Имплантированная ионами олова пленка оксида кремния на кремниевой подложке

Изобретение относится к материаловедению. Пленка оксида кремния на кремниевой подложке, имплантированная ионами олова, включает нанокластеры альфа-олова. Толщина пленки составляет 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры альфа-олова имеют радиус от 1,5 до 4 нм. Пленка имеет увеличенную интенсивность и уменьшенную ширину полосы фотолюминесценции в диапазоне 700÷1100 нм. 2 ил., 1 табл., 5 пр.

 

Изобретение относится к материаловедению, к пленкам оксида кремния на кремниевой подложке, имплантированным ионами олова, и предназначено для разработки функциональных элементов нано- и микроэлектроники, оптоэлектроники и нанофотоники. Такие функциональные элементы могут быть использованы при создании приборов и устройств для записи, отображения и преобразования информации, например, в качестве фотосенсоров сигнальных устройств в информационных системах, в качестве элементов волоконной техники и интегральной оптики, а именно, микроминиатюрных источников света и преобразователей коротковолнового излучения в длинноволновое излучение.

Наиболее близкой к предлагаемой пленке является имплантированная ионами олова пленка оксида кремния на кремниевой подложке, имеющая толщину 500 нм и содержащая нанокластеры альфа-олова со средним радиусом не более 5 нм [Поверхность, рентгеновские, синхротронные и нейтронные исследования, 2012, №8, с.44-49].

Недостатком материала-прототипа является пониженная интенсивность фотолюминесценции и уширенная полоса спектра фотолюминесценции в диапазоне 700÷1100 нм.

Задачей изобретения является увеличение интенсивности фотолюминесценции в диапазоне 700÷1100 нм и уменьшение ширины полосы спектра фотолюминесценции в этом диапазоне.

Для достижения указанной задачи имплантированная ионами олова пленка оксида кремния на кремниевой подложке, включающая нанокластеры альфа-олова, отличается тем, что толщина пленки находится в пределах 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры альфа-олова имеют радиус от 1,5 до 4 нм.

Техническим результатом при использовании предложенной пленки как наноструктурированного материала является увеличение интенсивности фотолюминесценции в полосе свечения 700÷1100 нм (1,13÷1,77 эВ) в четыре раза и сужение ширины полосы фотолюминесценции в 1,24÷1,45 раза. Это обеспечивается наличием в предложенной пленке указанной выше совокупности параметров: толщины пленки, средней концентрации в ней олова и размеров нанокластеров альфа-олова. При этом нанокластеры альфа-олова с радиусом от 1,5 до 4 нм проявляют свойства квантовых точек с эффектами квантового ограничения, обусловливающими вариативность и достижение требуемых электронно-оптических свойств наноструктурированного материала.

При выходе вышеуказанных параметров предложенного материала (толщина пленки, средняя концентрация олова и средний радиус нанокластеров альфа-олова) за пределы, указанные в формуле изобретения, не обеспечиваются увеличение интенсивности фотолюминесценции и сужение ширины полосы фотолюминесценции в диапазоне 700÷1100 нм. Это обусловлено следующими причинами.

Если размеры нанокластеров альфа-олова менее 1,5 нм, происходит деградация структуры материала и ухудшение люминесцентных свойств предложенного материала вследствие увеличения количества структурных дефектов, являющихся центрами тушения люминесценции. Снижается интенсивность фотолюминесценции, расширяется ее полоса.

При размерах нанокластеров альфа-олова более 4 нм полоса свечения сдвигается в низкоэнергетическую область, уменьшается интенсивность свечения, расширяется полоса фотолюминесценции. Кроме того, усложняется технология получения предложенного материала, требуется использование ионного источника с повышенной энергией и увеличение времени имплантации, что экономически нецелесообразно.

Если средняя концентрация олова меньше 2,16 атомных процентов, снижается интенсивность фотолюминесценции, требуется более длительная термообработка для получения кластеров размерами 1,5÷4 нм.

При средней концентрации олова более 8 атомных процентов начинают проявляться эффекты концентрационного тушения и увеличиваются размеры нанокластеров.

Если толщина пленки меньше 80 нм, не достигается достаточная степень воспроизводимости технического результата получаемой пленки оксида кремния вследствие повышенного влияния свойств кремниевой подложки на свойства пленки, нарушений структуры границы пленка-подложка, излишнего повышения плотности радиационных дефектов пленки (E'-центры, ODC-центры, центры на немостиковых атомах кислорода и др.). При этом не обеспечивается получение требуемых размеров нанокластеров альфа-олова и повышенной интенсивности свечения.

При толщине пленки, большей чем 350 нм, увеличивается длительность технологического процесса ионной имплантации, что приводит к увеличению размеров наночастиц альфа-олова, растет количество радиационных дефектов в структуре пленки. В результате происходит частичное тушение фотолюминесценции, расширение полосы фотолюминесценции и сдвиг ее в длинноволновую область. Расширение полосы фотолюминесценции обуславливает уменьшение интенсивности в диапазоне длин волн 700÷1100 нм.

На фигурах 1 и 2 представлены параметры предложенного материала.

Фиг.1 - распределение величины концентрации олова (вертикальная ось, атомные проценты - ат.%) по толщине пленки предложенного материала (горизонтальная ось, нм) при толщине пленки 250 нм и средней концентрации олова 2,3 ат.%.

Фиг.2 - спектр свечения предложенного материала (вертикальная ось - интенсивность фотолюминесценции, отн.ед., горизонтальная ось - длины волн излучения, нм) при толщине пленки 250 нм и средней концентрации олова 2,3 ат.%.

Приведенный на фиг.2 спектр фотолюминесценции в пределах 700÷1100 нм получен возбуждением в диапазоне 77,5÷335 нм (3.7÷16 эВ), в частности, лазером типа DTL-394QT или DTL-389QT (Россия, «Лазер-компакт») с длиной волны 263 нм [http://www.laser-compact.ru]. Регистрация проведена при помощи монохроматора ARC Spectra Pro-308i (0.3 м) и фотоумножителя R6358P (Hamamatsu).

Предложенная имплантированная ионами олова пленка оксида кремния на кремниевой подложке, содержащая нанокластеры альфа-олова, получена из готового материала, представляющего собой пленку SiO2 толщиной 80÷350 нм, термически выращенную на кремниевой подложке и обработанную следующим способом:

- пленка SiO2 облучена ионами олова Sn+ в непрерывном режиме при энергии ионов от 80 до 350 кэВ и флюенсе (5.0±0.5)×1016 ион/см-2;

- после имплантации ионов пленка отожжена при температуре 850÷950°С в течение 30÷45 минут в атмосфере сухого азота.

Имплантация ионов олова в полученную пленку SiO2 осуществлялась с помощью ионного источника, работающего в непрерывном режиме при вакууме (1,4÷2,5)×10-4 Topp. В качестве катода ионного источника использовалось гранулированное олово чистотой 99,6%, в качестве анода - образцы пленки оксида кремния на кремниевой подложке, промытые спиртом в ультразвуковой ванне. Отжиг производился в электропечи сопротивления (типа НТ 40/16).

Полученные образцы предложенного материала - имплантированной ионами олова пленки оксида кремния на кремниевой подложке - представляют собой плоскопараллельные пластины площадью 1 см2, толщиной 3 мм, с поверхностью оптического качества. Поверхностный слой каждого образца включает нанокластеры альфа-олова, подложка образца представляет монокристалл кремния с ориентацией (100).

В таблице приведены примеры получения предложенного материала (образцы №№2÷4), а также примеры получения двух других материалов (образцы №№1 и 5), состав и структура которых не соответствуют составу и структуре предложенного материала.

Спектр фотолюминесценции образца №3 предложенного материала приведен на фигуре 2. Спектры свечения остальных образцов по форме соответствуют спектру образца №2, отличаясь интенсивностями излучения и шириной полосы, указанными в таблице.

Таблица
№ п/п Толщина пленки оксида кремния(нм) Энергия ионов, флюенс (кэВ; ион/см-2) Температура и время отжига (°С; мин) Средняя концентрация олова и размеры нанокластеров альфа-олова (ат.%; нм) Интенсивность излучения на длине волны 870 нм, ширина полосы спектра на уровне 0,5 (отн.ед.; нм)
1 70 65 750 10.7 15630
5×1016 30 1 130
2 120 110 850 7.1 45450
5×1016 80 2 172
3 250 240 910 3 87650
5×1016 120 2,6 185
4 350 300 950 2,2 56110
5×1016 160 3,9 201
5 380 340 1100 2 18920
5×1016 90 5 250

Максимумы интенсивности фотолюминесценции образцов №№2÷4 предложенного материала на длине волны 870 нм находятся в пределах 45450-87650 отн.ед. Максимумы интенсивности фотолюминесценции образцов №№1 и 5 материалов, параметры которых выходят за пределы предложенного материала, равны соответственно 15630 и 18920 отн.ед., что примерно в четыре раза ниже интенсивности свечения предложенного материала. Ширина полосы спектра на уровне 0,5 образцов №№2÷4 предложенного материала находится в пределах 172÷185 отн.ед. Ширина полосы спектра образца №5 материала, параметры которого выходят за пределы предложенного материала, равна 250 отн.ед., то есть ширина полосы спектра свечения предложенного материала в 1,24÷1,45 раза меньше ширины полосы спектра материала по прототипу.

Имплантированная ионами олова пленка оксида кремния на кремниевой подложке, включающая нанокластеры альфа-олова, отличающаяся тем, что толщина пленки составляет 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры альфа-олова имеют радиус от 1,5 до 4 нм.



 

Похожие патенты:
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной плотностью дефектов.
Использование: в технологии производства полупроводниковых приборов. Сущность изобретения: полупроводниковый прибор формируют путем двойной имплантации в область канала сфокусированными пучками ионов бора дозой 6×1012-6×1013 см-2 с энергией 20 кэВ и ионов мышьяка с энергией 100 кэВ дозой (1-2)×1012 см-2 с последующим отжигом при температуре 900-1000°С в течение 5-15 секунд.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур, с пониженной плотностью дефектов.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзисторов кремний-на-изоляторе, с низкой плотностью дефектов.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзисторов - кремний на изоляторе с высокой радиационной стойкостью.

Изобретение относится к области технологии и изготовления полупроводниковых приборов и интегральных схем. .
Изобретение относится к полупроводниковой технологии, в частности к способам получения гетероэпитаксиальных структур кремния на сапфире, и может быть использовано в электронной технике при изготовлении полупроводниковых приборов.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзисторов со структурой кремний на изоляторе, с пониженной плотностью дефектов.

Изобретение относится к технологии изготовления полупроводниковых приборов. .

Изобретение относится к природным полимерам из класса полисахаридов и может найти применение в медицине, в частности фотон захватной терапии (ФЗТ), фототермической терапии, фото- и радиосенсибилизации, химиотерапии, лечении ревматоидного артрита, антиВИЧ терапии, косметологии, эстетической дерматологии и пластической хирургии.

Изобретение относится к области полупроводниковой техники. Способ изготовления мощного СВЧ-транзистора включает нанесение на фланец слоя припоя, формирование пьедестала, нанесение подслоя, обеспечивающего крепление кристалла транзистора к пьедесталу, формирование на базовой подложке из монокристаллического кремния p-типа проводимости, ориентированного по плоскости (111), вспомогательных эпитаксиальных слоев, нанесение базового слоя и буферного слоя для выращивания эпитаксиальной структуры полупроводникового прибора на основе широкозонных III-нитридов, нанесение на базовый слой теплопроводящего CVD поликристаллического алмаза, удаление базовой подложки вместе со вспомогательными эпитаксиальными слоями до базового слоя, наращивание на базовом слое гетероэпитаксиальной структуры на основе широкозонных III-нитридов и формирование истока, затвора и стока.

Изобретение относится к гидрометаллургии лантаноидов, а именно к получению кристаллических нанопорошков оксидов лантаноидов. Способ получения порошков индивидуальных оксидов лантаноидов включает осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, отделение ее, промывку, сушку, термообработку полученного осадка и последующую обработку в слабом переменном магнитном поле с частотой 20÷50 Гц и амплитудой 0,05÷0,1 Тл.
Изобретение относится к области нано-, микроэлектроники и аналитического приборостроения и может быть использовано в разработке технологии и в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и для диагностики и контроля жидких технологических сред.
Изобретение относится к нанотехнологиям и предназначено для получения нитридных структур нанотолщины. Согласно первому варианту нитридную наноплёнку или нанонить получают осаждением слоя кремния на фторопластовое волокно или на фторопластовую пленку с последующей выдержкой при температуре 800-1200оC в атмосфере азота или аммиака.

Изобретение относится к способам получения аморфного мезопористого гидроксида алюминия со слоисто-волокнистой микроструктурой. Способ получения аморфного мезопористого аэрогеля гидроксида алюминия со слоисто-волокнистой ориентированной наноструктурой включает проведения реакции синтеза аэрогеля гидроксида алюминия в герметичной емкости путем обработки бинарного расплава парогазовым потоком на основе смеси инертных и (или) малоактивных газов с водяным паром при температуре расплава 280-1000°С.

Изобретение относится к способу получения магнитовосприимчивых водорастворимых гидрофобно модифицированных полиакриламидов, а также к магнитной жидкости, содержащей такой полиакриламид, и может быть использовано в нефтедобывающей промышленности для контролируемых под действием магнитного поля процессов доставки и размещения магнитных жидкостей при гидроразрыве пласта породы (ГРП), а также в качестве средства мониторинга их нахождения при прокачке по трубам, при нахождении в скважине или в трещине.
Изобретение относится к области металлургии и может быть использовано для производства ультрадисперсных порошков сплавов. Способ получения ультрадисперсных порошков сплавов с размерами частиц 5-200 нм и удельной поверхностью 80-170 м2/г включает подачу порошка исходной смеси основного и дополнительного металлов со средним размером частиц 100-150 мкм потоком инертного плазмообразующего газа в реактор газоразрядной плазмы, испарение исходной смеси основного и дополнительного металлов, охлаждение продуктов термического разложения охлаждающим инертным газом и конденсацию полученного ультрадисперсного порошка сплавов в водоохлаждаемой приемной камере.

Изобретение относится к способу получения нетканого нанокомпозиционного материала, который может быть использован в сфере фильтрации и медицинских целях. Способ получения нетканого материала заключается в том, что в экструдере смешивают исходные компоненты и в реакционной зоне экструдера проводят каталитический синтез полиамида-6.

Изобретение относится к области прецизионной наноэлектроники. Способ контролируемого роста квантовых точек (КТ) из коллоидного золота в системе совмещенного АСМ/СТМ заключается в выращивании КТ при отрицательном приложенном напряжении между иглой кантилевера совмещенного АСМ/СТМ и проводящей подложкой, причем в процессе роста КТ периодически переключают полярность внешнего напряжения с отрицательной на положительную и фиксируют единичный пик на туннельной ВАХ при определенном значении приложенного напряжения из диапазона значений от 1 до 5 В.

Способ предусматривает воздействие на обрабатываемый продукт холодным плазменным излучением при напряжении 3 кВ, частоте 10 Гц с расходом газа 0,6 л/мин в процессе перемещения продукта с изменением его ориентации относительно источника излучения. Для осуществления способа предусмотрено устройство, содержащее узел загрузки, источник излучения, транспортер или полый барабан с приводом, выполненные с возможностью изменения ориентации продукта относительно источника излучения, и узел выгрузки. В качестве источника излучения применена система плазмотронов, размещенная параллельными рядами на раме, установленная после узла загрузки над транспортером или внутри барабана. В другом варианте устройство в качестве источников излучения включает по меньшей мере четыре плазмотрона и не менее шести лазеров. Для изменения ориентации продукта над транспортером установлено не менее трех манипуляторов, расположенных между источниками плазменного и лазерного излучений. Изобретение обеспечивает эффективное обеззараживание продуктов. 3 н. и 1 з.п. ф-лы, 3 ил.
Наверх