Гидродинамический движитель

Изобретение относится к устройствам для создания силы тяги и/или ее повышения и предназначено для установки на транспортных средствах, работающих преимущественно под водой, в атмосфере и в космосе. Гидродинамический движитель содержит гидродинамические трубы и крыло. Гидродинамические трубы содержат оси, которые расположены параллельно, а концы соединены со средством нагнетания рабочего тела с образованием циркуляционного контура. Внутри каждой гидродинамической трубы установлено, по меньшей мере, одно крыло с возможностью регулирования угла атаки набегающего потока рабочего тела. Достигается обеспечение возможности создания тяги в любом направлении, улучшение маневренности транспортного средства, повышение КПД. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к устройствам для создания силы тяги и/или ее повышения на транспортных средствах и предназначено для установки на транспортных средствах, работающих преимущественно под водой, в атмосфере и в космосе.

Из уровня техники известно устройство, реализующее способ создания тяги внутри замкнутой системы, содержащее замкнутый объем со средством нагнетания рабочего тела, образующим циркуляционный контур, внутри которого помещены два текучих вещества, где более тяжелое текучее вещество вплотную примыкает к опорной стенке замкнутого объема, а другое текучее вещество - рабочее - располагается сверху тяжелого текучего вещества. Для всасывания рабочей текучей жидкости из замкнутого объема и нагнетания его в камеру высокого давления применяется насос. Нагнетание осуществляется через сопло, сообщенное с камерой высокого давления и с замкнутым объемом (см. заявку на изобретение №98103193, опубликована 27.12.1998).

Принцип создания тяги в замкнутом объеме с помощью данного устройства полностью описан в заявке, однако недостатками данного решения является то, что тяга создается лишь в одном направлении, необходимость применения текучих веществ разной вязкости, в связи с чем необходимо проводить расчеты и подбор жидкостей с необходимой вязкостью, которые бы обеспечивали должный эффект создания тяги, образование вихрей на выходе рабочей жидкости из сопла, что приводит к смешению жидкостей и образованию суспензии и уменьшению КПД.

Техническим результатом изобретения является обеспечение возможности создания тяги в любом направлении, улучшение маневренности транспортного средства, работающего в таких средах, как вода, атмосфера и космос, повышение КПД.

Технический результат изобретения достигается благодаря тому, что гидродинамический движитель содержит гидродинамические трубы, оси которых расположены параллельно и концы которых соединены со средством нагнетания рабочего тела с образованием циркуляционного контура, при этом внутри каждой гидродинамической трубы установлено, по меньшей мере, одно крыло с возможностью регулирования угла атаки набегающего потока рабочего тела.

Кроме того, каждая труба связана со средством нагнетания рабочего тела посредством, преимущественно, камер подвода и отвода рабочего тела с возможностью поворота вокруг своей оси.

Кроме того, для регулирования угла атаки набегающего потока рабочего тела каждое крыло может быть связано с устройством регулирования угла атаки и может быть установлено внутри соответствующей трубы шарнирно на оси, закрепленной на стенках соответствующей трубы.

Кроме того, движитель может быть снабжен шарнирным средством крепления к транспортному средству, выполненному с возможностью поворота гидродинамических труб на 180 градусов вокруг оси шарнира.

Изобретение поясняется чертежом, на фигуре которого схематично показан предложенный гидродинамический движитель.

Гидродинамический движитель содержит гидродинамические трубы 1, оси которых расположены параллельно друг относительно друга и концы которых соединены со средством 2 нагнетания рабочего тела с образованием циркуляционного контура. Трубы 1 соединены со средством 2 нагнетания посредством камеры 3 подвода и камеры 4 отвода рабочего тела, которые сообщены с соответствующих концов труб 1 с их полостями. Камеры 3 и 4 подвода и отвода рабочего тела соответственно представляют собой гидродинамические системы, которые могут быть выполнены в виде емкости, имеющей определенную форму, или в виде трубы, или в виде иного резервуара, при этом камеры 3 и 4 имеют полости, образованные, например, перегородками, расположенными таким образом, что образуется система каналов 5 для подачи рабочего тела в соответствующую трубу 1. Торцы каждой трубы 1 соединены с камерами 3 и 4 таким образом, что полость каждой трубы 1 сообщена с соответствующими полостями соответствующих каналов 5 камер 3 и 4. Кроме того, каждая труба 1 связана с камерами 3 и 4 с возможностью вращения вокруг своей оси. Вращение осуществляется за счет шарнирного соединения труб 1 с камерами 3 и 4 (их корпусом), например, с помощью установки на подшипники или с использованием других элементов вращения. Оси труб 1 расположены параллельно друг относительно друга, преимущественно в один ряд, однако движитель может иметь и несколько рядов труб 1, оси которых расположены параллельно. Внутри каждой трубы 1 на осях 6 шарнирно установлены крылья 7, при этом каждая ось 6 закреплена на соответствующих противоположных стенках соответствующей трубы 1. Каждая труба 1 имеет, преимущественно, прямоугольную (квадратную) форму поперечного сечения. Однако трубы 1 могут иметь и другую форму поперечного сечения, обеспечивающую свободное отклонение крыльев 7 внутри труб 1, создавая необходимый угол атаки набегающего потока рабочего тела (оптимальный угол атаки 20°). В качестве рабочего тела может использоваться как жидкость (например, антифриз), так и газ.

Отклонения (регулирование угла атаки) крыльев 7 осуществляются посредством устройства регулирования угла атаки (не показано), которое может быть выполнено как механическим (например, система рычагов и т.п.), так и электронным.

Гидродинамические камеры 3 и 4 соответственно подвода и отвода рабочего тела связаны посредством соответственно входного и выходного патрубков 8 и 9 со средством 2 нагнетания рабочего тела, выполненным, например, в виде насоса (компрессора), снабженного либо крыльчаткой, либо шнеком (для создания наибольшего давления в системе), либо другим элементом нагнетания рабочего тела (создания давления внутри замкнутого контура. Патрубки 8 и 9 могут быть выполнены как гибкими, так и жесткими.

Гидродинамический движитель содержит расширительный бачок 10, предназначенный для заливки жидкости (рабочего тела) и поддержания давления в системе при помощи воздушного крана 11, связанного с источником давления, например, компрессором (не показан). При этом средство 2 нагнетания рабочего тела можно сделать менее мощным за счет использования расширительного бачка, поскольку в системе создается требуемое давление.

В качестве источника энергии для работы средства 2 для нагнетания рабочего тела, как вариант, может использоваться парогенератор 12, связанный с ядерным реактором 13.

Гидродинамический движитель снабжен шарнирным средством 14 крепления к транспортному средству (например, шаровая цапфа), посредством которого осуществляется крепление движителя к транспортному средству, а также возможность изменения направления движения транспортного средства путем изменения наклона движителя относительно него (путем поворота вокруг оси шарнира). Управление транспортным средством также можно осуществлять путем наклона крыльев 7 при помощи устройства регулирования угла атаки, а также поворота труб 1 вокруг своей оси.

Гидродинамический движитель с его гидродинамическими трубами 1 и камерами 3 и 4 подвода и отвода рабочего тела, как вариант, из соображений компактности может быть выполнен в виде радиатора.

Работает гидродинамический движитель следующим образом.

При включении средства 2 нагнетания рабочего тела (насоса) жидкость (рабочее тело) под большим давлением перемещается по входному патрубку 9 в камеру 3 подвода рабочего тела, откуда по соответствующим каналам 5 напором (под большим давлением) попадает в соответствующие гидродинамические трубы 1. В данных трубах 1 жидкость обтекает многочисленные крылья 7, которые создают подъемную силу Fп за счет разницы скоростей обтекания их поверхностей (подъемная сила действует на крылья 7, передавая ее на соответствующие стенки трубы 1, на которых закреплены крылья 7). Далее жидкость попадает в камеру 4 отвода рабочего тела и по системе каналов 5 через патрубок 9 попадает обратно в средство 2 нагнетания рабочего тела. Далее цикл повторяется с последующим использованием этой же жидкости. Поворачивая движитель при помощи средства 14 на 180°, можно быстро погружать транспортное средство под воду, даже имея положительную плавучесть, не применяя при этом в конструкции балластные цистерны. Такой же результат можно получить при разворачивании крыльев 7 вокруг оси потока рабочего тела (жидкости), т.е. путем поворота труб 1 вокруг своей оси на 180°.

1. Гидродинамический движитель, содержащий гидродинамические трубы, оси которых расположены параллельно, а концы которых соединены со средством нагнетания рабочего тела с образованием циркуляционного контура, при этом внутри каждой гидродинамической трубы установлено, по меньшей мере, одно крыло с возможностью регулирования угла атаки набегающего потока рабочего тела.

2. Движитель по п.1, отличающийся тем, что каждая труба связана со средством нагнетания рабочего тела посредством камер подвода и отвода рабочего тела с возможностью поворота вокруг своей оси.

3. Движитель по п.1, отличающийся тем, что для регулирования угла атаки набегающего потока рабочего тела каждое крыло связано с устройством регулирования угла атаки и установлено внутри соответствующей трубы шарнирно на оси, закрепленной на стенках соответствующей трубы.

4. Движитель по п.1, отличающийся тем, что он снабжен шарнирным средством крепления к транспортному средству, выполненному с возможностью поворота гидродинамических труб на 180 градусов вокруг оси шарнира.



 

Похожие патенты:

Изобретение относится к области моделирования движителей для мелких и крупных судов гражданского назначения. Гребной винт судна содержит насаживаемую на гребной вал ступицу с лопастями, которые расположены на равных расстояниях одна от другой под углом к продольной оси вала.

Изобретение относится к судостроению, а именно к лопастным судовым движителям. Лопастный судовой движитель содержит несколько плоских лопастей, которые соединены двусторонними цепями «галя».

Изобретение относится к кораблестроению и может быть использовано для установки гребных винтов, для различных судов. Способ установки гребного винта спиралевидной формы, в котором выполняют вал винта с возможностью вращения, на поверхности которого последовательно располагают лопасти грибного винта.

Изобретение относится к судостроению, а именно для активного отдыха на воде. Плавающий мускульный транспорт содержит раму, выполненную П-образной формы, плавательные средства, рабочий орган движения, ножной привод и плавательные средства, стабилизаторы уровня.

Изобретение относится к области судоремонта и может использоваться для всех типов гребных винтов, изготовленных из различных материалов. Продление срока эксплуатации гребного винта включает замер фактических геометрических параметров гребного винта, расчет диапазона отклонений геометрических параметров гребного винта коррекцией эксплуатационных характеристик пропульсивного комплекса.

Изобретение относится к кораблестроению и может быть использовано в технологическом процессе изготовления гребных винтов для различных судов. Изготовление гребного винта различных судов с минимизированным кавитационным эффектом на его поверхности включает изготовление вала винта с возможностью вращения, на поверхности которого последовательно располагают и фиксируют лопасти гребного винта.

Изобретение относится к области кораблестроения и может быть использовано при выполнении маневра подводной лодки. Предложен способ повышения маневренности подводной лодки, включающей корпус подводной лодки цилиндрической конфигурации, на которой устанавливают несколько ходовых винтов с возможностью вращения, при этом несколько ходовых винтов выполняют в виде многовитковой спирали или в виде шнека и позиционно располагают и фиксируют с нижней носовой части корпуса подводной лодки с возможностью вращения в секторе относительно осевой плоскости корпуса подводной лодки.

Изобретение относится к судостроению и авиастроению, а именно к судовым и воздушным винтам, где в качестве двигателей используют винты. Движитель (винт) содержит ступицу, лопасти с входными и выходными участками, амплитуду и шаг отклонения профиля выходной кромки лопасти.

Изобретение относится к судостроению, а именно к водометным движителям, предназначенным для привода быстроходных судов, кораблей и яхт. Водометный движитель содержит цилиндрическую ступицу, лопасти с входными и выходными участками, неподвижный цилиндрический насадок, шаг лопасти и неподвижные лопатки.

Изобретение относится к плавающим средствам, а именно к водным велосипедам, предназначенным для активного отдыха и прогулок по водной глади. Водный велосипед содержит поплавки, скрепленные поперечными балками, сиденье и педальный движитель.

Изобретение относится к области авиации, в частности к конструкциям винтов самолетов. Способ создания тяги винтом заключается в том, что в течение времени совершения винтом поворота на 360° лопасти винта дополнительно совершают маховые движения в направлении, противоположном направлению тяги винта, и по направлению тяги винта, причем в направлении, противоположном направлению тяги винта, мах осуществляют со средней скоростью, большей, чем по направлению тяги винта. Тяговый винт с приводом включает втулку, выполненную с торцевой рельефной поверхностью, контактирующей при вращении с рельефной поверхностью платформы, на которой установлен привод и соединенной стержнями с втулкой винта, и втулку, установленную на валу двигателя неподвижно. Профиль контактирующих рельефных поверхностей при постоянной скорости вращения винта в течение времени совершения втулкой винта поворота на 360° обеспечивает совершение маховых движений лопастями винта со скоростью скольжения втулки и ускорением лопастей винта вдоль вала двигателя к платформе привода, большими, чем в противоположном направлении. Втулка винта также может быть выполнена с установленным в ее полости поршнем со штоками, поворачивающими лопасти при смещении штока. Тяговый винт с приводом может содержать соленоид, а втулка винта может содержать постоянный магнит для совершения маховых движений лопастей. Достигается увеличение тяги винта. 4 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к области авиа- и судостроения, в частности к созданию движителей судов и летательных аппаратов. Способ создания подъемной силы заключается в том, что в рабочей аэродинамической или гидродинамической среде подъемную силу создают вращением поверхностей второго порядка, например вращают прямой, круглый, полый конус относительно оси, проходящей через центр окружности основания и вершину. При этом получаемая подъемная сила будет направлена вдоль этой оси от вершины к основанию. Обеспечивается снижение уровня шума при работе движителя. 3 ил.

Изобретение относится к судовым гребным движителям гусеничного типа. Движитель содержит ведущий и ведомый шкивы, на которых крепится гибкая бесконечная лента либо цепь. На цепи установлены платформы, на которых, в свою очередь, смонтированы гребные лопатки. На корпусе судна между ведущим и ведомым шкивами установлены направляющие. Платформы попадают в направляющие и движутся по ним, ориентируя таким образом лопатки перпендикулярно движению судна. Технический результат - повышение эффективности движителя, упрощение его конструкции. 3 ил.

Изобретение относится к судовым винтам и может быть использовано как в обычных судах, так и быстроходных, а также в качестве рабочего органа в водометных движителях. Судовой винт (движитель) содержит втулку и лопасти. На рабочей стороне лопастей расположены выступы, ориентированные по окружности вращения относительно оси вращения винта. Высота линейно увеличивается от нулевой на входной кромке до максимальной на выходной. Достигается уменьшение потерь и повышение КПД при взаимодействии потока с лопастью. 1 з.п. ф-лы, 4 ил.

Изобретение относится к судостроению, а именно к водометным движителям, предназначенным для привода быстроходных судов, кораблей, яхт. Водометный движитель содержит рабочее колесо (винт) с цилиндрической ступицей, на которой расположены лопасти рабочего колеса постоянного или переменного шага с входными и выходными участками, которые помещены в цилиндрический насадок. Диаметр лопастей рабочего колеса (винта) на входе больше диаметра лопастей на выходе так, что фронтальная площадь на выходе меньше площади на входе в 1,5-2 раза. В насадке расположены неподвижные лопатки противоположного направления по сравнению с направлением профиля лопасти рабочего колеса (винта) на входе. Высота лопаток выполнена переменной по ходу потока от минимума до максимума, образуя постоянный зазор с лопастями рабочего колеса. Лопатки плавно изогнуты до осевого направления на выходе. Достигается повышение упора движителя и коэффициент полезного действия, повышение устойчивости работы при попадании воздуха в лопастную систему движителя и в кавитационных режимах. 2 ил.

Изобретение относится к судостроению, а именно к гребным винтам. Гребной винт содержит ступицу. Гребной винт выполнен с возможностью целенаправленного изменения параметров рабочей среды как на засасывающей, так и нагнетающей поверхности лопастей. Ступица выполнена в виде стакана, на внешней поверхности которого закреплены лопасти. В стенках ступицы выполнены ряды сквозных отверстий, которые равномерно размещены по периметру ступицы как со стороны всасывающих, так и нагнетающих поверхностей лопастей. Ряды сквозных отверстий, которые размещены со стороны всасывающих и нагнетающих поверхностей, изолированы друг от друга и сообщены с отдельными источниками сжатого газа. Вал привода выполнен полым и пропущен с возможностью вращения в неподвижной втулке, со стороны которой, обращенной к донной части ступицы, выполнен кольцевой паз, дно которого сообщено отверстием с противоположной стороной неподвижной втулки. Вторая втулка внешней поверхностью совпадает с ближайшей к оси вращения вала привода поверхностью кольцевого паза и составляет цилиндрический кольцевой зазор с обращенной к ней боковой поверхностью полости. Участок цилиндрического кольцеобразного зазора, удаленный от неподвижной втулки, сообщен с полостью зазора между торцом второй втулки и донной частью ступицы. Полость вала привода сообщена с первым источником сжатого газа, а его торец перекрыт первым обратным клапаном, а отверстие в неподвижной втулке сообщено со вторым источником сжатого газа и перекрыто вторым обратным клапаном. Достигается разработка гребного винта с улучшенными эксплуатационными характеристиками, более простого в изготовлении. 1 з.п. ф-лы, 4 ил.

Водометный движитель предназначен для привода быстроходных судов, кораблей, яхт. Водометный движитель содержит цилиндрическую ступицу с расположенными на ней лопастями с входными и выходными участками и неподвижный цилиндрический насадок. В насадке расположены неподвижные лопатки. На входе в насадок лопасти имеют осевое направление в районе лопаток рабочего колеса водомета - противоположное с лопатками направление, а на выходе за рабочим колесом плавно переходят в осевое направление. Достигается повышение упора движителя и коэффициента полезного действия, повышение устойчивости работы при попадании воздуха и в кавитационных режимах. 2 ил.

Изобретение относится к области судостроения, в частности к лопастям гребных винтов судов ледового класса, в том числе и гребных винтов судов ледового класса, работающих в составе винторулевых колонок. Лопасть гребного винта судна ледового класса имеет плавную криволинейную поверхность, а в районе входящей кромки - утолщение. Утолщение лопасти расположено в пределах 0,35-0,85 относительного радиуса гребного винта. Толщина профиля лопасти на удалении от ее входящей кромки, равном 0,025 длины хорды ее профиля, составляет 0,25-0,47 максимальной толщины профиля. На указанном удалении от входящей кромки относительная толщина профиля возрастает по мере удаления от оси вращения гребного винта, а на удалении от входящей кромки лопасти, равном 0,05 длины хорды ее профиля, она составляет 0,3-0,75 максимальной толщины профиля. На удалении от входящей кромки, равном 0,75 длины хорды ее профиля, толщина профиля лопасти составляет 0,6-0,7 максимальной толщины профиля. Достигается повышение эффективности работы гребного винта в ледовых условиях. 2 ил.

Изобретение относится к области моделирования судовых движителей. Гребной винт судна содержит насаживаемую на гребной вал ступицу с лопастями. Лопасти расположены на равных расстояниях одна от другой под углом к продольной оси вала. Каждая лопасть снабжена, по меньшей мере, одним козырьком, который расположен на вогнутой/выпуклой стороне лопасти под углом к ее радиальной оси. Размер козырька увеличивается в направлении движения водного потока. Достигается увеличение тяги гребного винта. 3 ил.

Изобретение относится к области моделирования речных и морских судов гражданского назначения. Корма судна содержит корпус с надводной частью. Надводная часть имеет палубу, румпельное отделение с рулевой машиной и подводную часть, которая имеет двигатель, руль и движитель. Движитель выполнен в виде гусеницы, которая состоит из ведущей и ведомой звездочек и фигурных пластин с выступающими гребнями. Фигурные пластины имеют форму гребных лопастей. Подводная часть корпуса имеет выступ с направляющими для движения фигурных пластин и выемками для размещения звездочек. Ось руля установлена с опорой на выступ. Достигается увеличение тягового усилия движителя. 1 з.п. ф-лы, 5 ил.
Наверх