Способ получения алюмокалиевых квасцов

Изобретение может быть использовано в химической промышленности. Для получения алюмокалиевых квасцов подготавливают сырье, в качестве которого используют остатки доманиковых образований, содержащие алюминий, кремнезем, органическое вещество и включающие редкие и редкоземельные элементы. Проводят выщелачивание кислоторастворимых компонентов сырья в автоклаве раствором серной кислоты до ее остаточной концентрации 45-75 г/л. Полученную суспензию разделяют на жидкую фазу, содержащую алюминий, калий, натрий, редкие металлы, и твердую фазу, содержащую кремнезем и органическое вещество. В горячую жидкую фазу добавляют сульфат калия, охлаждают полученный раствор и проводят кристаллизацию алюмокалиевых квасцов. Сульфат калия добавляют из расчета связывания в алюмокалиевые квасцы 80-90% свободного сульфата алюминия с удержанием в растворе редких и редкоземельных элементов. Изобретение позволяет повысить выход алюмокалиевых квасцов с одновременным комплексным извлечением редких и редкоземельных элементов и получением углерод-кремнеземистого продукта. 2 з.п. ф-лы, 2 пр.

 

Изобретение относится с области комплексной переработки остатков доманиковых образований (черносланцевых свит), обогащенных органическим веществом (ОВ) и содержащих кремний, алюминий, натрий, калий, ванадий, уран, редкоземельные и другие металлы.

Получение алюмокалиевых квасцов K2SO4·(Al2SO4)3·24H2O (АКК) основано на малой растворимости при невысоких температурах. АКК представляют собой бесцветные октаэдрические кристаллы плотностью 1,04 г/см3. При температуре 93,5°C квасцы плавятся в кристаллизационной воде, при 120°C отдают 10 молекул воды, при 200°C образуют пористую массу безводных квасцов. Они могут быть выделены при добавлении сульфата калия к концентрированному горячему раствору сульфата алюминия (19-21 г/л А1). В процессе охлаждения раствора до температуры 15-25°C выпадают кристаллы АКК.

Недостатком этой технологии является то, что все исходные компоненты являются дорогостоящими и дефицитными.

Известен способ получения алюмокалиевых квасцов (патент РФ №2013373, МПК 5С01Р 7/76, 1994 г.), по которому исходную руду, дробленую до крупности 7-8 мм, после обжига при температуре 550-700°C в течение 2-х часов подвергают гидрохимической обработке расчетным количеством 30%-ного раствора серной кислоты в вертикальном реакторе при температуре 95-100°C в течение 5-6-ти часов последовательно в две стадии в противотоке раствора к руде. При этом из обожженной руды извлекается в раствор 90% алюминия, натрия и калия, а нерастворимый осадок состоит из кремнезема (SiO2). Полученный при этом раствор сульфата алюминия не содержит свободной серной кислоты и очищается от солей железа и ряда других элементов методом гидротермального осаждения. Из очищенного технологического раствора выделяют АКК путем дозировки расчетного количества хлористого калия и охлаждения раствора до 25-30°C.

Основными недостатками данного способа являются высокие энергетические затраты, связанные с обжигом, многостадийность, отсутствие комплексности использования сырья.

Известен способ получения алюмокалиевых квасцов (Позин М.Е. Технология минеральных солей. Л. Химия, 1970 г., с.655-657), включающий обработку нефелинового концентрата 74-76%-ной серной кислотой в течение 1-2 минут при расходе кислоты 83-88% от теоретически необходимого количества с образованием реакционной массы, ее вызревание в течение 14-15 минут при температуре 140°С, выщелачивание полученной массы горячей водой при соотношении воды и нефелина 2:1 в течение 20-25 минут с образованием кремнеземсодержащей суспензии, отделение жидкой фазы, содержащей алюминий, калий, натрий, от твердой фазы, содержащей кремнезем и примесные минералы, введение в жидкую фазу хлорида калия, охлаждение полученного раствора с кристаллизацией квасцов (АКК) и их отделение от маточного раствора, содержащего сернокислый алюминий и поваренную соль, который можно использовать в качестве коагулянта для очистки питьевой воды или в бумажной промышленности.

Способ не предусматривает выделение кремнезема в виде высокодисперсного, высокочистого продукта и не может быть использован для сырья сложного состава, содержащего вредные металлы, например уран, ванадий и др.

Наиболее близким по технической сущности к заявляемому является способ получения алюмокалиевых квасцов (патент РФ №2350564, МПК C01F 7/76, опубл. 23.03.2009 г.), включающий обработку нефелинсодержащего сырья разбавленной 12-20% серной кислотой в течение 5-20 минут. Использование разбавленной серной кислоты обеспечивает извлечение кислоторастворимых компонентов в жидкую фазу не только алюминия, натрия и калия, но и кремнезема в виде ортокремниевой кислоты.

Отличительной особенностью растворенного кремнезема является его высокая склонность к полимеризации, интенсивность которой зависит от концентрации кремнезема, температуры и продолжительности выдержки раствора.

Основной недостаток способа - неконтролируемое осаждение кремнезема как на стадии выщелачивания, так и кристаллизации АКК. Способ не позволяет удержать в растворе редкие и редкоземельных металлы (РиРЗМ).

Задачей настоящего изобретения является создание способа получения алюмокалиевых квасцов, позволяющего расширить сырьевую базу, получить углерод-кремнеземистый продукт, пригодный для производства ферросплавов, который не содержит радиоактивные металлы.

Техническим результатом изобретения является комплексное извлечение редких и редкоземельных металлов, повышение выхода АКК.

Технический результат достигается способом получения алюмокалиевых квасцов, в котором исходная руда измельчается и обрабатывается раствором серной кислоты (25-35%) в автоклаве при температуре 140-160°C, давлении 3 атм и окислительно-восстановительном потенциале Eh 350-450 мВ. Окислительно-восстановительный потенциал (ОВП) в указанных пределах Eh 350-450 мВ позволяет удерживать элементы в определенных степенях окисления и тем самым менять их технологические свойства. Значение ОВП ниже 350 мВ не желателен, так как в растворе появляется железо в степени окисления (+II), повышение ОВП более 450 мВ приводит к появлению ванадия в степени окисления (+V) и ванадий с железом (+III) осаждается в виде труднорастворимого соединения.

Выщелачивание проводят до остаточной концентрации свободной серной кислоты 45-75 г/л. Концентрация серной кислоты является оптимальной для кристаллизации АКК и позволяет удержать в растворе редкие и редкоземельные металлы. Повышение содержания серной кислоты более 75 г/л нецелесообразно в связи с перерасходом кислоты и снижением выхода АКК на операции кристаллизации, а снижение менее 45 г/л не удерживает в растворе редкие и редкоземельные металлы. Затем разделяют автоклавную суспензию на жидкую фазу, содержащую алюминий, калий, натрий, редкие и редкоземельные металлы, и твердую фазу, содержащую кремнезем и органическое вещество, т.е. углерод-кремнеземистый продукт. При этом добавляют сульфат калия в горячую жидкую фазу свободного сульфата алюминия из расчета на связывание его на 80-90% в АКК, что позволит удержать редкие и редкоземельные металлы в растворе. В растворе одновременно существует двойная соль сульфата калия и алюминия [KAl(SO4)2] и свободный сульфат алюминия. Процесс кристаллизации проводится в условиях резкого охлаждения до 15-25°C воздушным перемешиванием и охлаждением рассолом через рубашку в течение не более 2-х часов при недостатке высаливающего агента (K2SO4) в количестве 80-90% от стехиометрически необходимого для осаждения АКК и получения раствора редких и редкоземельных металлов. Кристаллы АКК отделяются на центрифуге, а маточные растворы отправляются на передел извлечения редких и редкоземельных металлов. Выход АКК в целевой продукт составляет 91-92% от содержания в сырье. Аммиачной обработкой из АКК выделяется глинозем (Al2O3), а в раствор переводятся сульфаты калия и аммония.

При упарке раствора выделяется сульфат калия (K2SO4), который используется как оборотный продукт для кристаллизации АКК.

Указанные выше особенности и преимущества заявляемого изобретения поясняются нижеследующими примерами.

Пример 1. 1000 г дробленых до крупности - 0,2 мм остатков доманиковых образований, содержащих, мас.%: Al2O3 4,2, Na2O 1,7, K2O 1,2, SiO2 75,2, OB (органическое вещество) 15,1, сумма ∑РиРЗМ 1,1, - смешивают с 1 литром раствора серной кислоты и обрабатывают в автоклаве при температуре 150°C в течение 1 часа, давлении кислорода 3 атм и Eh 350 мВ. После обработки получают 1,05 л раствора, содержащего, г/л: 41,6 Al2O3, 13,3 Na2O, 6,0 K2O, 8,3 Fe2O3, сумма ∑РиРЗМ 6,7, свободной серной кислоты 72,5. В раствор добавляют 60 г сульфата калия и охлаждают до 25°C. Алюмокалиевые квасцы отфильтровывают. Получают 349,5 г алюмокалиевых квасцов влажностью 4,5%, содержащих, мас.%: Al2O3 10,1, K2O 9,3. Извлечение алюминия в раствор составило 98,6%, а в алюмокалиевые квасцы 91,2% от его содержания в растворе. Содержание суммы ∑РиРЗМ в растворе сохранилось на уровне 6,6 г/л.

Пример 2. Способ осуществляют согласно примеру 1. Отличие заключается в том, что 1000 г дробленых до крупности - 0,2 мм остатков доманиковых образований смешивают с 1 литром раствора серной кислоты и обрабатывают при температуре 150°C в течение 2 часов, давлении кислорода 3 атм и Eh 450 мВ. После обработки получают 1 л раствора, содержащего, г/л: 41,2 Al2O3, 13,0 Na2O, 5,8 K2O, 7,2 Fe2O3, сумма ∑РиРЗМ 6,5, свободной серной кислоты 45,3. После разделения на фильтрате получают кремнезем и органическое вещество, содержащее: ванадия - 0,05%, урана <0,001%. Получают 335,5 алюмокалиевых квасцов влажностью 4,2%, содержащие, мас.%: Al2O3 10,8, K2O 9,6. Кристаллизация АКК из раствора проводится по примеру 1. Извлечение алюминия в раствор составляет 98,1%, а в алюмокалиевые квасцы 90,1% от его содержания в растворе. Содержание суммы ∑РиРЗМ в растворе сохранилось на уровне 6,3 г/л.

1. Способ получения алюмокалиевых квасцов, включающий подготовку сырья, обработку его раствором серной кислоты, выщелачивание кислоторастворимых компонентов, разделение на жидкую фазу, содержащую алюминий, калий, натрий, редкие металлы, и твердую фазу, содержащую кремнезем и органическое вещество, добавление в горячую жидкую фазу солей калия, охлаждение полученного раствора и кристаллизацию алюмокалиевых квасцов, отличающийся тем, что в качестве сырья используют остатки доманиковых образований, содержащие алюминий, кремнезем и органическое вещество, включающие редкие и редкоземельные элементы, выщелачивание проводят в автоклаве раствором серной кислоты до ее остаточной концентрации 45-75 г/л, а в горячий раствор сульфата алюминия добавляют сульфат калия из расчета связывания в алюмокалиевые квасцы 80-90% свободного сульфата алюминия с удержанием в растворе редких и редкоземельных элементов.

2. Способ по п.1, отличающийся тем, что выщелачивание проводят при температуре 140-160°C, давлении кислорода 3 атм.

3. Способ по п.1, отличающийся тем, что кристаллизацию алюмокалиевых квасцов проводят резким охлаждением в течение не более 2 часов.



 

Похожие патенты:

Способ извлечения редкоземельных элементов из фосфогипса включает сернокислотное выщелачивание РЗМ из пульпы фосфогипса с наложением ультразвуковых колебаний, разделение пульпы выщелачивания на продуктивный раствор РЗМ и кек, осаждение коллективного концентрата РЗМ из продуктивного раствора с получением водной фазы.
Изобретение относится к технологии переработки фосфогипса - отхода предприятий, производящих фосфорные удобрения. Способ включает вскрытие фосфогипса серной кислотой, последующее извлечение редкоземельных элементов (РЗЭ) и обработку очищенного фосфогипса оксидом кальция.
Изобретение относится к очистке фосфатно-фторидного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита. Способ очистки фосфатно-фторидного концентрата РЗЭ, содержащего примеси кальция и тория, включает обработку концентрата раствором серной кислоты концентрацией 4-6 мас.% в присутствии сульфоксидного катионита, при этом РЗЭ, примеси тория и кальция сорбируются сульфоксидным катионитом, перевод фтора наряду с фосфором в сернокислый раствор, отделение сернокислотного раствора от сульфоксидного катионита, десорбцию из катионита РЗЭ и примеси тория и кальция раствором соли аммония с получением десорбата и его нейтрализацию аммонийным соединением в три стадии, при этом на первой стадии нейтрализацию ведут до обеспечения pH 4,2-5,0 с образованием и отделением торийсодержащего осадка, на второй стадии - до обеспечения pH 7,0-7,5 с образованием и отделением концентрата РЗЭ, а на третьей стадии - до рН не менее 8,5 с образованием и отделением кальцийсодержащего осадка.

Изобретение относится к способу переработки фосфогипса для производства концентрата редкоземельных металлов (РЗМ) и гипса. Способ включает приготовление пульпы фосфогипса, выщелачивание РЗМ и фосфора серной кислотой.
Изобретение относится к способу переработки титановых шлаков с получением концентрата диоксида титана, который может быть использован в качестве компонента обмазки сварочных электродов.

Изобретение относится к переработке свежеполученного фосфополугидрата и может быть использовано для получения концентрата редкоземельных элементов (РЗЭ) и гипсового продукта для строительных материалов.

Изобретение может быть использовано в химической промышленности. Способ переработки фосфогипса включает стадийное агитационное сернокислотное выщелачивание редкоземельных металлов (РЗМ) и фосфора с подачей серной кислоты на головную стадию, использование полученного раствора выщелачивания головной стадии на последующих стадиях выщелачивания, выделение нерастворимого остатка из пульпы хвостовой стадии и его водную промывку, переработку раствора выщелачивания хвостовой стадии с получением маточного раствора, использование маточного и промывного растворов в обороте для выщелачивания.

Изобретение относится к области извлечения ценных веществ - алюминия, ванадия, урана, молибдена и редкоземельных металлов из черносланцевых руд. Способ переработки черносланцевых руд включает измельчение, противоточное двухстадиальное выщелачивание раствором серной кислоты при нагревании, разделение образующихся после выщелачивания пульп на обеих стадиях фильтрованием.

Изобретение относится к гидрометаллургии и может быть использовано для извлечения редких металлов из бедных, упорных, ультрадисперсных руд. Способ переработки черносланцевых руд с извлечением редких металлов включает выщелачивание руды раствором серной кислоты с растворением редких металлов.

Изобретение относится к способу переработки фосфогипса. .
Изобретение относится к технологии неорганических веществ, в частности к получению алюмокалиевых квасцов, используемых в химической, бумажной, кожевенной, текстильной, пищевой и фармацевтической промышленности.
Изобретение относится к химической технологии неорганических веществ, в частности к способу получения додекагидрата сульфата алюминия-аммония NH4Al(SO 4)2·12H2 O, и к способам переработки токсичных отходов производства.

Изобретение относится к производству кристаллических алюмоаммонийных квасцов, получаемых изогидрической кристаллизацией из водных растворов. .

Изобретение относится к технологии неорганических веществ, в частности алюмокалиевых квасцов, применяемых в химической промышленности в качестве сырьевого материала, а также в кожевенной, текстильной, меховой и фармацевтической промышленности.

Изобретение относится к получению коагулянта преимущественно на основе сульфата алюминия, железа (II) и железа (III) Цель изобретения - удешевление процесса и повышение качества продукта.

Изобретение относится к гидрометаллургии лантаноидов, а именно к получению кристаллических нанопорошков оксидов лантаноидов. Способ получения порошков индивидуальных оксидов лантаноидов включает осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, отделение ее, промывку, сушку, термообработку полученного осадка и последующую обработку в слабом переменном магнитном поле с частотой 20÷50 Гц и амплитудой 0,05÷0,1 Тл.
Наверх