Сырьевая смесь для изготовления неавтоклавного газобетона и способ приготовления неавтоклавного газобетона

Группа изобретений относится к составам сырьевых смесей и способам приготовления ячеистых бетонов неавтоклавного твердения и может быть использована в промышленности строительных материалов для получения теплоизоляционно-конструкционных изделий. Сырьевая смесь для изготовления неавтоклавного газобетона включает, мас.%: портландцементный клинкер 27,23-28,36, известь комовую 4,5, песок 31,5, двуводный гипсовый камень 2,27, алюминиевую пудру 0,08, сульфанол 0,001, кальций-магний-силикатсодержащую горную породу - диопсид 1,42-2,55, водный раствор электролита Fe2(SO4)3 или Al2(SO4)3 0,28, воду - остальное. Способ приготовления неавтоклавного газобетона из указанной выше сырьевой смеси включает совместный помол сухих компонентов сырьевой смеси до удельной поверхности 280-310 м2/кг, введение водного раствора электролита и воды, перемешивание, введение водно-алюминиевой суспензии и перемешивание, заливку смеси в металлические формы и тепловлажностную обработку при температуре 85°С. Технический результат - улучшение физико-механических свойств неавтоклавного газобетона, упрощение его получения. 2 н.п. ф-лы, 1 пр., 5 табл.

 

Изобретение относится к составам и способам приготовления сырьевых смесей, используемых в производстве ячеистых бетонов неавтоклавного твердения, и может быть использовано в промышленности строительных материалов для получения ячеистобетонных теплоизоляционно-конструкционных изделий неавтоклавного твердения.

Известна сырьевая смесь для изготовления ячеистых бетонов (патент №2133244, Сырьевая смесь для изготовления ячеистых бетонов, МПК С04В 38/10, опубликованный 20.07.1999 г.), включающая портландцемент, заполнитель, порообразователь, дисперсную арматуру и воду.

Недостатком данной сырьевой смеси является то, что получаемый на ее основе ячеистый бетон имеет низкую прочность, вследствие чего низкий коэффициент конструктивного качества.

По своей технической сущности наиболее близким к данному изобретению по совокупности признаков является сырьевая смесь для изготовления газобетона неавтоклавного твердения (патент №2283293, Сырьевая смесь для изготовления газобетона неавтоклавного твердения, МПК С04В 38/00, опубликованный 10.09.2006 г.), содержащая в качестве вяжущих компонентов - портландцемент и гашеную известь, в качестве гипсового компонента - полуводный гипс, в качестве кремнеземистого компонента - золу-унос и асбестовую пыль, алюминиевую пудру и воду.

Недостатками сырьевой смеси прототипа является то, что образцы газобетона имеют высокую плотность и недостаточно высокую прочность, что ведет к уменьшению коэффициента конструктивного качества, а также необходимости предварительной обработки сложного кремнеземистого компонента при активном перемешивании с насыщенным раствором гидроксида кальция.

Задачей предлагаемого изобретения является улучшение физико-механических свойств неавтоклавного газобетона, полученного на основе портландцементного клинкера с добавлением горной породы - диопсида и введением водного раствора электролита - Fe2(SO4)3 или Al2(SO4)3.

Поставленная задача достигается тем, что в сырьевой смеси для изготовления неавтоклавного газобетона, включающей вяжущие компоненты, гипсовый компонент, кремнеземистый компонент, алюминиевую пудру и воду, согласно изобретению смесь дополнительно содержит кальций-магний-силикатсодержащую горную породу - диопсид, водный раствор электролита - Fe2(SO4)3 или Al2(SO4)3, сульфанол, в качестве вяжущих компонентов используют портландцементный клинкер и известь комовую, в качестве гипсового компонента - двуводный гипсовый камень, в качестве кремнеземистого компонента - песок, при следующем соотношении компонентов, мас.%:

Портландцементный клинкер 27,23-28,36
Известь комовая 4,5
Кремнеземистый компонент 31,5
Алюминиевая пудра 0,08
Сульфанол 0,001
Двуводный гипсовый камень 2,27
Диопсид 1,42-2,55
Электролит Fe2(SO4)3 или Al2(SO4)3 0,28
Вода Остальное

По своей технической сущности наиболее близким к данному изобретению по совокупности признаков является способ приготовления сырьевой смеси для неавтоклавного газобетона (патент №2283293, Сырьевая смесь для изготовления газобетона неавтоклавного твердения, МПК С04В 38/00, опубликованный 10.09.2006 г.), включающий поэтапное перемешивание сырьевых компонентов, введение водно-алюминиевой суспензии, разливку смеси в металлические формы, тепловлажностную обработку.

Недостатком наиболее близкого способа изготовления является сложность его приготовления из-за раздельного способа подготовки сырьевых компонентов. Приготовление ячеистобетонной смеси производится поэтапно. Сначала смешивается гашеная известь, зола-унос, асбестовые отходы и вода. Далее добавляется портландцемент, гипсовое вяжущее, а затем в приготовленную смесь вводится водно-алюминиевая суспензия. Это приводит к увеличению времени технологического процесса.

Поставленная задача достигается тем, что в способе приготовления неавтоклавного газобетона, включающем перемешивание сырьевых компонентов, введение водно-алюминиевой суспензии, разливку смеси в металлические формы, тепловлажностную обработку, согласно изобретению предварительно производят совместный помол сухих компонентов сырьевой смеси до удельной поверхности 280-310 м2/кг, вводят водный раствор электролита и воду, перемешивают, затем вводят водно-алюминиевую суспензию и перешивают, далее разливают смесь в металлические формы и производят тепловлажностную обработку при температуре 85°C.

Пример

Сырьевая смесь для изготовления неавтоклавного газобетона и способ приготовления неавтоклавного газобетона иллюстрируются примером.

В данном способе приготовления неавтоклавного газобетона производят совместный помол сухих компонентов сырьевой смеси таких как портландцементный клинкер, кремнеземистый компонент - песок, известь комовая, двуводный гипсовый камень и кальций-магний-силикатсодержащая горная порода - диопсид до удельной поверхности 280-310 м2/кг. При этом достигается уменьшение времени технологического процесса, энергозатрат на помол и увеличение производительности помольных установок. Помол компонентов до меньшей удельной поверхности не приводит к улучшению физико-механических свойств (плотности и прочности) неавтоклавного газобетона, большая удельная поверхность - приводит к затратам электроэнергии, но никак не улучшает свойства неавтоклавного газобетона. При совместном сухом помоле компонентов смеси происходит механическая активация частиц, что приводит к улучшению физико-механических свойств неавтоклавного газобетона. Также происходит равномерное распределение компонентов во всем объеме смеси, что приводит к повышению качества неавтоклавного газобетона. При совместном помоле компонентов сырьевой смеси в одном агрегате упрощается технология производства неавтоклавного газобетона за счет уменьшения количества оборудования.

Для приготовления сырьевой смеси для изготовления неавтоклавного газобетона предварительно производят совместный помол сухих компонентов, в заранее приготовленную сухую смесь вводят водный раствор электролита и воду при постоянном перемешивании до однородной массы в течение 2-3 минут. Затем в приготовленную смесь вводят водно-алюминиевую суспензию, состоящую из алюминиевой пудры, сульфанола и воды. Водно-алюминиевую суспензию вводят при непрерывном перемешивании массы в течение 1,5-2 минут для равномерного распределения газообразователя во всем объеме смеси. Температура смеси должна составлять 35-40°C. Полученную смесь разливают в подготовленные металлические формы. После набора необходимой распалубочной прочности у изделий срезают «горбушку» и направляют в пропарочную камеру на тепловлажностную обработку. Температура выдержки составляет 85°C, что меньше чем у прототипа. В дальнейшем образцы высушивают до постоянной массы и подвергают физико-механическим испытаниям. Для получения неавтоклавного газобетона по предлагаемому составу смеси были приготовлены составы смесей с различным содержанием компонентов. Данные по составу смесей и физико-механические свойства образцов изделий, полученных на их основе, представлены в таблицах 2, 3.

По результатам испытаний неавтоклавный газобетон имеет среднюю плотность от 600 до 610 кг/м3, предел прочности при сжатии от 4,4 до 4,9 МПа. Показатели качества неавтоклавного газобетона, полученного из предложенной сырьевой смеси, позволяют применять его как теплоизоляционно-конструкционный материал.

Преимуществом предложенного способа приготовления неавтоклавного газобетона и предложенного состава газобетонной смеси является во-первых, совместный помол сухих компонентов сырьевой смеси таких как портландцементный клинкер, кремнеземистый компонент, комовая известь, двуводный гипсовый камень и кальций-магний-силикатсодержащая горная порода - диопсид до удельной поверхности 280-310 м2/кг, во-вторых, введение в состав формовочной массы кальций-магний-силикатсодержащей горной породы - диопсида. Диопсид, располагаясь в межпоровых перегородках ячеистого бетона, являются микроарматурой и, обладая весьма развитой поверхностью, выполняют функцию барьеров на пути распространения трещин и сообщающихся пор. Повышение прочности неавтоклавного газобетона при введении растворов электролитов обусловлено ионным обменом. Так как клинкерные минералы C3S и C2S, как и другие силикатные материалы, сложены изолированными кремнекислородными тетраэдрами и предрасположены к обмену ионов Са2+ с ионами из растворов электролитов, вследствие стерической доступности ионов кальция.

Химический состав кальций-магний-силикатсодержащей горной породы - диопсида приведен в таблице 1.

Таблица 1
Химический состав диопсида
Наименование оксидов SiO2 СаО MgO Al2O3 Fe2O3 Na2O K2O TiO2 п.п.п.
Содержание оксидов, мас.% 56,5 25,9 15,0 1,0 0,7 0,1 0,1 0,1 0,6

В состав вводился песок соответствующий требованиям ГОСТ 8736-93 «Песок для строительных работ. Технические условия». Естественная влажность 6-7%. Характеристика песка указана в табл.2.

Таблица 2
Истинная плотность, кг/м3 Насыпная плотность, кг/м3 Модуль крупности Содержание глинистых примесей, %
2650 1420 1,8 0,5

Влияние количества диопсида в зависимости от вида электролита на среднюю плотность и прочность на сжатие газобетона представлено в табл.3.

Наименьшая средняя плотность и наибольшая прочность при сжатии газобетона получена при введении диопсида в количестве 1,42-2,55 мас.%. При введении диопсида менее 1,42 мас.% и более 2,55 мас.% средняя плотность газобетона увеличивается, а прочность при сжатии уменьшается.

Составы ячеистых бетонов с содержанием диопсида, обеспечивающим получение наименьшей средней плотности и наибольшей прочности при сжатии приведены в таблице 4.

Физико-механические свойства ячеистых бетонов, изготовленных по составам, приведенным выше, указаны в таблице 5.

Наилучшими физико-механическими свойствами по сравнению с прототипом обладают составы сырьевой смеси №1 и 2. Они имеют более низкую плотность и высокую прочность, за счет чего повышается коэффициент конструктивного качества.

На оптимальном составе также были проведены испытания на теплопроводность. При сорбционной влажности 2% показатель теплопроводности составил 0,12 Вт/(м·°C).

Таким образом, техническим результатом является улучшение физико-механических свойств неавтоклавного газобетона. Одновременно достигается уменьшение времени технологического процесса, снижение энергозатрат на помол и увеличение производительности помольных установок.

1. Сырьевая смесь для изготовления неавтоклавного газобетона, включающая вяжущие компоненты, гипсовый компонент, кремнеземистый компонент, алюминиевую пудру и воду, отличающаяся тем, что она дополнительно содержит кальций-магний-силикатсодержащую горную породу - диопсид, водный раствор электролита - Fe2(SO4)3 или Al2(SO4)3, сульфанол, в качестве вяжущих компонентов используют портландцементный клинкер и известь комовую, в качестве гипсового компонента - двуводный гипсовый камень, в качестве кремнеземистого компонента - песок, при следующем соотношении компонентов, мас.%:

портландцементный клинкер 27,23-28,36
известь комовая 4,5
кремнеземистый компонент 31,5
алюминиевая пудра 0,08
сульфанол 0,001
двуводный гипсовый камень 2,27
диопсид 1,42-2,55
электролит Fe2(SO4)3 или Al2(SO4)3 0,28
вода остальное

2. Способ приготовления неавтоклавного газобетона из сырьевой смеси по п.1, включающий перемешивание сырьевых компонентов, введение водно-алюминиевой суспензии, разливку смеси в металлические формы, тепловлажностную обработку, отличающийся тем, что предварительно производят совместный помол сухих компонентов сырьевой смеси до удельной поверхности 280-310 м2/кг, вводят водный раствор электролита и воду, перемешивают, затем вводят водно-алюминиевую суспензию и перемешивают, далее разливают смесь в металлические формы и производят тепловлажностную обработку при температуре 85°С.



 

Похожие патенты:
Изобретение относится к производству строительных материалов, преимущественно к производству бетона на основе керамзитового гравия для изготовления железобетонных изделий в объемно-блочном домостроении.
Изобретение относится к области строительства, а именно к способам тепловой обработки бетона и может найти применение в строительстве при изготовлении сборных бетонных или железобетонных изделий и конструкций.

Изобретение относится к области строительства, а именно к конструкциям камер для сушки бетонных и железобетонных изделий. Изобретение позволит уменьшить потери тепловой энергии.

Изобретение относится к изготовлению изделий путем карбонизации. Способ изготовления изделия, связанного преимущественно карбонатом, включает получение щелочного гранулированного материала с рН не менее 8,3, содержащего, по меньшей мере, одну фазу силиката щелочноземельного металла, прессование его с получением заготовки с пористостью не более 37 об.% и проницаемостью не менее 1·10-12 см2, взаимодействие заготовки, не насыщенной влагой, с СО2 при температуре не менее 70°C и давлении не менее 0,5 МПа в присутствии воды с образованием не менее 5 мас.% карбонатов.

Изобретение относится к области строительства, а именно к способам и устройствам для электромагнитной обработки бетонной смеси. .
Изобретение относится к области строительства и может быть использовано для получения строительного материала. .
Изобретение относится к способам изготовления жаростойкой бетонной смеси и изделий из жаростойкой бетонной смеси и может быть использовано для футеровки промышленных тепловых агрегатов, работающих при температуре до 1350°С и, в частности, для футеровки вагонеток обжига кирпича.
Изобретение относится к новому способу изготовления изделий в форме плит, пористых плит, блоков, полученных из конгломерата, состоящего из обломков камней. .

Изобретение относится к области промышленного и гражданского строительства и может быть использовано при возведении монолитных бетонных и железобетонных конструкций.

Изобретение относится к области промышленного и гражданского строительства. .
Изобретение относится к промышленности строительных материалов, в частности к производству легкого бетона для малоэтажного строительства. Бетонная смесь содержит, мас.%: портландцемент 18,87-21,34, керамзит 41,13-41,56, суперпластификатор ЛСТМ 0,0312, золу-унос ТЭЦ 13,92-18,87, газообразующую добавку ПАК-3 0,022-0,025, железосодержащий шлам - отход химического производства 0,10-0,50, воду - остальное.
Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 81,0-87,5, доломит 2,0-3,0, 3%-ный раствор перекиси водорода 0,5-1,0, кварцевый песок 10,0-15,0.

Изобретение относится к способам изготовления пенокерамики, а именно к способам изготовления пенокерамических изделий декоративного назначения. Технический результат: изготовление пенокерамических изделий с облицовочным слоем и улучшенными теплозащитными свойствами за счет изготовления внутри наружных отделочных слоев поризованного слоя любой требуемой толщины.
Изобретение относится к составу сырьевой смеси для производства строительных материалов, в частности пористых искусственных изделий, и может быть использовано при изготовлении гранулированного теплоизоляционного материала и особо легкого заполнителя для бетонов.
Изобретение относится к промышленности строительных материалов, в частности к производству легкого керамзитобетона для малоэтажного строительства. Состав керамзитобетонной смеси включает, мас.%: портландцемент 18,87-21,34, керамзит 41,13-41,56, суперпластификатор ЛСТМ 0,0312, золу-унос ТЭЦ 13,92-18,87, газообразующую добавку ПАК-3 0,022-0,025, воду - остальное.

Изобретение относится к области строительных материалов, а именно к составам для производства ячеистого бетона и изделий на его основе, которые могут применяться в промышленном и гражданском строительстве.

Изобретение относится к строительной индустрии и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных, конструкционных изделий автоклавного твердения.
Изобретение относится к способу изготовления изделий из ячеистого бетона и к составу сырьевой смеси для изготовления неавтоклавного теплоизоляционного ячеистого бетона.
Изобретение относится к производству строительных материалов и может быть использовано при изготовлении искусственных пористых заполнителей для легких бетонов и теплоизоляционных засыпок.

Изобретение относится к строительным материалам, а именно к составам смесей для изготовления морозостойких стеновых камней и монолитных стен. .
Изобретение относится к способу получения эластичного неорганическо-органического гибридного пеноматериала и пеноматериалу, полученному этим способом. Способ получения пеноматериала посредством вспенивания смеси, содержащей, мас.%: минерал А), выбранный из реагипса, каолина или волластонита 50-97, растворенный в воде поливиниламин В) 1-45, вспенивающий агент С) 1-50, эмульгатор D) 1-5, сшивающий агент Е), способный реагировать с поливиниламином В), 0-5, причем массовые проценты компонентов А) и В) относятся к твердой фазе и сумма из А) - Е) составляет 100 мас.%. Пеноматериал получен указанным выше способом. Изобретение развито в зависимых пунктах формулы изобретения. Технический результат - получение негорючего пеноматериала с улучшенной эластичностью с хорошими тепло- и звукоизоляционными свойствами и с достаточной механической прочностью. 2 н. и 8 з.п. ф-лы, 4 пр.
Наверх