Комплексный способ и устройство для очистки и утилизации дымовых газов с конверсией диоксида углерода в кислород

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки и утилизации дымовых газов теплоэнергетических установок ТЭС для снижения парникового эффекта окружающей атмосферы. Комплексный способ очистки и утилизации дымовых газов с конверсией диоксида углерода в кислород включает: охлаждение дымовых газов до температуры ниже точки росы, очистку от большей части окислов азота в присутствии озона за счет кислотообразования при конденсации водяных паров и абсорбции конденсатом, который очищается от кислотных компонентов анионитом, очистку от диоксида углерода абсорбцией раствором моноэтаноламина (МЭА); нагрев насыщенного диоксидом углерода раствора МЭА при избыточном давлении, дросселирование его до атмосферного давления, выделение газообразного диоксида углерода, который частично выводится из цикла, а частично поступает в окситенк, где при взаимодействии с водой и хлоропластами в результате фотосинтеза диоксид углерода превращается в кислород и органическую массу. Изобретение позволяет повысить экологическую и экономическую эффективности процесса очистки и утилизации дымовых газов теплоэнергетических установок. 1 з. п. ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки и утилизации дымовых газов теплоэнергетических установок ТЭС для снижения парникового эффекта окружающей атмосферы.

Известен способ очистки дымовых газов от оксидов азота и оксидов серы, включающий в себя охлаждение дымовых газов до температуры ниже температуры точки росы, конденсацию водяных паров в трубчатом теплообменнике, насыщение рециркуляционного конденсата озоном и кислородом воздуха, окисление и абсорбцию оксидов азота и оксидов серы насыщенным конденсатом с образованием кислого конденсата, стекающего в поддон, после чего очищенные дымовые газы выводятся в атмосферу, отвод части кислого конденсата из поддона в анионитовый фильтр для очистки от кислотных компонентов, которые выводят в процессе регенерации анионитового фильтра в виде солевого раствора NaNO3.

Устройство, в котором реализуется данный способ, содержит зону обработки в газоходе с размещенными в ней теплообменной секцией, выполненной в виде вертикального трубчатого теплообменника, абсорбционной секцией, выполненной также в виде вертикального трубчатого теплообменника с поддоном и размещенной в них коаксиально подъемной трубой эргазлифта, сепарационной секцией, выполненной в виде вертикального трубчатого теплообменника, причем поддон соединен трубопроводом с анионитовым фильтром [патент РФ №2186612, МКл.4 B01D 53/60, БИПМ №22, 2002].

Основные недостатки данного способа заключаются в низкой скорости охлаждения дымовых газов и абсорбции вредных примесей - оксидов азота и оксидов серы, обусловленные низкой допустимой скоростью газа при пленочной абсорбции, и невозможность их очистки от диоксида углерода, что снижает экологическую и экономическую эффективность очистки дымовых газов от вредных примесей.

Основным недостатком известного устройства является отсутствие оборудования для очистки дымовых газов от диоксида углерода, что также снижает экологическую и экономическую эффективность его работы.

Более близким по технической сущности к предлагаемому изобретению является комплексный способ для очистки дымовых газов с утилизацией тепла, вредных примесей и диоксида углерода, включающий охлаждение дымовых газов до температуры ниже точки росы с конденсацией водяных паров при дутьевым воздухом и наружным воздухом, где их очищают от большей части оксидов азота в присутствии озона за счет кислотообразования при конденсации водяных паров и абсорбции конденсатом, освобождают от диоксида углерода абсорбцией его раствором МЭА и выбрасывают в атмосферу, карбонизированный раствор нагревают за счет тепла дымовых газов до температуры насыщения при избыточном давлении, дросселируют до атмосферного давления и кипения, подают в декарбонизатор, где он делится на легколетучую фракцию, которая делится на конденсат МЭА и газообразный диоксид углерода, частично подаваемый вентилятором в поглотительную башню, он смешивается с разбрызгиваемым раствором едкого натрия с образованием углекислого натрия (Na2 СО3) и частично подается в чистом виде для реализации потребителям, а декарбонизированный раствор МЭА выводят из куба декарбонизатора, подогреваемого острым паром, смешивают с конденсатом из охладителя выпара и снова подают на абсорбцию, а конденсат водяных паров очищают от кислотных компонентов в анионитовом фильтре и направляют на водоподготовку, причем анионит регенерируют раствором едкого натра с получением азотнокислого натрия.

Предлагаемый способ реализуется в устройстве, включающем газоход, соединенный последовательно с подогревателем карбонизированного раствора моноэтаноламина (МЭА) и вертикальным трубчатым теплообменником, состоящим из соединенных последовательно по газу сверху вниз трубчатыми воздухоподогревателем и конденсатором, соответственно, который соединен по конденсату с анионитовым фильтром, по газу - с карбонизатором, представляющим собой полую башню, в верхней части которого размещены диспергатор жидкости и каплеотбойник, а днище соединено трубопроводом и первым циркуляционным насосом через подогреватель карбонизированного раствора МЭА и дроссель с декарбонизатором, внутри которого помещены верхние и нижние распределители жидкости и секции, заполненные насадкой, соответственно, причем верх декарбонизатора соединен трубопроводом с охладителем выпара, который соединен через конденсатосборник и гидрозатвор с верхним распределителем жидкости, а по СО2 - с вентилятором и поглотительной башней, внутри которой помещен диспергатор жидкости, нижний распределитель жидкости декарбонизатора соединен с дросселем, а его днище через трубопровод и второй циркуляционный насос соединено с гидрозатвором охладителя выпара и диспергатором жидкости карбонизатора [патент РФ №2371238, МКл. B01D 53/14, 53/62, 53/75, 53/56, 2003].

К недостаткам известного способа относятся незначительная возможность утилизации диоксида углерода путем получения с его помощью углекислого натрия (Na2 СО3), обусловленная ограниченной потребностью последнего в народном хозяйстве, несоизмеримой с выбросами CO2 и невозможность его переработки в экологически безопасные вещества, например кислород (O2), который безвозвратно теряется при образовании CO2, что снижает экономическую и экологическую эффективность очистки дымовых газов.

Основным недостатком известного устройства является также невозможность переработки диоксида углерода в экологически безопасные вещества (например, кислород), что снижает экономическую и экологическую эффективность очистки дымовых газов.

Техническим результатом предлагаемого изобретения является повышение экологической и экономической эффективности процесса очистки и утилизации дымовых газов теплоэнергетических установок.

Технический результат достигается в комплексном способе очистки и утилизации дымовых газов с конверсией диоксида углерода в кислород, включающем охлаждение дымовых газов до температуры ниже точки росы с конденсацией водяных паров в подогревателе карбонизированного раствора моноэтаноламина (МЭА), подогреваемом дымовыми газами, и теплообменнике, состоящем из воздухоподогревателя и конденсатора, охлаждаемых дутьевым воздухом и наружным воздухом, соответственно, где они очищаются от большей части оксидов азота в присутствии озона за счет кислотообразования при конденсации водяных паров и абсорбции конденсатом, освобождаются от диоксида углерода абсорбцией его раствором МЭА и сепарацией от уносимых капель в карбонизаторе и выбрасываются в атмосферу; карбонизированный раствор МЭА насосом подается в подогреватель, где нагревается за счет тепла дымовых газов до температуры насыщения при избыточном давлении, дросселируется до атмосферного давления, вскипает и поступает в среднюю часть декарбонизатора, где карбонизированный раствор МЭА делится на легколетучую фракцию, которая в результате конденсации в охладителе выпара, охлаждаемом питательной водой, делится на конденсат МЭА и газообразный диоксид углерода, а декарбонизированный раствор МЭА выводится из куба декарбонизатора, подогреваемого острым паром, смешивается с конденсатом из охладителя выпара и циркуляционным насосом снова подается на абсорбцию; конденсат водяных паров очищается от кислотных компонентов в анионитовом фильтре и направляется на водоподготовку, причем анионит регенерируется раствором едкого натрия, который в результате регенерации превращается в азотнокислый натрий; из охладителя выпара СО2 вентилятором частично в чистом виде выводится из цикла, частично через распределитель подается в окситенк, где, в результате солнечного или искусственного облучения, происходит его взаимодействие с водой, в которой присутствуют фотосинтезирующие водоросли - хлоропласты - и происходит фотосинтез с образованием углеводов и кислорода при световой и темновой фазах фотосинтеза, при этом полученные углеводы постепенно опускаются, образуя осадок в виде водного раствора органической массы, который удаляется через патрубок удаления осадка, а кислород за счет своего удельного веса поднимается вверх, собирается в кислородной головке и выводится их аппарата.

Предлагаемый способ реализуется в устройстве, включающем газоход, соединенный последовательно с подогревателем карбонизированного раствора моноэтаноламина (МЭА) и вертикальным трубчатым теплообменником, состоящим из соединенных последовательно по газу сверху - вниз трубчатыми воздухоподогревателем и конденсатором, соответственно, который соединен по конденсату с анионитовым фильтром, по газу - с карбонизатором, представляющим собой полую башню, в верхней части которого размещены диспергатор жидкости и каплеотбойник, а днище соединено трубопроводом и насосом через подогреватель карбонизированного раствора МЭА и дроссель с декарбонизатором, внутри которого помещены верхние и нижние распределители жидкости и секции, заполненные насадкой, соответственно, причем верх декарбонизатора соединен трубопроводом с охладителем выпара, который соединен через конденсатосборник и гидрозатвор с верхним распределителем жидкости, а по CO2 - с вентилятором и окситенком, нижний распределитель жидкости декарбонизатора соединен с дросселем, его днище через трубопровод и циркуляционный насос соединено с гидрозатвором охладителя выпара и диспергатором жидкости карбонизатора; окситенк состоит из корпуса с кислородной головкой, изготовленных из светопрозрачного материала, и конусного днища, снабженных патрубками подачи диоксида углерода, выгрузки осадка и подачи подпиточной воды, соответственно, внутри которого расположен распределитель СО2, соединенный с патрубком подачи диоксида углерода;

В основу работы предлагаемых способа и устройства положены особенности состава дымовых газов теплоэнергетических агрегатов, основными компонентами которых, на основании опытных данных и расчета состава продуктов сгорания, являются азот (76-82)% об., диоксид углерода (7-14)% об., водяные пары (5-17)% об., концентрация которых зависит от вида топлива и способа его сжигания [Н.В. Кузнецов и др. Тепловой расчет котельных агрегатов (нормативный метод). - М.: Энергия, 1973, с.15]; высокая растворимость диоксида углерода в растворе моноэтаноламина (МЭА) [Н.В. Атрощенко и др. Методы расчета по технологии связанного азота. - К.: Вища школа, 1978, с.90]; способность газов десорбироваться из абсорбента при повышении температуры и понижении давления согласно законам Генри и Дальтона [А.Н. Плановский, П.И. Николаев. Процессы и аппараты химической и нефтехимической технологии. - М.: Химия, 1972, с.289]; взаимодействие раствора едкого натрия с кислотными остатками с образованием соответствующей соли [Н.Н. Абрамов и др. Водоснабжение. - М.: Госстройизд. 1960, с.424] и способность фотосинтезирующих организмов (зеленых растений, водорослей, цианобактерий) улавливать кванты солнечного света и трансформировать их в химическую энергию в процессе фотосинтеза, заключительной стадией которого является синтез углеводов с попутным выделением кислорода из СО2 в присутствии воды [В.П. Комов, В.Н. Шведова. Биохимия. - М.: Дрофа, 2004, с.210].

Устройство для очистки и утилизации дымовых газов с конверсией диоксида углерода в кислород изображено на фиг.1.

Устройство содержит газоход 1, соединенный последовательно с подогревателем карбонизированного раствора МЭА 2 и теплообменником 3, состоящим из соединенных последовательно по газу сверху-вниз трубчатыми воздухоподогревателем и конденсатором, соответственно, который соединен по конденсату с анионитовым фильтром 4, по газу - с карбонизатором 5, представляющим собой полую башню, в верхней части которого размещены диспергатор жидкости 6 и каплеотбойник 7. Днище карбонизатора 5 соединено трубопроводом с насосом 8 через подогреватель 2 и дроссель 9 - с декарбонизатором 10, внутри которого помещены верхние и нижние распределители жидкости 11, 12 и верхняя и нижняя секции, заполненные насадкой 13, соответственно. Верхняя часть декарбонизатора 10 соединена трубопроводом с охладителем выпара 14, охлаждаемым подпиточной водой, который соединен через конденсатосборник 15 с гидрозатвором 16 с верхним распределителем жидкости 11, а по СO2 - с вентилятором 17. Нижний распределитель жидкости 12 соединен с трубопроводом нагретого карбонизированного раствора МЭА через дроссель 9, а днище декарбонизатора 10 через трубопровод и циркуляционный насос 18 соединено с диспергатором жидкости 6 карбонизатора 5. Вентилятор 17 соединен с окситенком 19, состоящим из корпуса 20 и кислородной головки 21, изготовленными из светопрозрачного материала, конусного днища 22, снабженных патрубками подачи диоксида углерода, выгрузки осадка и подачи подпиточной воды 23, 24 и 25, соответственно, внутри которого расположен распределитель CO2 26, соединенный с патрубком подачи диоксида углерода 23.

Очистка и утилизация дымовых газов с конверсией диоксида углерода в кислород осуществляется в предлагаемом устройстве следующим образом.

Дымовые газы, количество которых обусловлено производительностью устройства, из транзитного газохода 1 под напором, создаваемым дымососом (на фиг. 1 не показан), омывают подогреватель карбонизированного раствора МЭА 2, где охлаждаются до температуры близкой к точке росы и поступают в трубное пространство теплообменника 3, вверху которого размещен воздухоподогреватель, охлаждаемый дутьевым воздухом, до температуры 80-85°C, а внизу конденсатор, охлаждаемый наружным воздухом, который выбрасывается в атмосферу, где происходит смешение газов с озоновоздушной смесью, охлаждение с образованием конденсата, стекающего вниз по стенкам труб, окисление оксидов азота до высших, абсорбция их конденсатом и интенсивное кислотообразование в процессе конденсации водяных паров [Производство азотной кислоты в агрегатах большой единичной мощности, под. ред. В.М. Олевского. - М.: Химия, 1985, с. 44]. Из конденсатора очищенные от оксидов азота и охлажденные до температуры 35-45°C, в интервале которой рекомендуется осуществлять абсорбцию CO2 раствором МЭА, дымовые газы поступают в карбонизатор 5, где контактируют в противотоке с разбрызгиваемым из диспергатора 6 8-10% раствором МЭА, который поглощает диоксид углерода и карбонизированный собирается в кубе карбонизатора 5, а очищенные от диоксида углерода до концентрации 3-4% объемных (большая степень очистки экономически нецелесообразна с точки зрения себестоимости целевого продукта - CO2) дымовые газы сепарируются от уносимых капель раствора МЭА в каплеотбойнике 7 и выбрасываются в атмосферу. Конденсат, насыщенный кислотными компонентами, из конденсатора поступает в анионитовый фильтр 4, где очищается от кислотных компонентов и направляется на водоподготовку для последующего использования. При этом регенерация анионита фильтра 4 производится раствором едкого натрия (NaOH) с получением раствора NaNO3, который реализуется как азотное удобрение. Карбонизированный раствор МЭА из куба карбонизатора 5 насосом 8 с давлением выше атмосферного подается в подогреватель карбонизированного раствора МЭА 2, где нагревается до температуры насыщения при развиваемом давлении, поступает в дроссель 9, где его давление снижается до атмосферного, в результате чего он вскипает и в виде парожидкостной смеси через нижний распределитель жидкости 12 подается в декарбонизатор 10, работающий по принципу ректификации [А.Н. Плановский, П.И. Николаев. Процессы и аппараты химической и нефтехимической технологии. - М.: Химия, 1972, с.

270]. Легкая фракция из нижнего распределителя 12 в парообразном состоянии поднимается в верхнюю секцию, заполненную насадкой 13 (например, кольцами Рашига), где в противотоке с опускающееся жидкостью обогащается CO2, поступает в охладитель выпара 14, охлаждаемый питательной водой, в котором происходит конденсация раствора МЭА, поступающего в конденсатосборник 15 и отделение от него газообразного CO2. Тяжелая фракция из верхнего распределителя 11 в парожидкостном состоянии опускается в нижнюю секцию, заполненную насадкой (например, кольцами Рашига) 13 декарбонизатора 10, где в противотоке с поднимающимся CO2 обогащается раствором МЭА и поступает в куб декарбонизатора 10, который подогревается острым паром (например, паром из сепаратора непрерывной продувки), количество которого незначительно, т.к. предварительно карбонизированный раствор МЭА доводится до кипения дымовых газов при повышенном давлении в подогревателе 2, после чего декарбонизированнй раствор МЭА циркуляционным насосом 18 вновь подается на орошение в карбонизатор 5. Выделенный CO2, из охладителя выпара 14, вентилятором 17 через распределитель 26 подается в окситенк 19, корпус 20 и головка 21 которого выполнены из светопрозрачного материала, пропускающего солнечный свет. В окситенке 19 осуществляется контактирование CO2 с водой, в которой присутствуют фотосинтезирующие водоросли - хлоропласты (например, хлорелла, отличающаяся высокой скоростью усвоения CO2), и в результате солнечного облучения, которое при необходимости заменяется искусственным (источники облучения на фиг. 1 не показаны), происходит фотосинтез, заключительную стадию которого можно выразить стехиометрическим уравнением реакции

При этом в окситенке 19 в верхней прозрачной зоне происходит световая фаза фотосинтеза, в нижней (конусном днище 22) - темновая (ферментативная) фаза. Полученные углеводы постепенно опускаются, образуя осадок в виде водного раствора органической массы, который удаляется через патрубок 24, а кислород за счет своего удельного веса поднимается вверх, собирается в кислородной головке 21 и выбрасывается в атмосферу или реализуется потребителю. Сырой осадок органической массы направляется на дальнейшую переработку для получения топлива из полученной биомассы или для приготовления корма для животных и далее реализуется потребителям.

Таким образом, предлагаемые способ и устройство обеспечивают повышение скорости и степени очистки дымовых газов с одновременной утилизацией вредных компонентов, водяных паров, тепла, диоксида углерода, причем последний конвертируется в кислород, снижая тем самым угрозу парникового эффекта окружающей атмосферы и, в конечном счете, увеличивая экологическую и экономическую эффективность процесса очистки дымовых газов, приближая процесс получения тепла к безотходному производству с замкнутым циклом.

1. Комплексный способ очистки и утилизации дымовых газов с конверсией диоксида углерода в кислород, включающий охлаждение дымовых газов в подогревателе насыщенным раствором моноэтаноламина (МЭА), дутьевым воздухом и наружным воздухом дымовых газов до температуры ниже точки росы с образованием конденсата водяных паров в вертикальном трубчатом теплообменнике, где очищаются от большей части оксидов азота за счет кислотообразования при конденсации водяных паров, освобождаются от оксидов углерода абсорбцией раствором МЭА в карбонизаторе и сепарируются от уносимых капель в каплеотбойнике, а карбонизированный раствор МЭА нагревается за счет тепла дымовых газов до температуры насыщения при избыточном давлении, дросселируется до атмосферного давления, вскипает и поступает в среднюю часть декарбонизатора, где карбонизированный раствор МЭА делится на легколетучую фракцию, которая в результате конденсации в охладителе выпара, охлаждаемом питательной водой, делится на конденсат МЭА и газообразный диоксид углерода, а декарбонизированный раствор МЭА выводится из куба декарбонизатора, подогреваемого острым паром, смешивается с конденсатом из охладителя выпара и циркуляционным насосом снова подается на абсорбцию, отличающийся тем, что выделенный CO2 вентилятором через распределитель CO2 подается в окситенк, где происходит его взаимодействие с водой, в которой присутствуют фотосинтезирующие водоросли - хлоропласты, и в результате солнечного или искусственного облучения происходит фотосинтез с образованием углеводов и кислорода при световой и темновой фазах фотосинтеза, при этом полученные углеводы постепенно опускаются, образуя осадок в виде водного раствора органической массы, который удаляется через патрубок удаления осадка, а кислород за счет своего удельного веса поднимается вверх, собирается в кислородной головке и выводится из аппарата.

2. Устройство для осуществления способа по п. 1, включающее газоход, соединенный последовательно с подогревателем карбонизированного раствора МЭА и вертикальным трубчатым теплообменником, который соединен по конденсату с анионитовым фильтром, по газу - с карбонизатором, представляющим собой полую башню, в верхней части которого размещены диспергатор жидкости и каплеотбойник, а днище соединено трубопроводом и насосом через подогреватель карбонизированного раствора МЭА и дроссель с декарбонизатором, внутри которого помещены верхние и нижние распределители жидкости и секции, заполненные насадкой, соответственно, причем верх декарбонизатора соединен трубопроводом с охладителем выпара, который соединен по конденсату МЭА через конденсатосборник и гидрозатвор с верхним распределителем жидкости, нижний распределитель жидкости декарбонизатора соединен с дросселем, его днище через трубопровод и циркуляционный насос соединено с гидрозатвором охладителя выпара и диспергатором жидкости карбонизатора, отличающееся тем, охладитель выпара соединен по CO2 через вентилятор с окситенком, который состоит из корпуса с кислородной головкой, изготовленных из светопрозрачного материала, и конусного днища, снабженных патрубками подачи диоксида углерода, выгрузки осадка и подачи подпиточной воды, соответственно, внутри которого расположен распределитель CO2, соединенный с патрубком подачи диоксида углерода.



 

Похожие патенты:
Изобретение относится к области химии и может быть использовано для каталитической очистки водородсодержащей газовой смеси от оксидов углерода. Способ каталитической очистки водородсодержащей газовой смеси от оксидов углерода, посредством их гидрирования до метана при пропускании смеси через слой гранул катализатора для процесса метанирования, содержащего никель и γ-А12O3, в интервале температуры 190°C-270°C, отличающийся тем, что очистку ведут также и в интервале температуры 156°C-190°C, причем способ осуществляют путем работы в первом интервале 156°C-190°C и/или во втором интервале 190°C-270°C температуры на катализаторе, содержащем никель в виде монокристаллитов NiO со средневыборочным размером, лежащим в диапазоне 2-3 нанометра, с концентрацией NiO 12,0-25,0 мас.% и γ-Аl2О3 - остальное.

Изобретение относится к способу очистки загрязненного щелочного раствора соли аминокислоты. Сначала в раствор соли аминокислоты вводят диоксид углерода, в результате чего выпадает в осадок карбонат или его соли, которые отфильтровывают.

Изобретение относится к устройству для регенерации поглотителя сероводорода и углекислого газа. Устройство содержит воздухонепроницаемый контейнер в качестве узла для хранения поглотителя, который хранит часть поглотителя, который поглощает CO2, содержащийся в отходящих газах, и узел нагрева, который нагревает поглотитель, узел распределения поглотителя, узел подачи водяного пара, узел извлечения компонента поглотителя, узел подачи сухого водяного пара, причем газообразную массу приводят в противоточный контакт с распределенным поглотителем.

Изобретение может быть использовано для абсорбции диоксида углерода из содержащей его газовой смеси, прежде всего из газообразных продуктов сгорания, из отходящих газов биологических процессов, процессов кальцинирования, прокаливания и других.

Изобретение относится к способам мембранного разделения газов для очистки топочных газов, образующихся при сжигании. Способ включает подачу первой части потока топочного газа для очистки на стадию абсорбционного улавливания двуокиси углерода, одновременную подачу второй части топочного газа вдоль входной поверхности мембраны, подачу потока продувочного газа, обычно воздуха, вдоль выходной поверхности, а затем возврат продувочного газа с проникшим веществом в топочную камеру.

Изобретение относится к газожидкостному контактному аппарату. Газожидкостный контактный аппарат для распыления жидкости сверху вниз в контактной колонне, в которой газ перемещается и проходит таким образом, что газ, перемещающийся снизу вверх, приходит в непосредственный контакт с жидкостью, указанный газожидкостный контактный аппарат содержит: пристеночные форсунки, расположенные вдоль поверхности стенки в контактной колонне для распыления жидкости внутри контактной колонны, и форсунки для диспергирования жидкости, расположенные внутри контура, образованного пристеночными форсунками в контактной колонне, для равномерного распыления жидкости внутри контактной колонны, при этом форсунки для диспергирования жидкости и пристеночные форсунки включают форсунки двух или более типов, которые используются в соответствии со скоростью потока газа.

Изобретение относится к удалению диоксида углерода и других загрязняющих веществ из потоков отходов посредством их абсорбции из концентрированных потоков. Способ отделения тяжелых металлов от воды в конденсате дымовых газов от процесса, в котором диоксид углерода удаляется из газового потока на электростанции, содержит получение хлоридной соли и смешивание ее с водой и/или паром, чтобы получить раствор.

Изобретение относится к способу получения палладиевого катализатора на носителе - оксиде алюминия - для низкотемпературного окисления оксида углерода. Предлагаемый способ включает приготовление пропиточного раствора путем растворения хлористого палладия в воде, пропитку носителя этим раствором, восстановление палладия формиатом натрия, отмывку водой пропитанного носителя до отрицательной реакции на хлор-ион и последующую сушку.
Изобретение относится к производству катализаторов для очистки отходящих промышленных газов от примесей оксида углерода и углеводородов и может быть использовано в области химической, нефтехимической и газовой промышленности.
Изобретение относится к способам получения продуктов для регенерации воздуха, используемых в системах жизнеобеспечения человека. Способ получения продукта для регенерации воздуха заключается во взаимодействии стабилизированного сульфатом магния раствора пероксида водорода и гидроксидов лития и калия с последующей дегидратацией полученного щелочного раствора пероксида водорода распылением его в токе сушильного агента.

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в индивидуальных дыхательных аппаратах на химически связанном кислороде. Способ получения продукта для регенерации воздуха заключается во взаимодействии стабилизированного сульфатом магния раствора пероксида водорода и гидроксидов натрия и калия с последующим нанесением полученного щелочного раствора пероксида водорода на индифферентную пористую волокнистую матрицу и дегидратацией жидкой фазы на матрице. В стабилизированный сульфатом магния щелочной раствор пероксида водорода после добавления гидроксидов натрия и калия вводят галогениды щелочных или щелочно-земельных металлов при мольном соотношении гидроксид калия/галогенид щелочного металла равном 13-115. При этом в качестве галогенидов щелочных или щелочно-земельных металлов используют хлориды лития, натрия, калия, магния, кальция или их смесь. Продукт обладает улучшенными эксплуатационными характеристиками при его использовании в системах жизнеобеспечения человека. 1 з.п. ф-лы, 1 ил., 1 табл., 9 пр.
Изобретение относится к способам получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в индивидуальных дыхательных аппаратах на химически связанном кислороде. Способ получения продукта для регенерации воздуха заключается во взаимодействии стабилизированного сульфатом магния раствора пероксида водорода и гидроксидов натрия и калия с последующей дегидратацией полученного щелочного раствора пероксида водорода распылением его в токе сушильного агента. В щелочной раствор пероксида водорода после добавления гидроксидов натрия и калия вводят галогениды щелочноземельных металлов при мольном соотношении гидроксид калия/галогенид щелочного металла, равном 14-110. При этом в качестве галогенидов щелочноземельных металлов используют хлориды кальция или магния или их смесь. При эксплуатации продукта для регенерации воздуха, полученного по изобретению, в составе систем жизнеобеспечения человека отношение скорости процесса хемосорбции диоксида углерода и скорости процесса выделения кислорода (а следовательно, и коэффициент регенерации) имеет значение, близкое к оптимальному. За счет этого продукт для регенерации воздуха обеспечивает большее время защитного действия при его эксплуатации в системах жизнеобеспечения человека. 1 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к составам химических веществ, используемых в изолирующих дыхательных аппаратах на химически связанном кислороде, и может быть использовано в производстве продуктов для регенерации воздуха на основе надпероксида калия. Продукт для регенерации воздуха имеет следующий состав, мас.%: надпероксид калия 88; сульфат магния 6-10; диоксид кремния, синтезированный из хризотилового асбеста, 6-2. Регенеративный продукт данного состава обеспечивает высокое поглощение диоксида углерода и равномерное выделение кислорода на единицу массы на протяжении всего времени работы продукта в патроне изолирующего дыхательного аппарата, а также высокую степень отработки при его эксплуатации в изолирующем дыхательном аппарате по сравнению с аналогами за счет улучшения условий диффузии паров воды и диоксида углерода в объем гранул продукта. Это позволяет увеличить время защитного действия изолирующего дыхательного аппарата при тех же массогабаритных характеристиках. Кроме того, изолирующий дыхательный аппарат, снаряженный предложенным регенеративным продуктом, при эксплуатации имеет более низкую температуру циркулирующего воздуха на вдохе и значительно меньшее аэродинамическое сопротивление дыханию пользователя. Это обеспечивает более комфортные условия для пользователя и позволяет существенно расширить круг лиц, которые могут пользоваться данными дыхательными аппаратами. 3 ил., 2 табл., 5 пр.
Изобретение относится к области захвата оксидов углерода, в частности диоксида углерода. Способ захвата оксидов углерода включает приведение газового потока, содержащего оксид углерода, в контакт с соединением следующей формулы: X-(OCR2)n-OX′ (1), в которой n является целым числом от 2 до 20, предпочтительно от 2 до 8, включая предельные значения, X и X′, одинаковые или разные, обозначают независимо друг от друга радикал CmH2m+1, где m обозначает число от 1 до 20, предпочтительно от 1 до 10, включая предельные значения, и R обозначает водород или X. Изобретение обеспечивает эффективный захват оксидов углерода. 3 н. и 15 з.п. ф-лы, 14 пр., 3 табл.

Изобретение относится к нефтегазовой и химической промышленности, а именно к способу очистки от H2S и CO2 углеводородных газов. Способ включает подачу в абсорбер очищаемого газа под давлением 5÷8 МПа, абсорбцию кислых компонентов водным раствором активированного метилдиэтаноламина, выветривание насыщенного кислыми газами раствора метилдиэтаноламина последовательно в две ступени, на первой ступени - при высоком давлении, а на второй ступени - при низком давлении, деление вытекающего со второй ступени груборегенерированного раствора на две части, подачу большей части - в середину абсорбера, а меньшей части - в десорбер для тонкой тепловой регенерации, и подачу вытекающего из десорбера тонкорегенерированного раствора на верх абсорбера. При этом вытекающий из первой ступени раствор подают в насос, где его давление повышают на 0,5÷1,0 МПа и направляют в рекуперативный теплообменник для нагрева вытекающим из десорбера раствором до 100÷105°С перед второй ступенью выветривания. Вытекающий из рекуперативного теплообменника тонкорегенерированный раствор охлаждают и делят на две части, меньшую часть смешивают с большей частью раствора, вытекающего со второй ступени, и после охлаждения направляют в среднюю часть абсорбера, а большую часть подают на верх абсорбера. Изобретение позволяет предотвратить попадание H2S в зону абсорбции СО2, снизить затраты энергии и расход дорогостоящего раствора метилдиэтаноламина. 1 ил., 2 табл., 1 пр.

Изобретение относится к способу и установке очистки природного газа от диоксида углерода и сероводорода и может быть использовано в газоперерабатывающей промышленности. Способ включает две стадии абсорбции: на первой стадии осуществляется селективная очистка по отношению к диоксиду углерода с выделением кислого газа, в котором содержание диоксида углерода не превышает 30-40%, и очищенного газа с содержанием сероводорода не более 5-7 мг/м3, отправляемый далее на вторую стадию абсорбции с получением очищенного газа с содержанием диоксида углерода не более 50-200 мг/м3 и полным отсутствием сероводорода, и кислого газа с содержанием сероводорода не более 200 мг/м3, при этом насыщение алкиламинового абсорбента на каждой стадии абсорбции кислыми компонентами не превышает 0,4 моль/моль, при этом природный газ имеет соотношение сероводорода к диоксиду углерода, равное 1,0, но не более 1,5, и концентрации сероводорода от 3,5 до 8,0 об.%. Установка включает два последовательных узла абсорбционной очистки газа, состоящих из абсорбера, регенератора, насосов, холодильника, рекуперативного теплообменника, кипятильника, емкости и трубопроводов обвязки аппаратов узлов абсорбционной очистки газа. Изобретение обеспечивает эффективную очистку природного газа от диоксида углерода и сероводорода. 2 н. и 17 з.п. ф-лы, 2 ил., 3 пр., 1 табл.

Изобретение относится к композиции для очистки выхлопных газов на основе церия, циркония и вольфрама. Предложенная композиция имеет следующие массовые содержания, выраженные в оксиде: оксид церия - от 5 до 30%, оксид вольфрама - от 2 до 17%, остальное - оксид циркония. При этом после старения при 750°C в атмосфере воздуха с 10% воды она имеет двухфазную кристаллографическую структуру, содержащую тетрагональную фазу оксида циркония и моноклинную фазу оксида циркония, без присутствия кристаллической фазы, содержащей вольфрам. Предложенная композиция позволяет эффективно очищать выхлопные газы от оксидов азота и монооксидов углерода. Настоящее изобретение также относится к способу получения такой композиции, каталитической системе, содержащей данную композицию, а также способам обработки газа для конверсии оксидов азота и каталитического окисления монооксида углерода с использованием этой композиции. 5 н. и 8 з.п. ф-лы, 2 ил., 2 табл., 4 пр.
Изобретение касается каталитической очистки выхлопных газов двигателей внутреннего сгорания. Заявлен состав для очистки выхлопных газов двигателей внутреннего сгорания на основе оксида церия, содержащий оксид ниобия, со следующими массовыми содержаниями: оксид ниобия от 2 до 20%; остальное оксид церия. Также заявлен состав со следующими массовыми содержаниями: оксид церия по меньшей мере 65%; оксид ниобия от 2 до 12%; оксид циркония до 48%. После прокаливания в течение 4 часов при 800°С составы имеют кислотность по меньшей мере 6·10-2, причем эта кислотность выражена в мл аммиака на м2 состава, а поверхность, выраженная в м2, используемая для определения кислотности, представляет собой удельную поверхность после прокаливания в течение 4 часов при 800°С и удельную поверхность по меньшей мере 15 м2/г, а после прокаливания в течение 4 часов при 1000°С имеют удельную поверхность по меньшей мере 2 м2/г, в частности по меньшей мере 3 м2/г. Изобретение относится к катализатору, который содержит указанные выше составы, к способам окисления СО и углеводородов, разложения N2O, для адсорбции ΝOx и CO2. Указанные составы и катализатор применяют в реакции газа с водой, реакции конверсии с водяным паром, реакции изомеризации, реакции каталитического крекинга и в качестве катализатора тройного действия. Заявленные составы обладают удовлетворительной восстановительной способностью в сочетании с хорошей кислотностью, удельная поверхность которых остается подходящей для применения в катализе. 7 н. и 9 з.п. ф-лы, 1 табл., 14 пр.

Изобретение относится к способу очистки дымового газа, насыщенного диоксидом углерода, а также к котельной установке. Котельная установка для реализации способа очистки дымового газа, насыщенного диоксидом углерода, состоит из котла для сжигания топлива в присутствии газа, содержащего кислород, и системы газоочистки, обеспечивающей удаление части примесей из дымового газа, насыщенного диоксидом углерода, образованного в котле, а также устройства сжатия, обеспечивающего сжатие части дымового газа, насыщенного диоксидом углерода, из которого была удалена по меньшей мере часть примесей, и канала подачи диоксида углерода, обеспечивающего подачу по части сжатой части дымового газа, насыщенного диоксидом углерода, из которого была удалена часть примесей в одно устройство газоочистки для использования в нем в качестве рабочего газа. Технический результат - снижение выделения углекислого газа в атмосферу. 2 н. и 15 з.п. ф-лы, 8 ил.

Изобретение относится к снижению выбросов СО2 в потоках газообразных продуктов сгорания и промышленным установкам для осуществления этого способа. Способ включает выработку потока газообразных продуктов сгорания, охлаждение потока газообразных продуктов сгорания с использованием теплообменника, сжатие потока газообразных продуктов сгорания, подачу рециклом первой части сжатого потока газообразных продуктов сгорания на стадию выработки и отделение СО2 от второй части сжатого потока газообразных продуктов сгорания с получением потока жидкого СO2 и потока газообразных продуктов сгорания, по существу не содержащего СO2. Промышленная установка содержит производственный блок для получения продукта и выработки потока газообразных продуктов сгорания, включающего СO2, компрессор, линию рециркуляции, соединенную с компрессором и производственным блоком, и сепаратор СO2. Изобретение обеспечивает экономически эффективный способ удаления СO2. 3 н. и 21 з.п. ф-лы, 5 ил.
Наверх