнительно в тампонажной емкости измеряют падение ее уровня в диапазоне, достаточном для вычисления коэффициента преобразования числа оборотов приводного вала насоса в объем расходуемой жидкости. Текущее значение объема расходуемой жидкости определяют в зависимости от площади поверхности жидкости в емкости, падения уровня жидкости в емкости, коэффициента преобразования числа оборотов приводного вала насоса в объем расходуемой жидкости, числа оборотов приводного вала насоса, измеренного от момента прекращения измерения падения уровня жидкости. Технический результат заключается в повышении точности, упрощении и автоматизации процесса определения объемов закачиваемых в скважину буровых и тампонажных жидкостей. 1 ил.

Изобретение относится к области управления расходом сыпучих материалов, перемещаемых потоком газа. Материал, свободно поступающий по напорной шахте из загрузочного бункера в смесительную камеру, смешивается в ней с газом и выдается на выход за счет давления PC на входе в выпускной трубопровод, измеряемого датчиком давления, установленным там же, причем давление стабилизируется на значении, определяемом заданным значением расхода Q М З Д сыпучего материала в соответствии с формулой Непрерывность управления обеспечивается тем, что материал поступает в смесительную камеру по напорной шахте, высота которой определяется по формуле Технический результат - повышение точности и надежности при одновременном обеспечении непрерывного управления расходом, а также на расширение диапазона управляемого изменения расхода. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для многокомпонентного дозирования сыпучих материалов и может быть использовано в сельском хозяйстве при производстве комбикормов, пищевой, фармацевтической, химической и строительной промышленности. Предложен модуль многокомпонентного дозирования, содержащий раму с установленными на ней бункерами для компонентов, сообщающимися посредством механизмов подачи с приводами с лотками, закрепленными на датчиках веса, установленными на общем горизонтальном валу с возможностью их совместного с лотками вращения, и устройство выгрузки, в котором механизмы подачи снабжены пневматическими управляемыми заслонками, установленными на торце механизмов подачи, в качестве устройства выгрузки использован цепной скребковый транспортер, корпус и скребки которого имеют полукруглую форму, а в качестве вала применен поворотный коленчатый вал, установленный с возможностью поворота на 180 градусов. Техническим результатом изобретения является повышение точности и качества дозирования продуктов. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области горного дела и может быть использовано для исследования сыпучих свойств геоматериалов. Устройство представляет собой сварную конструкцию башенного типа, устанавливаемую на верхней предварительно спланированной площадке отработанного карьера с обеспечением вертикальной устойчивости. В ее верхней части размещены приемный бункер, затем колосниковый виброгрохот, секторный затвор, перфорированная качающаяся дека, воздухораспределительный контур и два приемных бункера. Технический результат - повышение достоверности определения фракционного и вещественного состава защитной подушки. 1 ил.

Изобретение относится к высокоточным способам управления и манипуляции сверхмалыми объемами жидкости и может быть использовано при решении ряда задач микромасштабной гидрогазодинамики, теплофизики, а также в микрофлюидике. Способ стабилизации размера микрокапель заключается в том, что конденсационный рост капель подавляется за счет частичного испарения капель под действием электромагнитного излучения, поглощаемого каплями. Техническим результатом является простота технической реализации и высокая эффективность, позволяя в течение длительного времени стабилизировать размер капель кластера с точностью не хуже десятых долей микрометра. 2 ил.

Датчик перманентного контроля сердечного ритма шахтера относиться к области обеспечения безопасности работ в горной промышленности и может использоваться для перманентного контроля сердечного ритма всего персонала в шахтах, как во время выполнения ими плановых работ, так и при возникновение чрезвычайных ситуаций, повлекших изоляцию персонала шахты за/под завалом горной породы. Новым в датчике перманентного контроля сердечного ритма шахтера является размещение датчика внутри корпуса аккумуляторного блока шахтерского фонаря со стороны его широкой стенки, обращенной к телу шахтера и изготовление датчика в виде автодинного генератора, совмещенного с микрополосковой антенной и содержащего кроме того датчик тока, узкополосный усилитель инфразвуковой частоты, микроконтроллер со встроенным аналого-цифровым преобразователем и получатель информации о сердечном ритме шахтера. Автодинный генератор состоит из полевого транзистора, блокировочного конденсатора и микрополосковой антенной на диэлектрической подложке с экранирующей пластиной, который начинает генерировать колебания при подаче на сток транзистора напряжения постоянного тока. Автодинный генератор - это генератор с открытой колебательной системой, способной излучать и принимать электромагнитные колебания. При возбуждении автодинного генератора он через микрополосковую антенну начинает эффективно излучать микроволновые колебания в сторону тела шахтера. Мощность этих колебаний невелика, что совершенно не сказывается на здоровье самого шахтера. Отразившись от тела шахтера, колебания вновь улавливаются микрополосковой антенной и складываются с собственными колебаниями автодинного генератора, вызывая тем самым изменение протекающего через автодинный генератор постоянного тока. Датчик тока, подключенный к выводу питания автодинного генератора, позволяет регистрировать эти изменения потребления тока, которые несут информацию о сердечном ритме шахтера. Узкополосный усилитель инфразвуковой частоты выделяет и усиливает эти изменения тока в диапазоне частот 0,8-2,5 Гц, соответствующие сердцебиению шахтера. В этом же диапазоне частот на выходе узкополосного усилителя инфразвуковой частоты присутствуют составляющие, обусловленные движением тела шахтера. Однако эти составляющие имеют нерегулярный характер и по своей сути являются составляющими шума, среднеквадратическое значение которых на известном временном интервале равно нулю. Спектральные составляющие, вызванные сердцебиением человека, имеют регулярный характер и их легко распознать, применив корреляционную обработку сигнала. Микроконтроллер осуществляет оцифровку сигнала, присутствующего на выходе усилителя инфразвуковой частоты и производит при этом корреляционную обработку последовательности оцифрованных данных на заданном временном интервале. В результате этой обработки микроконтроллер выделят составляющие, имеющие периодическую структуру, которые, по сути, соответствуют сердечному ритму человека. Далее через свой стандартный цифровой интерфейс микроконтроллер выдает данные получателю информации о сердечном ритме шахтера.

Способ определения процентного содержания воды в смеси диэлектрик-вода при изменении содержания воды в смеси в широких пределах относится к области электрических измерений неэлектрических величин и может быть использован для контроля содержания воды в жидких смесях типа диэлектрик-вода, например жидких углеводородах (нефть, масло, мазут и т.п.) или во влажных смесях (цементно-песочная смесь и т.п.). Способ может быть использован в составе аналитическо-измерительных комплексов непрерывного контроля параметров смеси в системах автоматического управления технологическими процессами. Преимущество данного способа измерения, по сравнению с другими способами измерения заключается повышенной точности определения процентного содержания воды в смеси диэлектрик-вода. Кроме того, процентное содержание воды в смеси определяется однозначно. Эти свойства предполагаемого изобретения особенно важны при организации автоматического управления технологическими процессами. Новым в способе определения процентного содержания воды в смеси диэлектрик-вода является применение микроволнового канала связи для проведения измерений набега фазы и одновременной оценки степени поглощения микроволнового сигнала в смеси. По произведенной оценке степени поглощения сигнала определяют грубо процентное содержание воды в смеси, что дает возможность определить число фазовых циклов набега фазы микроволнового сигнала и определить тем самым точное значение набега фазы или точно и однозначно определить процентное содержание воды в смеси. Измерение разности фаз сигналов производят при этом на низких частотах, получаемых после гомодинного преобразования частоты микроволновых сигналов. Использование низких частот для измерения разности фаз позволяет получить высокую точность измерений. Для организации гомодинного преобразования частот сигналов один из микроволновых сигналов получают путем монотонного сдвига фазы исходного микроволнового сигнала с определенной скоростью.
Наверх