Опора ротора турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции опор роторов турбомашин, содержащих радиально-упорные подшипники. Опора ротора содержит радиально-упорный шариковый подшипник, наружное кольцо которого установлено в корпусе, который в свою очередь механически соединен со статором, и цапфу ротора. Внутреннее кольцо радиально-упорного шарикового подшипника выполнено зацело с цапфой ротора и в нем выполнены маслоподводящие каналы к шарикам и сепаратору радиально-упорного шарикового подшипника. Наружное кольцо радиально-упорного шарикового подшипника выполнено разъемным. В разъемном наружном кольце радиально-упорного шарикового подшипника между торцевыми поверхностями полуколец образованы каналы, сообщенные с маслоотводящими канавками, расположенными в корпусе радиально-упорного шарикового подшипника. Изобретение позволяет повысить долговечность подшипника, а также уменьшить габариты и массы опоры ротора. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области турбомашиностроения, а именно к конструкции опор роторов турбомашин, содержащих радиально-упорные подшипники.

Известна опора ротора компрессора высокого давления, содержащая радиально-упорный шариковый подшипник, наружное кольцо которого установлено в корпусе, который в свою очередь механически соединен со статором, цапфу ротора (см. рис.6.13 «Технология эксплуатации, диагностики и ремонта газотурбинных двигателей: Учеб. пособие. / Ю.С. Елисеев, В.В. Крымов, К.А. Малиновский, В.Г. Попов. - М.: Высш. шк.; 2002).

Известная опора имеет относительно короткий срок службы за счет повышенной износостойкости подшипника.

Также в известной опоре подшипник располагается на большем диаметре, т.к. его внутреннее кольцо прессуется на цапфе ротора. При этом увеличивается масса роторной части опоры. Тела качения располагаются на большем диаметре, вследствие чего - повышенная центробежная нагрузка от тел качения на наружное кольцо подшипника, большее тепловыделение. Внутренние полукольца подшипника монтируются на цапфу ротора с натягом. Это приводит к надирам посадочных поверхностей при сборке и разборке опоры.

Для подвода масла на цапфе ротора известной опоры выполнено множество канавок. Их наличие снижает прочность цапфы, так как они выполнены вдоль оси ротора. Поэтому для повышения прочности и снижения концентраторов напряжений в известной опоре масса цапфы переразмерена с целью сохранения требований надежности. Подача масла осуществляется под козырек гайки и далее к подшипнику, поэтому часть резьбы изрезана канавками, что отрицательно может сказаться на надежности пакета деталей, установленных на цапфе.

Известная опора имеет дополнительные боковые форсунки для подвода масла под сепаратор, т.к. подача масла под козырек гайки неравномерно охлаждает внутреннее кольцо подшипника. Форсунки усложняют конструкцию опоры и снижают надежность при их возможном засорении.

Задачей заявленного изобретения является создание опоры ротора турбомашины, в которой устранены описанные выше недостатки.

Техническим результатом, достигаемым при использовании заявленной опоры ротора турбомашины, является повышение долговечности подшипника и, как следствие, увеличение срока службы опоры в целом, а также уменьшение ее габаритов и массы, снижение расхода масла, что благоприятно скажется на удельных параметрах турбомашины и повысит надежность ее работы.

Указанный технический результат достигается тем, что в опоре ротора турбомашины, содержащей радиально-упорный шариковый подшипник, наружное кольцо которого установлено в корпусе, который в свою очередь механически соединен со статором, цапфу ротора, согласно настоящему изобретению, внутреннее кольцо радиально-упорного шарикового подшипника выполнено зацело с цапфой ротора и в нем выполнены маслоподводящие каналы к шарикам и сепаратору радиально-упорного шарикового подшипника, при этом наружное кольцо радиально-упорного шарикового подшипника выполнено разъемным, кроме того, в разъемном наружном кольце радиально-упорного шарикового подшипника между торцевыми поверхностями полуколец образованы каналы, сообщенные с маслоотводящими канавками, расположенными в корпусе радиально-упорного шарикового подшипника.

Наличие в разъемном наружном кольце радиально-упорного шарикового подшипника между торцевыми поверхностями полуколец каналов, сообщенных с маслоотводящими канавками, расположенными в корпусе радиально-упорного шарикового подшипника, позволяет эффективно отводить горячее масло от подшипника. Масло покидает наружное кольцо подшипника, не образуя при этом несливаемый остаток в углублении дорожки качения. Также через эти канавки вымываются продукты износа и посторонние элементы. Тем самым повышается долговечность подшипника и, как следствие, увеличивается срок службы опоры.

Выполнение зацело внутреннего кольца подшипника с цапфой ротора уменьшает габариты и массу заявленной опоры, повышается точность позиционирования ротора относительно статора, т.к. исчезают дополнительные биения внутреннего кольца относительно ротора, что приводит повышению долговечности подшипника. Подача масла в кольцевую полость под подшипник приводит к выравниванию осевого температурного градиента внутреннего кольца подшипника, а следовательно, снижает перекосы колец подшипника.

Наличие маслопроводящих каналов к сепаратору и шарикам во внутреннем кольце подшипника позволяет более эффективно снимать тепловые потоки от подшипника и ротора. Поэтому опоре потребуется меньшее количество масла, что снижает его расход при работе.

В частном случае реализации заявленной опоры ротора турбомашины торцевые поверхности полуколец выполнены коническими относительно продольной оси ротора, что позволяет однозначно сцентрировать два наружных полукольца относительно друг друга. Это необходимо, т.к. наружное кольцо подшипника, как правило, монтируется в корпусе подшипника с небольшим зазором. При этом повышается технологичность опоры, упрощается сборка, не требуются операции по нагреву и охлаждению элементов опоры при сборке.

На фиг.1 представлен продольный разрез заявленной опоры ротора турбомашины.

На фиг.2 представлен продольный разрез заявленной опоры ротора турбомашины, в которой торцевые поверхности полуколец радиально-упорного шарикового подшипника выполнены коническими относительно продольной оси ротора.

Опора ротора турбомашины содержит радиально-упорный шариковый подшипник 1, наружное кольцо 2 которого установлено в корпусе 3, который в свою очередь механически соединен со статором 4, цапфу ротора 5, при этом внутреннее кольцо 6 радиально-упорного шарикового подшипника 1 выполнено зацело с цапфой ротора 5 и в нем выполнены маслоподводящие каналы 7 к шарикам и сепаратору 8 радиально-упорного шарикового подшипника 1, а наружное кольцо 2 радиально-упорного шарикового подшипника 1 выполнено разъемным из двух полуколец, между торцевыми поверхностями 9 которых образованы каналы, сообщенные с маслоотводящими канавками 10, расположенными в корпусе 3 радиально-упорного шарикового подшипника 1.

Торцевые поверхности 9 полуколец выполнены коническими (фиг.2) относительно продольной оси ротора.

В процессе сборки выставляют цапфу ротора 5 относительно статора 4, включающего корпус 3 подшипника 1 с правым наружным полукольцом. При этом корпус 3 подшипника 1 и статор 4 пока не стянуты болтовым соединением. После этого корпус 3 подшипника 1 с правым полукольцом сдвигается максимально в сторону ротора 5. Сепаратор 8 с телами качения монтируется во внутреннем кольце 6 подшипника 1, выполненном зацело с цапфой ротора 5. После этого корпус 3 подшипника 1 смещается влево и стягивается болтами со статором 4. Далее устанавливается левое полукольцо и полученный пакет деталей наружного кольца 2 подшипника 1 обжимается гайкой и контрится.

В процессе работы опоры радиальная и осевая нагрузка передается от ротора 5 на статор 4 через подшипник 1. Масло подается под внутреннее кольцо подшипника 6 и равномерно через маслопроводящие каналы 7 на тела качения и под сепаратор 8. Эвакуация масла дополнительно осуществляется через маслоотводящие канавки 10 корпуса 3 подшипника 1.

1. Опора ротора турбомашины, содержащая радиально-упорный шариковый подшипник, наружное кольцо которого установлено в корпусе, который в свою очередь механически соединен со статором, цапфу ротора, отличающаяся тем, что внутреннее кольцо радиально-упорного шарикового подшипника выполнено зацело с цапфой ротора и в нем выполнены маслоподводящие каналы к шарикам и сепаратору радиально-упорного шарикового подшипника, при этом наружное кольцо радиально-упорного шарикового подшипника выполнено разъемным, кроме того, в разъемном наружном кольце радиально-упорного шарикового подшипника между торцевыми поверхностями полуколец образованы каналы, сообщенные с маслоотводящими канавками, расположенными в корпусе радиально-упорного шарикового подшипника.

2. Опора ротора турбомашины по п.1, отличающаяся тем, что упомянутые торцевые поверхности полуколец выполнены коническими относительно продольной оси ротора.



 

Похожие патенты:

Изобретение относится к области авиационного двигателестроения, а именно к конструкции упругих опор с изменяемой податливостью, применяемых в стендовых динамических испытаниях роторов турбомашин.

Турбина двухроторного газотурбинного двигателя содержит наружный корпус, воздушный коллектор, предмасляную и масляную полости, роторы высокого и низкого давлений, каналы подачи масла в роликоподшипники, масляные уплотнения, межроторное лабиринтное уплотнение, питающие форсунки.

Изобретение быть использовано при проектировании элементов стендового оборудования, предназначаемого для позиционирования гироприборов в процессе их точностных испытаний.

Газотурбинный двигатель, на цилиндрической втулке которого со стороны, прилегающей к колесу турбины, надета первая чашеобразная цапфа-пята первого радиально-упорного магнитного подшипника, ориентированная своим дном к колесу турбины, при этом на свободном конце вала последовательно установлены с упором друг в друга, вторая чашеобразная цапфа-пята второго радиально-упорного магнитного подшипника, ориентированная своим дном к колесу компрессора, первый и второй упорные лепестковые газовые подшипники, колесо центробежного компрессора и балансировочная шайба, зафиксированные гайкой.

Изобретение относится к энергетике. Упругая опора ротора турбомашины, содержащая установленный на валу радиальный подшипник, корпус которого соединен со статорным элементом, причём статорный элемент снабжен прорезями с образованными между ними балочками, сориентированными в радиальном направлении относительно оси опоры.

Газотурбинный двигатель, на вал которого надета цилиндрическая втулка, выполненная из немагнитного материала, одним концом упертая в торцевую поверхность колеса турбины, а другим упертая в кольцевой выступ пяты, выполненной из немагнитного материала, надетой на вал, на участке, примыкающем к колесу компрессора.

Газотурбинный двигатель, на цилиндрической втулке которого, со стороны, прилегающей к колесу турбины, надета соосно с цилиндрической втулкой первая чашеобразная цапфа-пята первого магнитного подшипникового узла, ориентированная своим днищем к колесу турбины, при этом на участке ротора, прилегающем к колесу компрессора, непосредственно на вал надета соосно с ним, с упором в колесо компрессора и торец втулки ротора, вторая чашеобразная цапфа-пята второго магнитного подшипникового узла, ориентированная своим днищем к колесу компрессора.

Турбина для расширения газа и пара содержит корпус со спиралью, выполненные с возможностью прохождения текучей среды из впускного в выпускной канал через статорную и роторную группы, наружную трубу, а также может содержать торцевой щит, отходящий в радиальном направлении от упомянутой спирали в сторону оси турбинного вала.

Изобретение относится к газотурбинным машинам и может быть использовано при монтаже их роторов. При монтаже ротора газотурбинного двигателя его устанавливают в подшипниковых опорах качения.

Изобретение относится к области турбомашиностроения, а именно к конструкции упругодемпферных опор роторов турбомашин. Техническим результатом, достигаемом при использовании заявленной упругодемпферной опоры ротора турбомашины, является снижение напряжений в упругом элементе опоры и, как следствие, снижение вероятности ее разрушения в случае возникновения дефекта подшипника опоры ротора при работе турбомашины в несколько раз.

Турбокомпрессор (10, 10′), приводимый в действие отработавшими газами, для двигателя внутреннего сгорания содержит датчик (32) частоты вращения и элемент (30, 30′, 40, 40′, 40″) в виде втулки для осевой фиксации по меньшей мере одного подшипника (24, 26) вала (22) турбокомпрессора. Элемент (30, 30′, 40, 40′, 40″) в виде втулки на периферийной поверхности (46, 46′, 46″) содержит по меньшей мере одно сквозное отверстие (48, 48′, 48″), через которое датчик частоты вращения проходит через элемент (30, 30′, 40, 40′, 40″) в виде втулки. По меньшей мере одно сквозное отверстие (48, 48′, 48″), по меньшей мере, в своей части имеет по существу коническую форму в радиальном направлении элемента (30, 30′, 40, 40′, 40″) в виде втулки. Достигается упрощение сборочно-монтажных работ за счёт корректировки углового положения втулки непосредственно при установке датчика за счёт конической формы отверстия. 4 з.п. ф-лы, 5 ил.

Вентилятор (1) газотурбинного двигателя включает в себя радиально-упорный подшипник (9), внутреннее кольцо (14) которого закреплено гайкой (10) с радиальными выступами (22) под ключ на резьбовом хвостовике (13) и жиклер (26) подачи масла на смазку. Гайка (10) выполнена с конусным, направленным к оси (15) вентилятора, хвостовиком (16). На наружной поверхности (17) хвостовика (16) установлен в виде радиальных выступов (19) индуктор (18) датчика (20) частоты вращения. На внутренней поверхности (23) конусного хвостовика (16) выполнено радиальное кольцевое ребро (24) с образованием кольцевой полости (25) подвода масла. Полость подвода масла на входе соединена с жиклером (26), а на выходе - с радиальными каналами (30) во внутреннем кольце (14) подшипника. Отношение внутреннего диаметра D внутреннего кольца радиально-упорного подшипника вентилятора к осевому расстоянию L между радиальными выступами индуктора и радиальными выступами резьбового хвостовика гайки находится в пределах 3…6. Отношение внутреннего диаметра D к внутреннему диаметру d радиального кольцевого ребра на конусном хвостовике гайки находится в пределах 1,05…1,2. Путем равномерной подачи масла со стороны внутреннего кольца подшипника, а также путем исключения ложных сигналов на индуктивном датчике повышается надежность вентилятора газотурбинного двигателя. 2 ил.

Упругодемпферная опора ротора турбомашины содержит подшипник, установленный на валу, статорный элемент. Статорный элемент содержит обечайку и закрепленную на наружном кольце подшипника обечайку. Последняя обечайка соединена со статорным элементом посредством разрезной втулки и образует с ним демпфирующую полость, ограниченную уплотнениями. На противолежащих участках обечаек, расположенных между разрезной втулкой и ближайшим к ней уплотнением, выполнены шлицы и ответные шлицы, с образованием зазора между ними. Предпочтительно шлицы и ответные шлицы выполнены прямобочными. Достигается повышение надежности за счет снижения вероятности разрушения разрезной втулки в случае нештатной работы опоры турбомашины, а именно, в случае частичной передачи крутящего момента с вала на статорный элемент. 1 з.п. ф-лы, 2 ил.

Изобретение относится к упругодемпферным опорам турбин газотурбинных двигателей авиационного и наземного применения. В упругодемпферной опоре (1) турбины корпус (2) содержит радиальное ребро (7) с пристыкованными к нему ограничивающими масляную полость (10) фланцами (8) и (9) и стенку (11) с пристыкованными к ней трубами (18) подвода воздуха. Стенка (11) выполнена радиальной с плоской поверхностью (19) стыка с трубами (18) подвода воздуха. Между радиальной стенкой (11) и радиальным ребром (7) выполнена упругая цилиндрическая перемычка (20). Отношение среднего диаметра роликоподшипника D к осевой длине цилиндрической перемычки L находится в пределах 2…6. Отношение осевой длины цилиндрической перемычки L к минимальной толщине цилиндрической перемычки h находится в пределах 10…20. Путем снижения термических напряжений в корпусе упругодемпферной опоры повышается ее надежность, а также снижаются паразитные утечки охлаждающего воздуха. 1 ил.

Изобретение относится к области турбомашиностроения, а именно к конструкции упругих опор роторов турбомашин. Упругая опора содержит установленный на валу подшипник, статорный элемент, обечайку, по меньшей мере, две спицы и кольцевой элемент с фланцем. Обечайка закреплена на наружном кольце подшипника и соединена со статорным элементом через упругий элемент типа «беличье колесо» фланцевым соединением. Спицы жестко закреплены на статорном элементе и расположены в отверстиях между крепежными элементами фланцевого соединения. Фланец кольцевого элемента имеет отверстия под спицы диаметром больше диаметра спиц. Кольцевой элемент установлен с зазором относительно упругого элемента типа «беличье колесо» и одним концом жестко закреплен на обечайке перед упругим элементом типа «беличье колесо». Изобретение позволяет повысить надежность турбомашины. 1 ил.

Изобретение относится к энергетике. Центрирующее и направляющее по вращательному движению устройство для вала газотурбинного двигателя, содержащее роликовый подшипник и шариковый подшипник, установленные вокруг упомянутого вала и удерживаемые соответственно при помощи первой и второй гибких кольцевых опор, и амортизатор со сжатием масляной пленки, содержащий жесткую кольцевую опору, располагающуюся вокруг роликового подшипника, причем опоры шарикового подшипника, амортизатора и роликового подшипника сформированы в виде пакета, располагающегося в поперечном направлении, и проходят одна вокруг другой. Изобретение позволяет уменьшить габаритные размеры направляющих и центрирующих устройств вала газотурбинного двигателя. 2 н. и 11 з.п. ф-лы, 9 ил.

Изобретение относится к области машиностроения, а конкретно - к турбокомпрессорам, используемым в системах наддува автомобильных, тепловозных, судовых и других видов двигателей внутреннего сгорания. Турбокомпрессор с газомагнитными подшипниками содержит ротор с рабочим колесом компрессора. Приводом компрессора служит турбина, работающая на отработавших газах ДВС, а цилиндрический ротор размещается в двух опорно-упорных газомагнитных подшипниках. В каждом газомагнитном подшипнике размещены кольцевой активный электромагнит и два активных радиальных электромагнита для восприятия осевых и радиальных усилий соответственно путем взаимодействия с валом, колесом турбины и кольцевой вставкой колеса компрессора из ферромагнитного материала. В газомагнитных подшипниках выполнены питатели для подвода в осевом и радиальном направлении сжатого воздуха, подаваемого из нагнетательной магистрали компрессора. Изобретение позволяет обеспечить возможность регулирования несущей способности подшипников, повысить эффективность демпфирования колебаний ротора и упростить систему подачи воздушной смазки к подшипникам. 2 ил.

Изобретение относится к гидродинамическим подшипникам, в частности, для тяжелых роторов в силовых установках. Гидродинамический сегментный подшипник содержит несколько подушек (131), распределенных по окружности вокруг ротора большой паровой турбины. Каждая подушка (131) установлена на платформу, отделяющую подушку от цилиндрического сепаратора, соединенного, в свою очередь, с полом зала, вмещающего турбину. Область контакта между по меньшей мере одной из нескольких подушек (131) и платформой, на которой установлена по меньшей мере одна из нескольких подушек (131), образована таким образом, чтобы содержать по меньшей мере две зоны с разной кривизной для увеличения жесткости области контакта в случае относительного перемещения между подушкой (131) и платформой. По меньшей мере одна из нескольких подушек (131) имеет в зоне контакта между подушкой (131) и платформой первый радиус кривизны (R1) вне центра зоны контакта и второй радиус кривизны (R2) в центре зоны контакта, причем второй радиус (R2) превышает первый радиус кривизны (R1) в 5-10 раз. Технический результат: изменение жесткости подшипника и, следовательно, увеличение устойчивости подшипника и его опорной конструкции. 9 з.п. ф-лы, 6 ил.

Расширительная турбина содержит: корпус, имеющий впускное отверстие и выпускное отверстие для рабочей текучей среды; по меньшей мере один статор (3), установленный внутри корпуса; по меньшей мере один ротор (2), установленный внутри корпуса и выполненный с возможностью вращения вокруг соответствующей оси вращения (X-X); патрубок (4), заключенный в корпус; механический блок (5), установленный внутри патрубка (4). Механический блок (5) содержит втулку (7) и вал (6), установленный с возможностью вращения внутри втулки (7). Вал (6) соединен с ротором (2) с возможностью вращения и весь механический блок (5) выполнен с возможностью извлечения в виде единого целого из патрубка (4) со стороны, противоположной упомянутому ротору (2). Ротор (2) выполнен с возможностью перемещения вдоль осевого направления (X-X) между первой конфигурацией, в которой механический блок (5) установлен внутри патрубка (4) и ротор (2) отстоит от патрубка (4) так, что рабочая текучая среда может вращать его, и второй конфигурацией, в которой механический блок (5) извлечен из патрубка (4), и ротор (2) прижат к патрубку (4), обеспечивая статическое уплотнение (18, 19). Достигается значительное упрощение и ускорение технического обслуживания, поскольку операции по разборке турбины можно выполнять без опустошения корпуса турбины. 2 н. и 7 з.п. ф-лы, 2 ил.

Узел газотурбинного двигателя, включающего наружную конструкцию, охватывающую его подвижные части, и кожух, содержащий подшипник, состоит из опорной детали подшипника и из поддерживающей детали. Наружная конструкция и кожух соединены друг с другом опорной деталью. Поддерживающая деталь выполнена с возможностью крепления на наружной конструкции и образования упора для опорной детали. Опорная деталь содержит канал, по которому проходят газы двигателя, и соединительные детали, выполненные с возможностью крепления канала на наружной конструкции двигателя и на кожухе. Одна из соединительных деталей выполнена гибкой с возможностью обеспечения радиального смещения канала, при этом амплитуда радиального смещения ограничена ходом опорной детали до упора в поддерживающую деталь. Поддерживающая деталь содержит заднее удлинение, проходящее в продольном направлении в сторону выхода за пределы продольного удлинения канала, чтобы образовать кольцо для турбинного колеса газотурбинного двигателя. Другое изобретение группы относится к газотурбинному двигателю, содержащему указанный выше узел. Группа изобретений позволяет повысить срок службы узла опоры подшипника газотурбинного двигателя. 2 н. и 3 з.п. ф-лы, 4 ил.
Наверх