А-секотритерпеноиды с фрагментом метилкетона

Изобретение относится к А-секотритерпеноидам общей формулы (I), проявляющим ингибирующую активность в отношении вируса герпеса простого I типа (ВГП-1, штамм 1С) и ВИЧ-1. Кроме того, Соединения (I) могут быть использованы в качестве интермедиатов для других биологически активных соединений 1 з.п. ф-лы, 1 табл., 6 пр.

(I),

где или

 

Изобретение относится к новым химическим соединениям класса А-секотритерпеноидов 18αН-олеананового и лупанового типов.

Для многих природных и полусинтетических А-секотритерпеноидов характерны противовирусные свойства, что делает данную группу соединений перспективной для разработки новых терапевтически значимых агентов [Y. Wei, C.-M. Ma, D.-Y. Chen, M. Hattori. Anti-HIV-1 protease triterpenoids from Stauntonia obovatifoliola Hayata subsp.intermedia // Phytochemistry. - 2008. - Vol.69. - P.1875-1879; Y. Wei, C.-M. Ma, M. Hattori. Synthesis of dammarane-type triterpene derivatives and their ability to inhibit HIV and HCV proteases // Bioorganic & Medicinal Chemistry. - 2009. - Vol.17. - P. 3003-3010; Y. Wei, C.-M. Ma, M. Hattori. Synthesis and evaluation of A-seco type triterpenoids for anti-HIV-1 protease activity // European Journal of Medicinal Chemistry. - 2009. - Vol.44. - P.4112-4120].

Среди соединений данного класса встречаются полусинтетические тритерпеноиды, содержащие высокореакционный фрагмент метилкетона в А-секокольце [Т. Honda, G.W. Gribble. Design and synthesis of 23,24-dinoroleanolic acid derivatives, novel triterpenoid-steroid hybrid molecules // Journal of Organic Chemistry - 1998. - Vol.63. - P.4846-4849; О.В. Kazakova, N.I. Medvedeva, O.S. Kukovinets, G.A. Tolstikov, E.F. Khusnutdinova, L. Zaprutko, B. Bednarczyk-Cwynar, Z. Paryzek. Chemoselective oxidation of oleanolic acid derivatives with ozone // Chemistry of Natural Compounds - 2010. - Vol.46. - №3. - P.397-399; Y. Deng, J. K. Snyder. Preparation of a 24-nor-1,4-dien-3-one triterpene derivative from betulin: a new route to 24-nortriterpene analogues // Journal of Organic Chemistry - 2002. - Vol.67. - P.2864-2873], в том числе обладающие антипаразитарными и цитотоксическими свойствами [С. Moiteiro, M.J.M. Curto, N. Mohamed, M. Bailen, R. Martinez-Diaz, A. Gonzalez-Coloma. Biovalorization of friedelane triterpenes derived from cork processing industry by products // Journal of Agricultural and Food Chemistry - 2006. - Vol.54. - P.3566-3571; С. Moiteiro, С. Manta, F. Justino, R. Tavares, M.J.M. Curto, M. Pedro, M.S. Nascimento, M. Pinto. Hemisynthetic secofriedelane triterpenes with inhibitory activity against the growth of human tumor cell lines in vitro // Journal of Natural Products - 2004. - Vol.67. - P.1193-1196].

Наиболее близким аналогом (прототипом) описываемых соединений по структуре является 3-нор-2,4-секофриделан-4-оксо-2-овая кислота, обладающая противоопухолевой (GI50 10,19-17,6 µM) [С. Moiteiro, С. Manta, F. Justino, R. Tavares, M.J.M. Curto, M. Pedro, M.S. Nascimento, M. Pinto. Hemisynthetic secofriedelane triterpenes with inhibitory activity against the growth of human tumor cell lines in vitro // Journal of Natural Products - 2004. - Vol.67. - P.1193-1196] и инсектицидной активностью (ЕС50 20,23 µг/мл) [С. Moiteiro, M.J.M. Curto, N. Mohamed, M. Bailen, R. Martinez-Diaz, A. Gonzalez-Coloma. Biovalorization of friedelane triterpenes derived from cork processing industry by products // Journal of Agricultural and Food Chemistry - 2006. - Vol.54. - P.3566-3571]. Однако в литературе нет сведений о противовирусных свойствах 3-нор-2,4-секофриделан-4-оксо-2-овой кислоты.

Задачей изобретения является синтез новых тритерпеновых производных для расширения сырьевой базы противовирусных агентов, перспективных также в качестве ключевых интермедиатов для получения новых биологически активных соединений.

1. Для решения поставленной задачи синтезированы А-секотритерпеноиды общей формулы (I)

,

где или .

2. Соединение с проявляет ингибирующую активность в отношении вируса герпеса простого I типа (ВГП-1, штамм 1 С) и ВИЧ-1.

Синтезированы соединения общей формулы (I), где

Полученные соединения представляют собой мелкокристаллические вещества белого цвета, хорошо растворимые в хлороформе, дихлорметане, четыреххлористом углероде, этиловом спирте, бензоле, толуоле, диметилсульфоксиде, плохо растворимые в гексане и нерастворимые в воде.

Структура соединений I и II подтверждена методами ИК и ЯМР спектроскопии. Спектральные характеристики соединений I, II и ключевых интермедиатов приведены в таблице. Спектры ЯМР 1Н (δ, м.д.; J, Гц) записывали для раствора в CDCl3 на спектрометре «Varian Mercury+300» (США) при рабочей частоте прибора 300 МГц, внутренний стандарт - гексаметилдисилоксан. ИК спектры (ν, см-1) регистрировали на ИК-Фурье-спектрометре IFS 66/S Bruker (Германия) в тонкой пленке, полученной испарением раствора вещества в CHCl3 на поверхности стекла NaCl. Пороговое значение температуры в точке плавления определяли на приборе OptiMelt MPA100 (США) со скоростью 1°С в мин. Величину удельного оптического вращения измеряли для раствора в CHCl3 на поляриметре 341 модели Perkin-Elmer (США) при длине волны 589 нм. Качественный контроль веществ проводили методом ТСХ на пластинах «Sorbfil» (Россия), для определения величины Rf использовали систему гексан-этилацетат 7:3, обнаружение веществ осуществляли обработкой 5% H2SO4 с последующим прогреванием пластины при 95-100°С в течение 2-3 мин. Для колоночной хроматографии использовали силикагель марки «Merck» (60-200 µm), элюент смесь гексан-этилацетат (10:1).

В исследованиях in vitro выявлена ингибирующая активность соединения II в отношении репродукции вируса герпеса простого I типа (ВГП-1) и вируса иммунодефицита человека I типа (ВИЧ-1).

Описания заявляемых соединений и их свойств в источниках информации не обнаружено.

Сущность предлагаемого решения и возможность его осуществления подтверждается примерами 1-6 и результатами исследований, приведенными в таблице.

Синтез заявляемых соединений проводили двумя способами.

Первый способ заключается в алкилировании 2-гидроксиминопроизводных бетулоновой кислоты или аллобетулона метилмагний-иодидом с последующим расщеплением по Бекману полученных 2-гидроксимино-3β-гидрокси-3-метилпроизводных бетулоновой кислоты или аллобетулона [Синтез лупановых и 19β,28-эпокси-18α-олеанановых 2,3-секо-производных на основе бетулина / И.А. Толмачева, А.В. Назаров, О.А. Майорова, В.В. Гришко // Химия природных соединений. - 2008. - №5. - С.491-494].

Второй способ состоит в алкилировании метилмагнийиодидом метилового эфира 1-циано-2,3-секо-2-норлуп-20(29)-ен-3-аль-28-овой кислоты или 1-циано-19β,28-эпокси-2,3-секо-2-нор-18αН-олеанан-3-аля [Синтез лупановых и 19β,28-эпокси-18α-олеанановых 2,3-секо-производных на основе бетулина / И.А. Толмачева, А.В. Назаров, О.А. Майорова, В.В. Гришко // Химия природных соединений. - 2008. - №5. - С.491-494] с последующим окислением реактивом Джонса полученных 3-гидрокси-3-метил-1-циано-2-нор-2,3-секотритерпеноидов.

Пример 1. Получение метилового эфира 3-метил-3-оксо-1-циано-2,3-секо-2-норлуп-20(29)-ен-28-овой кислоты (соединение I, метод 1).

К 3 мл свежеприготовленного раствора CH3MgI (13,2 ммоль) в диэтиловом эфире прибавляли небольшими порциями 6,6 ммоль метилового эфира 2-гидроксимино-3-оксолуп-20(29)-ен-28-овой кислоты, затем прикапывали 13 мл безводного диэтилового эфира. Реакционную смесь перемешивали при нагревании в течение 1 ч, затем прикапывали 25 мл ледяной воды и добавляли 20 мл разбавленной в два раза HCl. Смесь перемешивали до полного растворения осадка в течение 1 ч. Продукт реакции экстрагировали этилацетатом (3×20 мл). Органический слой отделяли, промывали насыщенным раствором NaHSO3, затем 5% раствором NaHCO3 и небольшим количеством воды, сушили над безводным MgSO4. Растворитель упаривали, остаток очищали с помощью колоночной хроматографии.

Выход продукта реакции составил 88%, Rf=0,6 (хлороформ-метанол 20:1), т.пл. 204,6°С (гексан-этилацетат 5:1); [ α ] D 25 + 21 , 9 (с 1,38; CHCl3).

Полученный таким образом метиловый эфир 3β-гидрокси-3-метил-2-гидроксимино-2-норлуп-20(29)-ен-28-овой кислоты формулы (II) в количестве 4,6 ммоль растворяли при перемешивании в сухом дихлорметане, добавляли 14,0 ммоль тионилхлорида. Реакционную смесь перемешивали при комнатной температуре в течение 30 мин. Проверяли полноту прохождения реакции методом ТСХ. После окончания реакции растворитель упаривали в вакууме водоструйного насоса. Остаток промывали два раза сухим дихлорметаном для избавления от следов тионилхлорида. Соединение I очищали с помощью колоночной хроматографии.

Выход 83%; Rf=0,6; т. пл. 229,8°С (гексан-этилацетат 5:1); [ α ] D 25 + 29 , 1 (с 0,5; CHCl3).

Пример 2. 3-Метил-1-циано-19β,28-эпокси-2,3-секо-2-нор-18αН-олеанан-3-он (соединение II, метод 1) синтезировали по методике, описанной в примере 1, используя в качестве исходного соединения 2-гидроксимино-19β,28-эпокси-18αН-олеан-3-он, из которого получали промежуточный 3β-гидрокси-3-метил-2-гидроксимино-19β,28-эпокси-2-нор-18αН-олеанан формулы (III) с выходом 86%, Rf=0,6 (хлороформ-метанол 20:1), т.пл. 193,7°С (гексан-этилацетат 5:1); [ α ] D 25 + 43 , 4 (с 1,38; CHCl3).

Выход соединения II 84%; Rf=0,4; т.пл. 163,4°С (гексан-этилацетат 5:1); [ α ] D 25 + 26 , 7 (с 0,5; CHCl3).

Пример 3. Получение метилового эфира 3-метил-3-оксо-1-циано-2,3-секо-2-норлуп-20(29)-ен-28-овой кислоты (соединение I, метод 2).

К 3 мл свежеприготовленного раствора CH3MgI (4,4 ммоль) в диэтиловом эфире прибавляли небольшими порциями 2,2 ммоль метилового эфира 1-циано-2,3-секо-2-норлуп-20(29)-ен-3-аль-28-овой кислоты, затем прикапывали 13 мл безводного диэтилового эфира. Реакционную смесь перемешивали при нагревании в течение 1 ч, затем прикапывали 25 мл ледяной воды и добавляли 20 мл разбавленной в два раза HCl. Смесь перемешивали до полного растворения осадка в течение 1 ч. Продукты реакции экстрагировали этилацетатом (3×20 мл). Органический слой отделяли, промывали насыщенным раствором NaHSO3, затем 5% раствором NaHCO3 и небольшим количеством воды, сушили над безводным MgSO4. Этилацетат упаривали в вакууме водоструйного насоса. Остаток в количестве 0,25 ммоль растворяли в 20 мл ацетона, добавляли 0,5 мл реактива Джонса. Реакционную смесь перемешивали в течение 6 ч. Контроль за ходом реакции осуществляли методом ТСХ. Ацетон отгоняли, остаток разбавляли водой и экстрагировали 10×3 мл этилацетата. Органический слой сушили над безводным MgSO4. Растворитель упаривали, соединение I очищали с помощью колоночной хроматографии.

Выход соединения I составил 75%.

Пример 4. 3-Метил-1-циано-19β,28-эпокси-2,3-секо-2-нор-18αН-олеанан-3-он (соединение II, метод 2) синтезировали по методике, описанной в примере 3. В качестве исходного соединения использовали 1-циано-19β,28-эпокси-2,3-секо-2-нор-18αН-олеанан-3-аль.

Выход соединения II составил 57%.

Пример 5. Исследование противовирусной активности в отношении вируса герпеса простого I типа.

При проведении исследований использовали линию клеток рабдомиосаркомы человека (RD) и вирус герпеса простого I типа (ВГП-1, штамм 1С). Монослойную культуру клеток RD, выращенную в лунках пластиковой 96-луночной панели, отмывали от ростовой среды, инфицировали 0,01-0,001 ТЦИД50/клетка ВГП-1 путем нанесения на клетки разведений вируссодержащей суспензии в объеме 0,1 мл на 1 ч при 37°С. Затем жидкость удаляли и клетки покрывали средой поддержки (среда DMEM), содержащей различные концентрации исследуемых веществ. Водонерастворимые вещества предварительно растворяли в 10% этаноле. При последующем разведении использовали DMEM. Содержание этанола в конечных концентрациях веществ для исследования не превышало 1%. На каждую концентрацию изучаемого вещества использовали по 2-4 лунки с культурой клеток, инфицированной одним разведением вируса. Для изучения противовирусных свойств каждого вещества использовали 3-4 разведения вируса. После 48 ч инкубации при 37°С регистрировали морфологические изменения монослоя клеток (цитопатическое действие (ЦПД) вируса, увеличение ×80). На основе наличия/отсутствия ЦПД вируса в лунках с разными концентрациями вещества вычисляли титр вируса. Первичным критерием противовирусного действия считали наличие различий в сравнении с контролем вируса. На основе значений титра вируса вычисляли среднеэффективную концентрацию вещества (ЕС50). Рассчитывали также отношение максимально переносимой концентрации (МПК) соединения к ЕС50. МПК определяли как максимальную концентрацию вещества, не оказывающую влияния на морфологию неокрашенной культуры клеток за период инкубации (48 ч).

Пример 6. Методика исследования противовирусной активности в отношении ВИЧ-1.

Испытания проводили на перевиваемой суспензионной Т-лимфо-бластоидной линии клеток человека МТ-4 (плотность 4-5×105 клеток/мл) на питательной среде RPMI-1640 Sigma-Aldrich (США). В качестве инфекционного агента использовали высокорепликативный изолят ВИЧ-1zmb с титром 6,0 lg ТЦИД50/мл. Определение наличия анти-ВИЧ активности проводили в формазановом тесте (МТТ-вариант). Исходный раствор препарата (5,0 мг/мл) готовили ex tempore путем растворения в 10% этаноле. Базовый раствор титровали в лунках 96-луночной панели с 5-кратным шагом, после чего в лунки последовательно вносили клетки и вирус (терапевтическая схема). Конечный объем реакционной смеси составлял 200 мкл/лунку. Контролями служили необработанные препаратом ВИЧ-инфицированные клетки (контроль вируса) и необработанные неинфицированные клетки (контроль клеток). Панели инкубировали в атмосфере, содержащей 5% CO2 при 37°С. Учет результатов осуществляли через 72 ч. В качестве позитивного контроля на анти-ВИЧ активность в каждой серии экспериментов использовали коммерческий препарат азидотимидина, который титровали параллельно с исследуемым образцом.

Методика базируется на определении интенсивности образования формазанового продукта при внесении в клеточную культуру реагента МТТ (3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолия бромид). После 3-часовой экспозиции при 37°С надосадок удаляли, а образовавшийся формазановый продукт растворяли в диметилсульфоксиде, затем проводили измерение интенсивности развившегося окрашивания на спектрофотометре Plate Reader DAS A3 (Италия) при длине волны 550/630 нм. Результаты теста учитывали путем определения индекса защиты клеток, который в положительных случаях должен быть не ниже 50%. Вычисляли ЕС50 препарата и отношение МПК/ЕС50, характеризующее широту спектра его нетоксических эффективных концентраций.

Установлено, что соединение II подавляет репродукцию ВГП-1 и ВИЧ-1, ЕС50 составляет 21,1 и 7,2 мкг/мл, отношение МПК/ЕС50 - 9,5 и 9,4 соответственно.

Полученные вещества могут быть использованы в качестве ключевых интермедиатов для получения новых биологически активных соединений, а соединение II - непосредственно для разработки противовирусных средств.

Таблица
Данные ИК, ЯМР 1Н и 13С спектров соединений I, II
Соединение ИК спектр (ν, см-1) Спектр 1Н-ЯМР (300,0 МГц, CDCl3, δ, м.д., J/Гц)
I 1705 (С=O); 1723 (СООСН3); 2236 (C≡N) 0,92, 0,94, 1,02, 1,14, 1,21 (каждый 3Н, с, СН3), 1,68 (3Н, с, Н-30), 2,28 (3Н, с, СН3), 2,42 и 2,55 (каждый 1Н, д, JAB=18,2, Н-1), 2,97 (1Н, тд, J=12,0, 5,7, Н-19), 3,65 (3Н, с, СООСН3), 4,60 и 4,73 (каждый 1Н, с, Н-29)
II 1695 (СО); 2237 (C≡N) 0,79, 0,92, 0,97, 1,15, 1,22 (каждый 3Н, с, СН3), 0,96 (6Н, с, 2СН3), 2,29 (3Н, с, СН3), 2,44 и 2,59 (каждый 1Н, д, JAB=18,0, Н-1), 3,44 и 3,75 (каждый 1Н, д, JAB =7,7, H-28), 3,52 (H, c, H-19)
Метиловый эфир 3β-гидрокси-3-метил-2-гидроксимино-2-норлуп-20(29)-ен-28-овой кислоты (формула II) 1719 (СООСН3); 1644 (C=N); уш. 3344 (ОН) 0,74 (6Н, с, 2СН3), 0,89, 0,94, 0,99, 1,32 (12Н, 4с, 4СН3); 1,67 (3Н, с, СН3-30); 2,19 и 3,34 (2Н, 2д, JAB=13,2, CH2-1, АВ-система); 3,00 (1Н, тд, J=4,5, 10,8, CH-19); 3,66 (Н, с, СООСН3); 4,59 и 4,72 (2Н, 2с, CH2-29); 5,10 (1Н, уш. с. ОН).
3β-Гидрокси-3-метил-2-гидроксимино-19β,28-эпокси-2-нор-18αН-олеанан (формула III) 2931 (C=N), уш. 3238 (ОН), 3460 (ОН) 0,76, 0,78, 0,79, 0,95, 0,96, 1,37 (18Н, 6с, 6СН3); 0,96 (6Н, 2с, 2СН3); 1,67 и 3,39 (2Н, 2д, JAB=13,2, СН2-1, АВ-система); 3,45 и 3,78 (2Н, 2д, JAB=8,0, CH2-28, АВ-система); 3,54 (1Н, с, CH-19); 5,50 (1Н, уш. с., ОН); спектр 1H ЯМР (300 МГц, DMSO-d6, δ, м.д., J/Гц): 10,26 (1H, c, NOH).

1. А-секотритерпеноиды общей формулы
,
где или .

2. Соединение по п.1, где , проявляющее ингибирующую активность в отношении вируса герпеса простого I типа (ВГП-1, штамм 1С) и ВИЧ-1.



 

Похожие патенты:

Изобретение относится к cпособу получения A-секотритерпеновых C-3(28) моно- и диамидов и их 2,3-секоинтермедиатов путем фрагментации тритерпеновых α-гидроксиоксимов и α-кетоксимов под действием по меньшей мере одного кислотного дегидратирующего агента с хлорирующими свойствами с образованием в реакционной смеси хлорангидрида карбонил(или карбоксил)содержащего 2,3-секоинтермедиата.

Изобретение относится к органическому соединению формулы (1), в которой каждый из R1 - R16 независимо выбран из атома водорода, метила, этила, н-пропила, изопропила, н-бутила, изобутила, вторбутила, третбутила, октила, 1-адамантила, 2-адамантила, незамещенной фенильной группы, фенильной группы, замещенной алкильной группой, и незамещенной бифенильной группы.

Изобретение относится к способу синтеза 1,2,6,7-бис-(9H,10H-антрацен-9,10-диил)пирена 1 путем взаимодействия генерируемого in situ аринового производного пирена с антраценом в атмосфере аргона Предлагаемое изобретение предоставляет способ синтеза указанного соединения, которое может использоваться в качестве мономолекулярного оптического сенсора для обнаружения нитроароматических соединений.

Изобретение относится к способу синтеза 2,3,6,7,10,11-трис-(9Н,10Н-антрацен-9,10-диил)трифенилена 1-мономолекулярного оптического сенсора для обнаружения нитроароматических соединений путем взаимодействия генерируемого in situ аринового производного трифенилена с антраценом в атмосфере аргона Использование настоящего способа позволяет получать целевое соединение с выходом 69%.

Изобретение относится к органическому соединению, представленному общей формулой (1). .

Изобретение относится к способу получения 1,4-дизамещенных [1.1.1b.1.1] пентиптиценов R = С С-Аr; тиенил-2. .

Изобретение относится к новым химическим соединениям класса А-секотритерпеноидов. .

Изобретение относится к производному бензоинденохризена, представленному общей формулой (1) гдекаждый из X1, Х2 , Х3, Х4, Х5, Х6, Х7, Х8, X9, Х10, Х11, X12, X13, Х14 , X15 и X16 выбран независимо друг от друга из атома водорода и группы заместителей, состоящей из атома галогена, цианогруппы, нитрогруппы, третбутильной группы, метоксигруппы, этинильной группы, ацетинильной группы, бензильной группы, фенильной группы, нафтильной группы, бифенильной группы, флуоренильной группы, антраценильной группы, флуорантенильной группы, пиренильной группы, бинафтильной группы, фенантренильной группы, бензофлуорантенильной группы, , фенантролинильной группы и феноксигруппы, и каждый заместитель может дополнительно содержать, по меньшей мере, одну метальную группу, третбутильную группу и фенильную группу.

Изобретение относится к органическому соединению, представленному общей формулой (1) где каждый из R1-R8, R10 и R13 представляет собой атом водорода; каждый из R9 и R14 представляет собой группу, выбранную из атома водорода, трет-бутильной группы, фенильной группы и нафтильной группы, причем фенильная группа содержит, по меньшей мере, один заместитель, выбранный из метальной группы, трет-бутильной группы и фенильной группы, или является незамещенной; один из R11 и R12 представляет собой атом водорода, а другой из R11 и R12 представляет собой группу, выбранную из нафтильной группы, фенантренильной группы, антраценильной группы, периленильной группы, хризенильной группы, бензо-с-фенантренильной группы, флуоренильной группы, флуорантенильной группы, бензофлуорантенильной группы и нафтофлуорантенильной группы, причем нафтильная группа содержит в качестве заместителя фенильную группу или является незамещенной, антраценильная группа содержит в качестве заместителя фенильную группу или является незамещенной, хризенильная группа содержит в качестве заместителя фенильную группу или является незамещенной, флуоренильная группа содержит в качестве заместителя метальную группу, флуорантенильная группа содержит, по меньшей мере, один заместитель, выбранный из трет-бутильной группы и фенильной группы, или является незамещенной, и бензофлуорантенильная группа содержит, по меньшей мере, один заместитель, выбранный из фенильной группы, фенильной группы, замещенной метальной группой, и фенильной группы, замещенной трет-бутильной группой, или является незамещенной.

Изобретение относится к конденсированному полициклическому соединению, представленному общей формулой (I): где радикалы R1-R18 , каждый независимо, выбирают из группы, состоящей из атома водорода, фенильной группы и фенильной группы, замещенной двумя трет-бутильными группами.
Изобретение относится к фармацевтической промышленности и представляет собой композицию для наружного лечения и профилактики инфекций, вызванных вирусом герпеса типа 1, 2, и бактериальных осложнений, вызываемых герпетической инфекцией, содержащую в качестве активных ингредиентов лизоцим, пероксидазу, повиаргол, в качестве противовоспалительных ингредиентов эсцин и глициризиновую кислоту или ее соли, в качестве носителей - липосомы на основе высокоактивных гидрированных лецитинов в комбинации с холестерином и фармацевтически приемлемые носители и эксципиенты, причем компоненты в композиции находятся в определенном соотношении в мас.%.

Изобретение относится к медицине, а именно к применению поликарбоксильного производного фуллерена С60 в качестве микробицидного противовирусного средства для ингибирования вирусов простого герпеса (ВПГ) и цитомегаловируса (ЦМВ).

Изобретение относится к медицине, а именно, к способу лечения рецидивирующих заболеваний кожи и слизистых оболочек, вызываемых вирусами простого герпеса 1-го и 2-го типов, путем нанесения на пораженный участок препарата, включающего основу, содержащую активное вещество - соль (2,6-дихлорфенил)амида карбопентоксисульфаниловой кислоты общей формулы: где X - Na, K, NH4, 2 раза в сутки в течение 3-5 дней, а при появлении продромов осуществляют повторный курс нанесения препарата 1-2 раза в сутки в течение 2-3 дней.
Изобретение относится к фармацевтической промышленности и представляет собой лекарственный препарат для лечения заболеваний, вызванных вирусом простого герпеса 1-го типа и цитамегаловирусом, включающий рекомбинантный человеческий интерферон 2α, лизоцим, ликопид, левокарнитин 20%, витамин Е и жировую основу.
Изобретение относится к медицине, а именно к акушерству и гинекологии, и может быть использовано для уменьшения риска повреждения клеточных мембран органов фетоплацентарной системы в третьем триместре гестации при обострении герпес-вирусной инфекции на 12 неделе гестации.
Изобретение относится к области медицины, а именно к способам вакцинотерапии герпетической инфекции. Для этого антиген-презентирующие дендритные клетки (ДК), полученные из крови пациента, «нагружают» вирусными антигенами, источником которых является стандартная антигерпетическая вакцина, представляющая собой взвесь вирусов простого герпеса I и II типов, убитых формалином.

Настоящее изобретение относится к медицине, а именно к дерматологии, и может применяться для лечения кожных повреждений у субъекта, где указанные повреждения вызваны вирусом.

Группа изобретений относится к области медицины, в частности к вирусологии. Композиции содержат агент, выбранный из группы, содержащей вирионы HCMV, плотные тельца HCMV и NIEP HCMV, при этом композиция способна проявлять иммунный ответ, в то время как вирионы, NIEP и/или плотные тельца не способны к слиянию.
Изобретение относится к области медицины, а именно к акушерству и гинекологии, и может быть использовано для профилактики внутриутробного инфицирования плода вирусом простого герпеса.
Изобретение относится к средствам, обладающим противовирусным действием, и может быть использовано для лечения герпетических инфекций, в том числе герпеса губ. Данное средство содержит компоненты, мас.%: раствор легко проникающего через биологические мембраны мылкого амфифильного комплекса высокополимерной РНК Saccharomyces cerevisiae с олеиновой кислотой (в качестве индуктора интерферона) - 49,96; вазелиновое масло - 20; твин-80 - 17; эмульгатор Т-2 - 13; хлоргексидина биглюконат - 0,04.

Изобретение относится к фармацевтической промышленности и представляет собой применение сульфатированной гиалуроновой кислоты для приготовления лекарственного средства для местного применения для лечения воспалительных/вызывающих раздражение заболеваний кожи, выбранных из дерматита, атопического дерматита, фотодерматита, сыпи, витилиго, экземы, псориаза, всех раздражений кожи, связанных с активацией противовоспалительных цитокинов, таких как IL-1, IL-2, IL-7, IL-8, IL-9 и TNF, где гиалуроновая кислота имеет молекулярную массу в диапазонах от 10 000 Да до 50 000 Да, от 150 000 Да до 250 000 Да и от 500 000 Да до 750 000 Да и степень сульфатации, равную 1. Изобретение обеспечивает стимуляцию синтеза белков иммунной системы для вызова иммунного ответа. 7 н. и 1 з.п. ф-лы, 33 пр., 15 ил., 3 табл.
Наверх