Устройство формирования мощных импульсных сигналов на основе метода пространственно-временного преобразования многочастотного сигнала

Изобретение относится к радиотехнике и может быть использовано в радиолокации, в системах связи и других устройствах, в которых используются последовательности мощных радиоимпульсов. Техническим результатом является повышение импульсной мощности излучаемых сигналов. Для этого устройство формирования мощных импульсных сигналов на основе метода пространственно-временного преобразования многочастотного сигнала содержит сканирующую многочастотную антенную решетку (1), состоящую из изотропных в плоскости сканирования излучателей, приемную антенную решетку (2), состоящую из волноводных рупоров, элементы которой (рупоры) расположены внутри сверхразмерного волновода (6) в секторе углов 360°, линий задержки (3), фазовращателей (4) и передающей антенной решетки (5). 5 ил., 1 табл.

 

Область техники, к которой относится изобретение

Изобретение относится к радиотехнике, может быть использовано в радиолокации, в системах связи и других устройствах, в которых используются последовательности мощных радиоимпульсов.

Уровень техники

Известно устройство для формирования мощных широкополосных и сверхширокополосных радиоимпульсов - пространственно-временной преобразователь (ПВП) [1].

Структурная схема известного устройства приведена на фиг.1. Антенная решетка (1) излучает непрерывный сигнал и формирует сканирующую диаграмму направленности (ДН), которая последовательно облучает элементы приемной решетки (2). Элементами решеток (1) и (2) являются рупорные антенны. С помощью линий задержки (3) в каналах решетки (2) сигнал, излученный решеткой (1) за время сканирования tck, излучается выходной апертурой решетки (5) в течение времени облучения сканирующей ДН одного элемента решетки (2). Накопление энергии, принятой решеткой (2), за время сканирования происходит в линиях задержки.

Коэффициент накопления энергии равен отношению времени сканирования tck к длительности излучаемого импульса.

Плотность потока мощности (вектор Пойнтинга), излучаемая решеткой (1), составляет:

П 1 = P i S 1 N 2 / ( λ 2 R 2 ) [ В т / с м 2 ]

где S1 - эффективная площадь одного элемента решетки (1), N - количество элементов решетки (1), R - расстояние между решетками (1) и (2), Pi - мощность, подводимая к каждому элементу решетки (1). Площадь раскрыва входного элемента (2) выбирается исходя из соотношения:

S=λ2R2/(S1N),

то есть площадь элемента антенны (2) равна площади сечения ДН (1) по уровню 3 дБ. Импульсная мощность, подводимая к элементу решетки (2), составляет ~NPi. Выходная апертура (5), с помощью фазовращателей (4), обеспечивает синфазное излучение импульсных сигналов. При одинаковом числе элементов решеток (1) и (2), импульсная мощность, излучаемая решеткой (5), будет равна:

P≈N2Pi

Т.е. выходная импульсная мощность, излучаемая устройством на основе ПВП, пропорциональна N2 (квадрату числа элементов сканирующей решетки (1)).

В качестве прототипа выбрано устройство [2], отличающееся, во-первых, тем, что с целью снижения потерь энергии между решетками (1) и (2), обусловленных излучением в свободное пространство (мимо апертуры (2)), обе решетки помещены между двумя металлическими плоскостями, образующими сверхразмерный волновод (фиг.2, фиг.3). Во-вторых, в этом устройстве, для получения максимально возможной скорости сканирования в качестве решетки (1) используется линейная эквидистантная многочастотная антенная решетка (МЧАР) [3,4].

Сканирование ДН МЧАР реализуется за счет возбуждения элементов решетки (1) разночастотными сигналами с монотонным изменением частот сигналов по элементам апертуры f1=f1+Δf(i-1), где fi - частота сигнала, излучаемая i-м элементом решетки (i=1…N); f1 - частота сигнала, излучаемого первым элементом решетки; Δf - дискрет частоты. Этот способ сканирования, в частности, был реализован в США в проекте MOSAR фирмой General Electric, а так же запатентован во Франции в 1973 г. [5]. Скорость сканирования ДН МЧАР можно представить как:

V с к = d Θ м / d t = Δ ω / ( k 0 d cos Θ м ) = δ c / ( D cos Θ м ) [ р а д / с ] ,

где Θм - направление на главный максимум ДН, отсчитываемое от оси нормали к оси решетки (1); Δω - разность циклических частот между соседними элементами решетки (1); k0 - волновое число на средней частоте излучаемого спектра; d - расстояние между центрами соседних элементов решетки (1); D - расстояние между центрами крайних элементов МЧАР; δ=ΔF/F0 - относительная полоса частот многочастотного сигнала; ΔF - ширина излучаемого спектра; F0 - средняя частота спектра.

Основной недостаток прототипа состоит в том, что при формировании мощных импульсов высокая плотность потока энергии приводит к электрическим СВЧ пробоям в сверхразмерном волноводе.

Раскрытие изобретения

Техническим результатом изобретения является повышение импульсной мощности излучаемых сигналов.

Решение поставленной задачи достигается использованием в МЧАР ненаправленных в плоскости сканирования излучающих элементов с расстоянием между центрами соседних элементов, равным половине средней длины волны многочастотного сигнала. В результате линейная МЧАР формирует двухлучевую ДН, оба луча которой сканируют одновременно в двух полуплоскостях симметрично относительно оси МЧАР. Таким образом, энергия, излучаемая решеткой, равномерно распределяется между двумя лучами ДН, что снижает плотность потока энергии в сверхразмерном волноводе в два раза, позволяя в два раза повысить мощность излучаемых импульсных сигналов.Описание чертежей

На фиг.1 показана структурная схема прототипа изобретения. На фиг.2 приведена фотография экспериментального образца ПВП прототипа изобретения. Эскиз сверхразмерного волновода ПВП прототипа в разрезе показан на фиг.3. На фиг.4 приведена структурная схема изобретения. На фиг.5 изображен вариант реализации изобретения в аксонометрии в разрезе, параллельном плоскости сканирования.

Осуществление изобретения

Устройство (фиг.4) содержит сканирующую МЧАР (1), состоящую из изотропных в плоскости сканирования излучателей с расстоянием между центрами соседних излучателей, равным половине средней длины волны многочастотного сигнала, приемную антенную решетку (2), состоящую из волноводных рупоров, элементы которой (рупоры) расположены внутри сверхразмерного волновода (6) в секторе углов 360°, линии задержки (3), фазовращатели (4) и передающую антенную решетку (5).

Устройство работает следующим образом.

Сканирующая МЧАР (1) излучает непрерывный сигнал и формирует два луча диаграммы направленности, которые сканируют синхронно и симметрично относительно оси МЧАР в сверхразмерном волноводе (6) со скоростью Vck. По окружности радиуса R, центр которой совмещен с серединой МЧАР, располагаются элементы приемной апертуры. При сканировании ДН на выходе каждого приемного элемента формируется импульсный сигнал, форма которого повторяет форму ДН, а длительность равна τ u = Θ Д Н V c k (где ΘДН - ширина диаграммы направленности антенны). Таким образом, в результате сканирования ДН происходит преобразование спектра пространственных частот, излучаемых антенной, в импульсный сигнал (сигнал, изменяющийся во времени) - пространственно-временное преобразование сигнала.

В результате, на выходе приемных элементов решетки (2) образуются импульсы, сдвинутые относительно друг друга на время τ З = α V c k = d R V c k , где α - угол между центрами приемных элементов, отсчитываемый из центра МЧАР. С помощью линий задержки, установленных на выходах приемных элементов достигается одновременность появления максимумов на выходах элементов решетки 5. Очевидно, что задержки будут распределены симметрично относительно оси решетки.

Возможен следующий вариант технической реализации изобретения (фиг.5).

Сканирующая МЧАР (1) и приемная решетка (2) располагаются между двух проводящих дисков, образующих сверхразмерный волновод. Поскольку на фиг.5 устойство показано в разрезе, верхний диск отсутствует. МЧАР состоит из 11 элементов, изотропных в плоскости сканирования ДН (плоскости, параллельной дискам), и работает в диапазоне частот 1000-1150 МГц. Расстояние между центрами элементов МЧАР - 137 мм, размер МЧАР - 1,37 м. Расстояние между дисками, образующими сверхразмерный волновод, - 100 мм.

Приемная решетка (2) состоит из 30 Н-секториальных рупоров с размером апертуры 100×419 мм. Раскрывы рупоров расположены на окружности с радиусом 2 м, центр которой совпадает с серединой МЧАР. В качестве линий задержки используются коаксиальные линии, подключенные к рупорам приемной решетки с помощью волноводно-коаксиальных переходов. Расчетные времена задержек и соответствующие им длины коаксиальных линий с воздушным диэлектриком приведены в таблице.

Описанное устройство формирует импульс длительностью ~6,6 нс при скважности ~11. Расчеты были произведены с помощью математических моделей [6, 7].

Таблица
№ канала Время задержки, нс Длина линии задержки,
м
1 0,000 0,200
2 1,601 0,680
3 4,581 1,574
4 8,717 2,815
5 13,787 4,336
6 19,524 6,057
7 25,751 7,925
8 32,244 9,873
9 38,692 11,808
10 45,008 13,702
11 50,834 15,450
12 56,037 17,011
13 60,307 18,292
14 62,986 19,096
15 64,588 19,576
16 64,588 19,576
17 62,986 19,096
18 60,307 18,292
19 56,037 17,011
20 50,834 15,450
21 45,008 13,702
22 38,692 11,808
23 32,244 9,873
24 25,751 7,925
25 19,524 6,057
26 13,787 4,336
27 8,717 2,815
28 4,581 1,574
29 1,601 0,680
30 0,000 0,200

ЛИТЕРАТУРА

1. RU2329576 C1 10.01.2007.

2. Н.В.Воробьев, B.А.Грязнов, И.Н.Воробьев, С.В.Ягольников. Метод пространственно-временного преобразования для формирования мощных широкополосных и сверхширокополосных радиоимпульсов. М. РАН, ИРЭ им.В.А. Котельникова. Сборник докладов IV Всероссийской конференции «Радиолокация и связь», 2010.

3. Воробьев Н.В., Грязнов В.А. Многочастотные антенные решетки для формирования импульсных сигналов // Радиотехника (Журнал в журнале) - 1997 - Вып.26, №11. С.107-108.

4. Кучеров Ю.С., Чапурский В.В. Антенные решетки со сверхбыстрым сканированием луча // «Радиотехника и электроника», том 39, вып.10, 1994.

5. Сканирующая антенна. Заявка на изобретение №2153076. Франция. 1973. 06.01.

6. Аджемов С.С., Воробьев Н.В. Грязнов В.А. Моделирование многочастотных антенных решеток. Свидетельство о регистрации программы для ЭВМ. №2006613973, зарегистрировано 21 ноября 2006 г.

7. Аджемов С.С., Воробьев Н.В., Грязнов В.А. Моделирование пространственно-временных преобразователей многочастотного сигнала. Свидетельство о регистрации программы для ЭВМ №2006614021. Зарегистрировано 22 ноября 2006 г.

Устройство формирования мощных импульсных сигналов на основе метода пространственно-временного преобразования многочастотного сигнала, содержащее излучающую сканирующую многочастотную антенную решетку, приемную антенную решетку, состоящую из приемных элементов, обе решетки находятся в сверхразмерном волноводе, линии задержки, фазовращатели и излучающую антенную решетку, состоящую из излучающих элементов, выходы приемных элементов соединены с входами линий задержки, выходы линий задержки соединены с входами фазовращателей, выходы фазовращателей соединены с входами излучающих элементов, сканирующая многочастотная антенная решетка является облучателем приемной антенной решетки, а линии задержки предназначены для компенсации разницы времени попаданий максимума импульсного сигнала, формируемого при сканировании диаграммы направленности облучателя, на входы соседних приемных элементов, отличающееся тем, что сканирующая многочастотная антенная решетка состоит из ненаправленных в плоскости сканирования элементов, расстояние между центрами которых равно половине средней длины волны сигнала, а приемная решетка расположена по окружности, центр которой совпадает с серединой сканирующей многочастотной антенной решетки.



 

Похожие патенты:

Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано в радиолокационных станциях различного назначения, станциях радиосвязи, использующих два далеко разнесенных частотных диапазона, например сантиметровый и миллиметровый диапазоны волн.

Изобретение относится к радиолокации, а именно к широкополосным антенным системам, рабочий диапазон частот которых перекрывает несколько октав. Технический результат - расширение диапазона рабочих частот комбинированной антенной системы, работающей в активном и пассивном режимах.

Изобретение относится к области гидролокации и может быть использована при конструировании антенн гидролокационных станций. Технический результат состоит в создании технологичной конструкции гидролокационной фазированной антенной решетки с заданной полосой пропускания преобразователей и повышенным сроком службы.

Изобретение относится к антенной технике и предназначено для приема радиочастотных сигналов в радиосвязи, мобильной связи, радиолокации и радиоастрономии. Технический результат - повышение чувствительности приема радиочастотных сигналов.

Изобретение относится к радиоэлектронике. Технический результат - обеспечение доступа к узкополосным сигналам в отложенном режиме и повышение числа одновременно функционирующих каналов приема.

Изобретение относится к отражающей решетке для отражающей решеточной антенны. Технический результат состоит в устранении явления дифракции. Для этого отражающая решетка содержит множество элементарных излучающих элементов, образующих отражающую поверхность без резкого перехода, и характеризуется тем, что каждый излучающий элемент отражающей поверхности выбран из совокупности заранее определенных последовательных излучающих элементов, называемой рисунком, при этом первый элемент (1) и последний элемент (9) рисунка соответствуют одной фазе по модулю 360° и являются идентичными, а излучающие элементы (1, 2, 3, 4, 5, 6, 7, 8, 9) рисунка имеют излучающую структуру типа металлического пятна и/или типа излучающего отверстия, постепенно меняющуюся от одного излучающего элемента к другому соседнему излучающему элементу, при этом изменение излучающей структуры содержит последовательность постепенных увеличений, по меньшей мере, одного металлического пятна (25) и/или, по меньшей мере, одного отверстия (27) и появлений, по меньшей мере, одного металлического пятна (25) в отверстии (27) и/или, по меньшей мере, одного отверстия (27) в металлическом пятне (25).

Изобретение относится к радиотехнике, а именно к мобильной радиосвязи сотовой структуры. Технический результат - улучшение равномерности распределения токов и расширение рабочей полосы частот.

Изобретение относится к области радиотехники и может быть использовано в радиолокационных станциях с активными фазированными антенными решетками (АФАР) при цифровом формировании диаграммы направленности и применении в качестве зондирующих импульсных широкополосных линейно-частотно-модулированных (ЛЧМ) сигналов.

Изобретение относится к антенной технике. Технический результат - уменьшение амплитудно-фазовых ошибок поля в раскрыве многолучевой антенной решетки.

Изобретение относится к радиотехнической промышленности и может использоваться в СВЧ антенной технике в составе фазированных антенных решеток, использующих моноимпульсный метод пеленгации.

Изобретение относится к электротехнике и может быть использовано в радиоэлектронных передающих и приемных устройствах различного назначения. Технический результат - упрощение конструкции электронной решетки. Сверхширокополосная сканирующая ФАР, состоящая из набора излучающих элементов, в которой раскрыв сформирован многоуровневыми рупорными излучателями, каждый из которых имеет линейные размеры больше длины волны и управляемую диаграмму направленности, регулируемую посредством управляющего элемента. 2 з.п. ф-лы, 5 ил.

Изобретение относится к радиолокации, точнее к фазированным антенным решеткам (ФАР) СВЧ диапазона, и может быть использовано в пассивной и активной радиолокации для осуществления непрерывного параллельного контроля пространства. Технический результат - возможность формирования одновременно существующего веера (пучка) остронаправленных лучей, покрывающих весь контролируемый телесный угол как одномерной (линейной), так и двумерной антенной решеткой. Для этого многолучевая СВЧ линейная антенная решетка включает N приемопередающих модулей, каждый из которых имеет антенный элемент, усилитель с СВЧ переключателями, делитель СВЧ и диаграммообразующее устройство. Двумерная антенная решетка содержит P линейных многолучевых СВЧ антенных решеток. Каждая линейная решетка является строкой, при этом на каждой M плате элементарных сумматоров дополнительно выполнен делитель СВЧ на K каналов, подключенный к выходу монолитного усилителя. Выходы каналов делителей каждой платы в каждой строке сдвинуты на шаг, равный L/M, где L - длина платы. Выходы строки соединены вертикальными столбцами, являющимися диаграммообразующими устройствами. Общее число выходов плат слолбцов в режиме приема равно M×K, причем каждый выход соответствует своему лучу в пространстве. В режиме передачи выходы К плат М столбцов преобразуются во входы каналов (лучей), излучаемых АФАР. 2 н.п. ф-лы, 7 ил.
Изобретение относится к фазированным антенным решеткам. Технический результат изобретения заключается в расширении арсенала технических средств реализации оптической ФАР. Оптическая фазированная антенная решетка содержит пучок оптических волокон, торцы которых с одной стороны составляют плоскость фазированной антенной решетки (ФАР), с другой - приемо-передающую оптическое излучение плоскость, согласующую оптическую систему для равномерного распределения оптического излучения от лазера по всей приемопередающей плоскости пучка оптических волокон; каждое волокно изолировано от обкладок других волокон, одна из обкладок «конденсатора» контактирует с соответствующим элементом на токопроводящей резине, который соединяется с соответствующим контактом на «нижней» плате, а другая контактирует с общей шиной через токопроводящую резину, где есть единый для всех «верхних» обкладок «конденсаторов» контакт. Такие одномерные массивы собираются один над другим, образуя матрицу. Управление фазой оптического излучения происходит через «нижние» платы посредством системы управления, синхронизации и обработки информации через цифроаналоговые преобразователи. 2 ил.

Использование: для приема и передачи сигнала при измерении диаграмм вторичного излучения антенн. Сущность изобретения заключается в том, что приемопередающая широкодиапазонная антенная решетка наклонной поляризации из 2*N-ПАР V-образных вибраторов, расположенных в плоскости, жестко закрепленная на основании, состоящая из N-пар антенных излучателей, соединенных с помощью согласованных СВЧ-трактов одинаковой электрической длины, отличающаяся тем, что все антенные излучатели выполнены в виде V-образных вибраторов, каждый антенный излучатель N-пары дополнительно содержит второй V-образный вибратор, плечи всех вибраторов состоят из двух диполей разной длины, длина первого диполя равна от 0.2*λcp1 до 0.3*λcp1, длина второго диполя равна от 0.2*λcp2 до 0.3*λcp 2, где λcp1, λcp2 - средние длины волн первого и второго диапазонов. Технический результат: повышение точности и скорости анализа компонентного состава потока многофазной жидкости. 3 з.п. ф-лы, 1 ил.

Изобретение относится к системам низкочастотных антенн, имеющих улучшенную направленность излучения. Техническим результатом является создание низкочастотной антенны, имеющей улучшенные рабочие характеристики, а именно обеспечение коэффициента сжатия волны больше единицы без изменения полного волнового сопротивления оболочки при переходе от ее внутренней части к внешней, которые реализуются посредством того, что структура или материал внешней части оболочки антенны выбраны так, что отношение магнитной проницаемости внешней части оболочки к диэлектрической проницаемости внешней части оболочки остается постоянным в пределах внешней части оболочки и равным отношению магнитной проницаемости внешней среды к диэлектрической проницаемости внешней среды. Предложена низкочастотная антенна, предназначенная для излучения/приема электромагнитной волны. Антенна содержит питаемый вход, выполненный с возможностью соединения с линией передачи, провод антенны, соединенный с питаемым входом, и оболочку, по меньшей мере частично окружающую провод антенны. Оболочка антенны содержит внутреннюю часть, примыкающую к проводу антенны, и внешнюю часть, примыкающую к внутренней части и имеющую периферию, внутренняя часть оболочки имеет такую структуру или выполнена из такого материала, что каждая из величин магнитной проницаемости внутренней части оболочки, проводимости внутренней части оболочки и диэлектрической проницаемости внутренней части оболочки постоянна в пределах внутренней части. 5 н. и 54 з.п. ф-лы, 10 ил.

Изобретение относится к области радиолокационной техники и может быть использовано при проектировании и изготовлении активной фазированной антенной решетки (АФАР). Технический результат - повышение технологичности изготовления антенной решетки за счет включения антенных излучателей, повышение радиотехнических характеристик за счет снижении КСВ. Для этого модуль содержит корпус, радиоэлектронную ячейку, закрепленную на дне корпуса и содержащую основную печатную плату с радиоэлектронными элементами, образующими, по меньшей мере, один приемо-передающий канал, полосковая линия которого соединена перемычкой с центральным проводником герметичного перехода, расположенного в дне корпуса. Центральный проводник герметичного перехода проходит через металлизированное отверстие в основной печатной плате и изолирован от его стенок. Диаметр металлизированного отверстия, диаметр центрального проводника и толщина изоляции выбраны так, что образован участок согласованной коаксиальной линии. На внешней поверхности дна корпуса закреплена, по меньшей мере, одна дополнительная печатная плата, на которой расположен, по меньшей мере, один антенный излучатель, выполненный в виде рисунка на печатной плате, соединенный полосковой линией с центральным проводником герметичного перехода. 4 з.п. ф-лы, 2 ил.

Изобретение относится к антенной технике, в частности к сканирующей антенной решетке, базовой станции, сети беспроводной связи и способу формирования диаграммы направленности. Техническим результатом является повышение эффективности сканирования и формирования многолучевой диаграммы направленности в антенной решетке уже при наличии двух радиопередающих трактов. Согласно изобретению, в сканирующей антенной решетке количество каналов питания меньше количества излучающих элементов и больше или равно 2, при этом каждый канал имеет отдельный постоянный делитель мощности с фиксированными параметрами распределения амплитуды и фазы. Весовые коэффициенты сконфигурированы так, чтобы в совокупности у антенной решетки формировалась косекансная диаграмма направленности. Сканирование выполняется путем изменения фазы на входе по меньшей мере одного из делителей мощности. 4 н. и 10 з.п. ф-лы, 10 ил., 2 табл.

Использование: для проектирования и изготовления активной фазированной антенной решетки (АФАР). Сущность изобретения заключается в том, что способ охлаждения активной фазированной антенной решетки (АФАР) включает: размещение охлаждающих средств и осуществление циркуляции в каналах охлаждающей жидкой среды; в качестве каждого из охлаждающих средств используют трубы эллиптического поперечного сечения с толщиной стенки, составляющей от 0,25 до 0,3 мм, в контакте с внешней поверхностью боковой стенки корпуса каждого из приемо-передающих модулей, входящих в состав АФАР, которые устанавливают в промежуток между боковой стенкой корпуса каждого из приемо-передающих модулей, входящих в состав АФАР, и элементом несущей конструкции полотна АФАР с суммарным зазором, составляющим от 0,1 до 0,5 мм, при этом каждую из труб выполняют из материала, имеющего возможность упругой деформации, обеспечивающей прижатие каждой из труб к внешней поверхности боковой стенки корпуса каждого из приемо-передающих модулей, входящих в состав АФАР, циркуляцию осуществляют со скоростью, обеспечивающей разность температур между внутренней поверхностью стенки трубы и средней температурой охлаждающей жидкой среды от 3 до 5°C, а нагретую охлаждающую жидкую среду охлаждают при помощи воздушной системы охлаждения с использованием атмосферного воздуха. Технический результат: обеспечение возможности интенсивного отвода тепла с поверхностей корпусов приемо-передающих модулей, входящих в состав АФАР. 1 з.п. ф-лы, 3 ил.

Использование: для приема и передачи сигнала при измерении диаграмм вторичного излучения антенн. Сущность изобретения заключается в том, что приемопередающая антенная решетка вибраторов, жестко закрепленная на основании, состоящая из N-пар антенных излучателей, соединенных с помощью согласованных СВЧ-трактов одинаковой электрической длины, при этом все антенные излучатели выполнены в виде V-образных вибраторов, каждый антенный излучатель N-пары дополнительно содержит второй V-образный вибратор, соединенный противофазно с первым V-образным вибратором, когда первое левое плечо первого V-образного вибратора отрицательного потенциала первого излучателя N-пары соединено со вторым правым плечом второго V-образного вибратора отрицательного потенциала первого излучателя N-пары, а второе правое плечо первого V-образного вибратора положительного потенциала первого излучателя N-пары соединено с первым левым плечом второго вибратора положительного потенциала первого излучателя N-пары. Технический результат: обеспечение возможности создания приемопередающей антенной решетки, имеющей более широкую диаграмму обратного рассеяния. 3 з.п. ф-лы, 2 ил.

Использование: изобретение относится к области радиотехники, а точнее к области волноводных антенн с эллиптической поляризацией, и может быть использовано в качестве приемопередающих антенн различных радиотехнических систем, например, на подвижных объектах. Сущность: волноводная антенна содержит круглый волновод, в полости которого установлен поляризатор, выполненный в виде диэлектрической пластины, на открытый конец волновода в плоскости его раскрыва установлен круглый металлический экран в виде кольца с внешним диаметром D<2·λ, где λ - длина волны, а кромка волновода продолжена за плоскость раскрыва в виде четырех пилообразных выступов с высотой зуба h=d/4, где d - диаметр волновода. Технический результат: расширение диаграммы направленности по уровню половинной мощности, не изменяя поляризационных характеристик излучения. 3 ил.
Наверх