Противоточная водород-кислородная камера сгорания

Изобретение относится к устройствам, предназначенным для перегрева водяного пара при организации рабочего процесса паровых, парогазовых энергетических установок и газоперекачивающих агрегатов. Противоточная водород-кислородная камера сгорания содержит воспламенитель, форсунки горючего, конический стабилизатор пламени и основной контур разделения пара. В торцевой части основного контура разделения пара поток низкотемпературного пара разделяется на три канала - контур подачи основного пара, контур смешения и контур охлаждения конического стабилизатора. Противоточная водород-кислородная камера также имеет систему тангенциальных закручивающих устройств, компенсатор теплового расширения жаровой трубы, дроссельный регулятор, камеру предварительного смешения в запальном устройстве, коллектор равномерного распределения топлива по форсункам, и коллектор распределения окислителя по контуру смешения. Изобретение направлено на уменьшение гидравлических потерь в системе подвода компонентов, возможности поддержания начальной степени закрутки по длине жаровой трубы, компенсации теплового расширения жаровой трубы и регулирования расхода окислителя, снижение неравномерности распределения топлива по форсункам, неравномерности концентрации окислителя в контуре смешения, снижение вероятности возникновения взрывоопасной ситуации. 6 з.п. ф-лы, 4 ил.

 

Изобретение относится к устройствам, предназначенным для перегрева водяного пара при организации рабочего процесса паровых, парогазовых энергетических установок и газоперекачивающих агрегатов.

Известна система сжигания водорода для пароводородного перегрева свежего пара в цикле атомной электростанции RU 2427048 C2, G21D 5/16 (2006.01), F22B 1/26 (2006.01), F01K 3/18 (2006.01), от 4.05.2009, предназначенная для использования на паротурбинных установках атомных электростанций (АЭС) при температуре рабочего тела ниже температуры самовоспламенения водорода в смеси с кислородом (450°C), содержащая запальное устройство, магистрали подвода окислителя и горючего, водород-кислородную камеру сгорания первичного нестехиометрического окисления, дожигающую водород-кислородную камеру сгорания стехиометрического окисления, полость смешения высокотемпературного пара со свежим паром на участке перед цилиндром высокого давления паровой турбины.

Недостатком данной конструкции является отсутствие возможности регулирования температуры горения, высокая вероятность прогара стенок камеры сгорания в результате кризиса кипения, низкая полнота сгорания из-за отсутствия интенсивного энергомассообмена, высокая вероятность возникновения взрывоопасной ситуации, обусловленная отсутствием инертной примеси в процессе смешения топлива и окислителя.

Известен пароперегреватель RU 2005139564 A, F02K 9/68 (2006.01) от 27.06.2007, предназначенный для получения перегретого пара, содержащий запальное устройство, магистрали подвода горючего (водорода) и окислителя (кислорода), камеры сгорания и смешения, форсунки окислителя и горючего.

Недостатком данной конструкции является высокая неравномерность поля температуры на выходе из парогенератора; низкая полнота сгорания; низкая эффективность охлаждения стенок жаровой трубы и камеры смешения; неудовлетворительные характеристики по срыву пламени; высокая вероятность прогара конструктивных элементов зоны горения; отсутствие возможности пространственной локализации фронта пламени; отсутствие возможности регулирования температуры горения водород-кислородной смеси.

Наиболее близким по технической сущности к предлагаемому устройству является вихревой водород-кислородный пароперегреватель RU 2361146 C1, F22G 1/16 (2006.01) от 17.12.2007, предназначенный для перегрева пара, содержащий запальное устройство, магистрали подвода горючего (водорода) и окислителя (кислорода), камеры сгорания и смешения, форсунки окислителя и горючего, диафрагмированное выходное сопло.

Недостатком данной конструкции является наличие больших гидравлических потерь в системе подвода компонентов, отсутствие возможности поддержания начальной степени закрутки, отсутствие компенсации теплового расширения жаровой трубы, отсутствие возможности регулирования расхода окислителя, неравномерность распределения топлива по форсункам, неравномерность концентрации окислителя в зоне смешения, большая вероятность возникновения взрывоопасной ситуации в запальном устройстве вследствие непосредственного смешения водорода и кислорода без инертной примеси.

Технический результат изобретения выражается в уменьшении гидравлических потерь в системе подвода компонентов, возможности поддержания начальной степени закрутки по длине жаровой трубы, возможности компенсации теплового расширения жаровой трубы, возможности регулирования расхода окислителя, снижении неравномерности распределения топлива по форсункам, снижении неравномерности концентрации окислителя в контуре смешения, снижении вероятности возникновения взрывоопасной ситуации.

Технический результат изобретения достигается тем, что противоточная водород-кислородная камера сгорания, содержащая запальное устройство, форсунки горючего, конический стабилизатор пламени, дополнительно содержит основной контур разделения пара, в торцевой части которого поток низкотемпературного пара разделяется на три канала - контур подачи основного пара, контур смешения и контур охлаждения конического стабилизатора.

В целях уменьшения гидравлических потерь магистрали подвода пара объединены в общий контур; поддержание начальной степени закрутки осуществляется с помощью системы тангенциальных закручивающих устройств; компенсация теплового расширения жаровой трубы осуществляется с помощью компенсатора; возможность регулирования расхода кислорода осуществляется с помощью дроссельного регулятора; неравномерность распределения топлива по форсункам снижается за счет топливного коллектора; неравномерность концентрации окислителя в контуре смешения снижается за счет коллектора окислителя, вероятность снижения взрывоопасной ситуации в запальном устройстве осуществляется за счет перемешивания окислителя и пара в камере предварительного смешения.

Предлагаемое изобретение поясняется чертежами, где на фиг. 1-4 показан продольный разрез противоточной водород-кислородной камеры сгорания с вынесенными сечениями.

Противоточная водород-кислородная камера сгорания содержит штуцера подвода топлива 1 и окислителя 2. Штуцер подвода низкотемпературного пара 3 тангенциально крепится к переднему корпусу 19. Штуцеры подвода топлива 1 и окислителя 2 крепятся к основному корпусу 4, в котором выполнен коллектор равномерного распределения топлива по форсункам 5. Между основным 4 и передним корпусами 19 и жаровой трубой 7 расположен основной контур разделения пара 8. В торцевой части противоточной водородной камеры сгорания расположены: контур подачи основного пара 9, контур смешения 10, контур охлаждения конического стабилизатора 11, полость для охлаждающего пара 24, отверстия 23, коллектор окислителя 25 для равномерного распределения по контуру смешения 10. Контур подачи основного пара 9 и контур смешения 10 оснащены тангенциальными закручивающими устройствами 14 и 15. Дроссельный регулятор 27 имеет отверстия 26 с различным диаметром для изменения расхода окислителя. Жаровая труба 7 имеет блочный вид, а на поверхности расположены отверстия 16 для создания паровой завесы, она крепится к переднему корпусу 19 с помощью компенсатора теплового расширения 17. К основному корпусу 4 крепится запальное устройство 18. Основной корпус 4 соединяется с передним корпусом посредством фланцевого соединения 20. Для охлаждения сферического стабилизатора 13 и конического стабилизатора 12 на их поверхности выполнены охлаждающие отверстия 21 и 22.

Запальное устройство содержит штуцер подвода пара 29, окислителя 30 и топлива 31, камеру предварительного смешения 32, полость перемешивания с топливом 35, свечу накаливания 38.

Противоточная водород-кислородная камера сгорания работает следующим образом.

Водяной пар из котла или низкотемпературного пароперегревателя с температурой 150-350°C поступает через штуцер подачи пара 3 в основной контур разделения пара 8. Далее в торцевой части весь поток разделяется на три канала: контур подачи основного пара 9, контур смешения 10 и через отверстия 23, полость охлаждающего пара 24 в контур охлаждения конического стабилизатора 11. По штуцеру подачи окислителя 2 кислород попадает в коллектор окислителя 25, где, равномерно распределяясь по отверстиям 26 дроссельного регулятора 27, подмешивается к вторичному пару в контуре смешения 10. Образованная смесь кислорода и пара, закрученная с помощью тангенциального закручивающего устройства 15 с целью поддержания начальной степени закрутки, обтекая конический стабилизатор 12, поступает в зону горения. Горючее через штуцер 1 попадает в коллектор равномерного распределения топлива по форсункам 5, откуда через форсунки 6, подается непосредственно в зону горения, где реагирует с кислородом. При обтекании закрученным потоком парокислородной смеси конического стабилизатора пламени 12 в зоне горения образуется область обратных течений, поддерживающая процесс стабильного горения после воспламенения горючей смеси от запального устройства 18. Через отверстия 21 в коническом стабилизаторе 12 водяной пар, подаваемый из контура охлаждения 11, защищает поверхность стабилизатора от высокотемпературных продуктов сгорания. Поток основного пара, закрученный с помощью тангенциального закручивающего устройства 14, поступает по контуру подачи основного пара 9 в зону перегрева 28. Часть основного пара вдувается в отверстия 22 сферического стабилизатора 13 с целью локализации фронта пламени.

Воспламенение производится с помощью запального устройства 18, которое работает следующим образом. Низкотемпературный пар, необходимый для снижения вероятности возникновения взрывоопасной ситуации, и кислород подаются через штуцеры 29 и 30 соответственно и перемешиваются в камере предварительного смешения 32. Далее парокислородная смесь по каналам 33 поступает в полость перемешивания с топливом 34, где к ней через штуцер 31 подается водород. Вся паро-водород-кислородная смесь поступает в канал 35 и через отверстия 36 вдувается в зону горения, при этом воспламенение происходит с помощью нагревательной головки 37 свечи накаливания 38.

1. Противоточная водород-кислородная камера сгорания, содержащая воспламенитель, форсунки горючего, конический стабилизатор пламени, отличающаяся тем, что дополнительно содержит основной контур разделения пара, в торцевой части которого поток низкотемпературного пара разделяется на три канала - контур подачи основного пара, контур смешения и контур охлаждения конического стабилизатора.

2. Противоточная водород-кислородная камера сгорания по п.1, отличающаяся тем, что имеет систему тангенциальных закручивающих устройств.

3. Противоточная водород-кислородная камера сгорания по п.1, отличающаяся тем, что имеет компенсатор теплового расширения жаровой трубы.

4. Противоточная водород-кислородная камера сгорания по п.1, отличающаяся тем, что имеет дроссельный регулятор.

5. Противоточная водород-кислородная камера сгорания по п.1, отличающаяся тем, что имеет коллектор равномерного распределения топлива по форсункам.

6. Противоточная водород-кислородная камера сгорания по п.1, отличающаяся тем, что имеет коллектор распределения окислителя по контуру смешения.

7. Противоточная водород-кислородная камера сгорания по п.1, отличающаяся тем, что имеет камеру предварительного смешения в запальном устройстве.



 

Похожие патенты:

Изобретение относится к устройствам камер сгорания газотурбинных двигателей и установок. .

Изобретение относится к машиностроению, а именно к устройствам, предназначенным для сжигания топливно-воздушной смеси, преимущественно камерам сгорания ГТД. .

Изобретение относится к газотурбинным двигателям, а более конкретно - к камерам сгорания высокотемпературных газотурбинных двигателей. .

Изобретение относится к способам воздействия на поток текучей среды и может найти применение преимущественно в тепломассообменных аппаратах, использующих газообразные, жидкие или дисперсные системы.

Изобретение относится к области ракетной техники и может быть использовано при разработке и изготовлении сопел камер сгорания жидкостных ракетных двигателей (ЖРД).

Изобретение относится к области ракетной техники. Камера жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока.

Изобретение относится к области ракетной техники, а именно - к созданию камер жидкостных ракетных двигателей (ЖРД). Способ изготовления тракта регенеративного охлаждения камеры жидкостного ракетного двигателя заключается в изготовлении наружной и огневой оболочек с последующим их скреплением между собой по вершинам двутавровых проставок с образованием каналов охлаждения между ними, при этом полки двутавровых проставок выполняют переменной ширины за счет выполнения на них чередующихся выборок, при этом турбулизаторы потока образованы указанными чередующимися выборками.

Изобретение относится к области ракетной техники. Тракт регенеративного охлаждения камеры жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока.

Изобретение относится к области ракетной техники. Сопло камеры жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока.

Изобретение относится к жидкостным ракетным двигателям. В системе охлаждения камеры жидкостного ракетного двигателя, содержащей цилиндрическую камеру сгорания и сопло, содержащее, в свою очередь, сужающуюся и расширяющиеся части и критическое сечение между ними, выполненные в виде наружной оболочки, внутренней оболочки с основными ребрами постоянной толщины, образующими тракт охлаждения и, по меньшей мере, один пояс завесы с тангенциальными отверстиями и коллектором, внутри которого установлена кольцевая деталь, согласно изобретению кольцевая деталь выполнена в форме полутора с полостью, на кольцевой детали в плоскости, перпендикулярной оси камеры сгорания, выполнены входные тангенциальные отверстия с возможностью закрутки потока охладителя в плоскости, а параллельно оси камеры выполнены выходные отверстия.

Изобретение относится к ракетно-космической технике и может быть использовано для охлаждения сверхзвуковой части сопла жидкостных ракетных двигателей. Задачей предлагаемого изобретения является создание работоспособного на переходных и стационарных режимах работы устройства охлаждения сверхзвуковой части сопла с низким уровнем давления охладителя (Рохл<<Рк), что должно обеспечить возможность создания высокоэкономичных ЖРД с повышенным давлением в камере, с одновременным упрощением изготовления сопел и повышением их надежности.

Изобретение относится к области ракетной техники, а именно к двигателестроению и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). Тракт охлаждения теплонапряженных конструкций содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока.

Изобретение относится к жидкостным ракетным двигателям. В системе охлаждения камеры сгорания жидкостного ракетного двигателя, содержащей наружную и внутреннюю стенки, соединенные пайкой через ребра, выполненные на внутренней стенке, по меньшей мере, одно устройство завесного охлаждения внутренней стенки камеры сгорания, содержащее, в свою очередь, кольцевую деталь, сцентрированную по внутренней стенке с образованием кольцевой полости, кольцевую щель во внутренней стенке и внутренние тангенциальные отверстия, соединяющие эту щель с кольцевой полостью, дозирующие отверстия, соединяющие зазор между двумя стенками с кольцевой полостью, согласно изобретению, дозирующие отверстия выполнены тангенциально и направлены аналогично внутренним тангенциальным отверстиям.

Изобретение относится к жидкостным ракетным двигателям. В системе охлаждения камеры жидкостного ракетного двигателя, содержащей цилиндрическую камеру сгорания и сопло, содержащее, в свою очередь, сужающуюся и расширяющуюся части и критическое сечение между ними, выполненные в виде наружной оболочки, внутренней оболочки с основными ребрами постоянной толщины, образующими тракт охлаждения, согласно изобретению на внутренней поверхности внешней оболочки в районе сужающейся и расширяющейся частей камеры сгорания выполнены дополнительные продольные ребра, при этом высота и толщина дополнительных продольных ребер не превышает высоты и толщины основных ребер.

Изобретение относится к ракетной технике, а именно к способу изготовления сопла жидкостного ракетного двигателя оживальной формы. Сопло состоит из нескольких автономных трапецеидальных секторов оживальной формы, соединенных в осевом направлении. Формообразование оживального профиля пакета внутренней и наружной стенок каждого сектора выполняют взрывом, на наружной поверхности внутренней стенки каждого сектора фрезерованием выполняют пазы переменной ширины с образованием ребер каналов охлаждения, каждую внутреннюю стенку сектора оживального профиля накрывают отформованной тонкостенной наружной стенкой и соединяют их, после чего проводят гидропневмоиспытания секторов, затем их торцы подвергают механической обработке и секторы сваривают продольными профильными швами в готовое сопло с последующим неразрушающим контролем сварных швов и гидропневмоиспытанием секторов. Изготовить сопло жидкостного ракетного двигателя можно по другому варианту из нескольких плоских трапецеидальных секторов. При этом фрезерование пазов в каждом секторе и их соединение выполняют в плоском виде. Формообразование оживального профиля сопла выполняют штамповкой взрывом или разжимными пуансонами. Соединение наружной и внутренней стенок осуществляют пайкой или лазерной сваркой. Количество секторов определяют шириной листа заготовки и диаметром сопла. Сварку секторов между собой выполняют лазерной или электронно-лучевой сваркой. Изобретение обеспечивает получение прочной и надежной конструкции крупногабаритного сопла оживальной формы независимо от габаритов, изготовление которой не требует уникального оборудования и значительных капитальных вложений. 2 н. и 7 з.п. ф-лы, 10 ил.
Наверх